REMARKS ON SCHWARZ'S LEMMA

Q. I. RAHMAN AND Q. G. MOHAMMAD

If f(z) is an analytic function, regular in $|z| \le 1$, $|f(z)| \le 1$ for |z| = 1 and f(0) = 0, then by Schwarz's lemma

$$|f(re^{i heta})| \leq r$$
 , $(0 \leq r \leq 1)$.

More generally, if f(z) is regular inside and on the unit circle, $|f(z)| \leq 1$ on the circle and f(a) = 0, where |a| < 1, then

$$(1) |f(z)| \le |(z-a)/(1-\bar{a}z)|,$$

inside the circle. In other words,

(2)
$$|f(z)/(z-a)| < 1/|1-\bar{a}z|$$
,

for $|z| \leq 1$. For a fixed *a* on the unit circle, let C_a denote the class of functions f(z) which are regular in $|z| \leq 1$, vanish at the point z = a, and for which

$$\max_{|z|=1} |f(z)| = 1$$
.

Any positive number A being given, it is clearly possible to construct a function f(z) of the class C_a for which

$$\mathscr{M}_{f}(1) = \max_{|z|=1} |f(z)/(z-a)| > A$$
 ,

i.e. $\mathcal{M}_f(1)$ is not uniformly bounded for $f \in C_a$. If f(z) is restricted to a subclass of C_a there may exist a uniform bound for $\mathcal{M}_f(1)$ as f(z) varies within the subclass. It is clear that such is the case for the important subclass consisting of all polynomials of degree at most n vanishing at z = a. The problem is to find the uniform bound.

We prove:

THEOREM. If p(z) is a polynomial of degree n such that $|p(z)| \leq 1$ on the unit circle, and p(1) = 0, then for $|z| \leq 1$.

(3)
$$|p(z)/(z-1)| \leq n/2$$
.

The example $(z^n - 1)/2$ shows that the bound in (3) is precise. The following corollary is immediate.

COROLLARY 1. If p(z) is a polynomial of degree n satisfying the conditions of the theorem, then $|p'(1)| \leq n/2$.

This is interesting in view of the fact that if $p(1) \neq 0$ all we can say [2, p. 357] is that $|p'(1)| \leq n$.

If p(z) is a polynomial of degree n and $|p(z)| \leq 1$ on the unit circle then the polynomial

$$rac{p(z)-p(1)}{1+|p(1)|}$$

satisfies the hypotheses of our theorem. Consequently

$$\left| rac{p(z) \, - \, p(1)}{z - 1}
ight| \leq rac{n}{2} (1 \, + \mid p(1) \mid) \; ,$$

or

$$p(z) - p(1) \mid \leq rac{n}{2} (1 + \mid p(1) \mid) \mid z - 1 \mid.$$

Thus we have:

COROLLARY 2. If p(z) is a polynomial of degree n and |p(z)| < 1on the unit circle, then for $|z| \leq 1$,

$$| \, p(z) \, | \, \leq \, | \, p(1) \, | \, + \, rac{n}{2} (1 \, + \, | \, p(1) \, |) \, | \, z \, - \, 1 \, | \, \, .$$

Proof of the theorem. Set $p(z)/(z-1) = \tilde{p}(z)$ and let the maximum of $|\tilde{p}(e^{i\theta})|$ for $-\pi \leq \theta \leq \pi$ occur when $\theta = 2\theta_0$. We may suppose that $|e^{2i\theta_0} - 1| < 2/n$, otherwise there is nothing to prove. Let

$$t(\theta) = e^{-i(n-1)\theta} \widetilde{p}(e^{2i\theta})$$
,

and choose γ such that $e^{i\gamma}t(\theta_0)$ is real. Consider the real trigonometric polynomial

$$T(heta) \equiv \operatorname{Re} \left\{ e^{i\gamma} t(heta)
ight\}$$
 .

Since $|e^{i\gamma}t(\theta)|$ has its maximum at θ_0 , the real trigonometric polynomial $T(\theta)$ has its maximum modulus at θ_0 where it is actually a local maximum, i.e. $T'(\theta_0) = 0$. The function $2 \sin \theta T(\theta)$ is a real trigonometric polynomial of degree n such that

$$|2\sin\theta T(\theta)| = |e^{-i\theta}(e^{2i\theta} - 1)T(\theta)| \le |p(e^{2i\theta})| \le 1$$

for $-\pi \leq \theta \leq \pi$.

A result of van der Corput and Schaake [1] states that if $F(\theta)$ is a real trigonometric polynomial of degree n and $|F(\theta)| \leq 1$ for real θ , then

(4)
$$n^2 F(\theta)^2 + (F'(\theta))^2 \leq n^2$$

Applying this result to the trigonometric polynomial $2 \sin \theta T(\theta)$ we

get

$$n^2 \sin^2 heta \, T^2(heta) + \{\cos heta \, T(heta) + \sin heta \, T'(heta)\}^2 \leq rac{n^2}{4}$$

for $-\pi \leq \theta \leq \pi$. Setting $\theta = \theta_0$ we get

$$\{1+(n^2-1)\sin^2 heta_0\}T^2(heta_0)\leq rac{n^2}{4}$$
 ,

since $T'(\theta_0) = 0$. Hence

$$\mid T(heta_{\scriptscriptstyle 0}) \mid \ \le \ (n/2)(1 \, + \, (n^2 \, - \, 1) \sin^2 heta_{\scriptscriptstyle 0})^{-1/2}$$
 ,

and the result follows.

REMARK 1. From the method of proof it is clear that if p(z) is a polynomial of degree n, such that $|p(z)| \leq 1$ on the unit circle and $p(\pm 1) = 0$, then for $|z| \leq 1$,

$$(5) \qquad |p(z)/(z^2-1)| \leq n/4$$
 .

Or, more generally, if p(z) = 0 whenever z is a root of $z^k - 1 = 0$, and $|p(z)| \leq 1$ for $|z| \leq 1$, then

(6)
$$\max_{|z| \le 1} |p(z)/(z^k - 1)| \le n/(2k)$$
.

REMARK 2. For every $\varepsilon > 0$ and a lying inside the unit circle we can construct a polynomial p(z) which vanishes at z = a, $|p(z) \leq 1$ for $|z| \leq 1$ but

$$\max_{|z|\leq 1} |p(z)/(z-a)| > \frac{1}{1-|a|} - \varepsilon.$$

In fact, let

$$rac{1}{1-ar{a}z}=\sum_{
u=0}^{\infty}a_{
u}z^{
u}$$

for |z| < 1/|a|, and choose N so large that

$$\left|rac{1}{1-ar{a}z}-\sum\limits_{
u=0}^{N}a_{
u}z^{
u}
ight|$$

for $|z| \leq 1$. With this choice of N,

$$\left|(z-a)\sum\limits_{
u=0}^{N}a_{
u}z^{
u}
ight|<1+(1+|a|)arepsilon'$$

for $|z| \leq 1$ and

$$rac{1}{1+(1+|a|)arepsilon'}\left(z-a
ight)\sum\limits_{
u=0}^{N}a_{
u}z^{
u}$$

is therefore a polynomial of the type we wanted to construct.

However, if we restrict ourselves to polynomials of degree at most n(>1) then we can easily prove that for $|z| \leq 1$

$$(7)$$
 $| p(z)/(z-a) | < n$.

For a = 0 the result is included in Schwarz's lemma. If $a \neq 0$ we observe that

$$p(z) = \int_a^z p'(w) dw$$

and therefore

$$\mid p(z) \mid \leq \mid z-a \mid \max_{\mid w \mid \leq 1} \mid p'(w) \mid < n \mid z-a \mid$$

by an inequality due to M. Riesz [2, p. 357] wherein equality holds only when p(z) is a constant multiple of z^n . This is the same as (7).

References

1. J. G. van der Corput and G. Schaake, Ungleichunden für Polynome und trigonometrische Polynome, Compositio Mathematica 2 (1935), 321-361. Berichtigung zu: Ungleichungen für Polynome und trigonometrische Polynome, Compositio Mathematica 3 (1936), 128.

2. M. Riesz, Eine trigonometrische Interpolationformel und einige Ungleichungen für Polynome, Jahresbericht der Deutschen Mathematiker-Vereinigung 23 (1914), 354-368.

Received April 15, 1966.

UNIVERSITÉ DE MONTRÉAL

AND

University of Jammu and Kashmir Srinagar (Kashmir), India