REMARKS ON SCHWARZ'S LEMMA

Q. I. Rahman and Q. G. Mohammad

If $f(z)$ is an analytic function, regular in $|z| \leqq 1,|f(z)| \leqq 1$ for $|z|=1$ and $f(0)=0$, then by Schwarz's lemma

$$
\left|f\left(r e^{i \theta}\right)\right| \leqq r, \quad(0 \leqq r \leqq 1)
$$

More generally, if $f(z)$ is regular inside and on the unit circle, $|f(z)| \leqq 1$ on the circle and $f(a)=0$, where $|a|<1$, then

$$
\begin{equation*}
|f(z) \leqq|(z-a) /(1-\bar{a} z)|, \tag{1}
\end{equation*}
$$

inside the circle. In other words,

$$
\begin{equation*}
|f(z) /(z-a)|<1 /|1-\bar{a} z|, \tag{2}
\end{equation*}
$$

for $|z| \leqq 1$. For a fixed a on the unit circle, let C_{a} denote the class of functions $f(z)$ which are regular in $|z| \leqq 1$, vanish at the point $z=a$, and for which

$$
\max _{|z|=1}|f(z)|=1 .
$$

Any positive number A being given, it is clearly possible to construct a function $f(z)$ of the class C_{a} for which

$$
\mathscr{M}_{f}(1)=\max _{|z|=1}|f(z) /(z-a)|>A,
$$

i.e. $\mathscr{M}_{f}(1)$ is not uniformly bounded for $f \in C_{a}$. If $f(z)$ is restricted to a subclass of C_{a} there may exist a uniform bound for $\mathscr{M}_{f}(1)$ as $f(\mathbf{z})$ varies within the subclass. It is clear that such is the case for the important subclass consisting of all polynomials of degree at most n vanishing at $z=a$. The problem is to find the uniform bound.

We prove:
Theorem. If $p(z)$ is a polynomial of degree n such that $|p(z)| \leqq 1$ on the unit circle, and $p(1)=0$, then for $|z| \leqq 1$.

$$
\begin{equation*}
|p(z) /(z-1)| \leqq n / 2 \tag{3}
\end{equation*}
$$

The example $\left(z^{n}-1\right) / 2$ shows that the bound in (3) is precise. The following corollary is immediate.

Corollary 1. If $p(z)$ is a polynomial of degree n satisfying the conditions of the theorem, then $\left|p^{\prime}(1)\right| \leqq n / 2$.

This is interesting in view of the fact that if $p(1) \neq 0$ all we can say [2, p. 357] is that $\left|p^{\prime}(1)\right| \leqq n$.

If $p(z)$ is a polynomial of degree n and $\mid p(z)) \leqq 1$ on the unit circle then the polynomial

$$
\frac{p(z)-p(1)}{1+|p(1)|}
$$

satisfies the hypotheses of our theorem. Consequently

$$
\left|\frac{p(z)-p(1)}{z-1}\right| \leqq \frac{n}{2}(1+|p(1)|),
$$

or

$$
|p(z)-p(1)| \leqq \frac{n}{2}(1+|p(1)|)|z-1|
$$

Thus we have:
Corollary 2. If $p(z)$ is a polynomial of degree n and $|p(z)|<1$ on the unit circle, then for $|z| \leqq 1$,

$$
|p(z)| \leqq|p(1)|+\frac{n}{2}(1+|p(1)|)|z-1|
$$

Proof of the theorem. Set $p(z) /(z-1)=\widetilde{p}(z)$ and let the maximum of $\left|\widetilde{p}\left(e^{i \theta}\right)\right|$ for $-\pi \leqq \theta \leqq \pi$ occur when $\theta=2 \theta_{0}$. We may suppose that $\left|e^{2 i \theta_{0}}-1\right|<2 / n$, otherwise there is nothing to prove. Let

$$
t(\theta)=e^{-i(n-1) \theta} \widetilde{p}\left(e^{2 i \theta}\right),
$$

and choose γ such that $e^{i \gamma} t\left(\theta_{0}\right)$ is real. Consider the real trigonometric polynomial

$$
T(\theta) \equiv \operatorname{Re}\left\{e^{i \gamma} t(\theta)\right\}
$$

Since $\left|e^{i \gamma} t(\theta)\right|$ has its maximum at θ_{0}, the real trigonometric polynomial $T(\theta)$ has its maximum modulus at θ_{0} where it is actually a local maximum, i.e. $T^{\prime}\left(\theta_{0}\right)=0$. The function $2 \sin \theta T(\theta)$ is a real trigonometric polynomial of degree n such that

$$
|2 \sin \theta T(\theta)|=\left|e^{-i \theta}\left(e^{2 i \theta}-1\right) T(\theta)\right| \leqq\left|p\left(e^{2 i \theta}\right)\right| \leqq 1
$$

for $-\pi \leqq \theta \leqq \pi$.
A result of van der Corput and Schaake [1] states that if $F(\theta)$ is a real trigonometric polynomial of degree n and $|F(\theta)| \leqq 1$ for real θ, then

$$
\begin{equation*}
n^{2} F(\theta)^{2}+\left(F^{\prime}(\theta)\right)^{2} \leqq n^{2} \tag{4}
\end{equation*}
$$

Applying this result to the trigonometric polynomial $2 \sin \theta T(\theta)$ we
get

$$
n^{2} \sin ^{2} \theta T^{2}(\theta)+\left\{\cos \theta T(\theta)+\sin \theta T^{\prime}(\theta)\right\}^{2} \leqq \frac{n^{2}}{4}
$$

for $-\pi \leqq \theta \leqq \pi$. Setting $\theta=\theta_{0}$ we get

$$
\left\{1+\left(n^{2}-1\right) \sin ^{2} \theta_{0}\right\} T^{2}\left(\theta_{0}\right) \leqq \frac{n^{2}}{4}
$$

since $T^{\prime}\left(\theta_{0}\right)=0$. Hence

$$
\left|T\left(\theta_{0}\right)\right| \leqq(n / 2)\left(1+\left(n^{2}-1\right) \sin ^{2} \theta_{0}\right)^{-1 / 2},
$$

and the result follows.
Remark 1. From the method of proof it is clear that if $p(z)$ is a polynomial of degree n, such that $|p(z)| \leqq 1$ on the unit circle and $p(\pm 1)=0$, then for $|z| \leqq 1$,

$$
\begin{equation*}
\left|p(z) /\left(z^{2}-1\right)\right| \leqq n / 4 \tag{5}
\end{equation*}
$$

Or, more generally, if $p(z)=0$ whenever z is a root of $z^{k}-1=0$, and $|p(z)| \leqq 1$ for $|z| \leqq 1$, then

$$
\begin{equation*}
\max _{|z| \leq 1}\left|p(z) /\left(z^{k}-1\right)\right| \leqq n /(2 k) . \tag{6}
\end{equation*}
$$

Remark 2. For every $\varepsilon>0$ and a lying inside the unit circle we can construct a polynomial $p(z)$ which vanishes at $z=a, \mid p(z) \leqq 1$ for $|z| \leqq 1$ but

$$
\max _{|z| \leqq 1}|p(z) /(z-a)|>\frac{1}{1-|a|}-\varepsilon .
$$

In fact, let

$$
\frac{1}{1-\bar{a} z}=\sum_{\nu=0}^{\infty} a_{\nu} z^{\nu}
$$

for $|z|<1 /|a|$, and choose N so large that

$$
\left|\frac{1}{1-\bar{a} z}-\sum_{\nu=0}^{N} a_{\nu} z^{\nu}\right|<\varepsilon^{\prime}=\frac{(1-|a|) \varepsilon}{2-\varepsilon\left(1-|a|^{2}\right)}
$$

for $|z| \leqq 1$. With this choice of N,

$$
\left|(z-a) \sum_{\nu=0}^{N} a_{\nu} z^{\nu}\right|<1+(1+|a|) \varepsilon^{\prime}
$$

for $|z| \leqq 1$ and

$$
\frac{1}{1+(1+|a|) \varepsilon^{\prime}}(z-a) \sum_{\nu=0}^{N} a_{\nu} z^{\nu}
$$

is therefore a polynomial of the type we wanted to construct.
However, if we restrict ourselves to polynomials of degree at most $n(>1)$ then we can easily prove that for $|z| \leqq 1$

$$
\begin{equation*}
|p(z) /(z-a)|<n \tag{7}
\end{equation*}
$$

For $a=0$ the result is included in Schwarz's lemma. If $a \neq 0$ we observe that

$$
p(z)=\int_{a}^{z} p^{\prime}(w) d w
$$

and therefore

$$
|p(z)| \leqq|z-a| \max _{|w| \leqq 1}\left|p^{\prime}(w)\right|<n|z-a|
$$

by an inequality due to M. Riesz [2, p. 357] wherein equality holds only when $p(z)$ is a constant multiple of z^{n}. This is the same as (7).

References

1. J. G. van der Corput and G. Schaake, Ungleichunden für Polynome und trigonometrische Polynome, Compositio Mathematica 2 (1935), 321-361. Berichtigung zu: Ungleichungen für Polynome und trigonometrische Polynome, Compositio Mathematica 3 (1936), 128.
2. M. Riesz, Eine trigonometrische Interpolationformel und einige Ungleichungen für Polynome, Jahresbericht der Deutschen Mathematiker-Vereinigung 23 (1914), 354368.

Received April 15, 1966.
Université de Montréal
and
University of Jammu and Kashmir
Srinagar (Kashmir), India

