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ON ^-SEQUENTIAL CONVERGENCE AND
QUASI-REFLEXIVITY

R. D. MCWILLIAMS

This paper characterizes quasi-reflexive Banach spaces in
terms of certain properties of the w*-sequential closure of
subspaces. A real Banach space X is quasi-reflexive of order
n, where n is a nonnegative integer, if and only if the can-
onical image JXX of X has algebraic codimension n in the
second dual space X**. The space X will be said to have
property Pn if and only if every norm-closed subspace S of
X* has codimension ^n in its w*-sequential closure KX(S).
By use of a theorem of Singer it is proved that X is quasi-
reflexive of order ^n if and only if every norm-closed separ-
able subspace of X has property Pn A certain parameter
Q{n\X) is shown to have value 1 if X has property Pn and to
be infinite if X does not have Pn The space X has Po if and
only if ^-sequential convergence and w*-sequential converg-
ence coincide in X*. These results generalize a theorem of
Fleming, Retherford, and the author.

2. If X is a real Banach space, S a subspace of X*, and KX(S)
the w*-sequential closure of S in X*, then KX(S) is a Banach space
under the norm φs defined by

φs(f) = inf {sup%eω | |Λ || : {/.} c S, fn -^

for fe KΣ(S) [5]. If S S T C KX(S\ let

CAS, T) = sup {φs(f):fe T, \\ f \\ £ 1} .

Thus, KX(S) is norm-closed in (X*, || ||) if and only if CX(S, KX(S))
is finite [5], For each integer n >̂ 0 let ^"n(S) be the family of all
subspaces T of X* such that S g Γ g KX(S) and such that KX(S) is
the algebraic direct sum of T and a subspace of dimension <^n.
Let

C?(S) = inf {CAS, T): T

and let

Q{n)(X) = sup{CΉS): S a subspace of X*} .

It will be said that X has property Pn if and only if S e ^~n(S) for
every norm-closed subspace S of (X*, || | |).

3. THEOREM 1. Let X be a real Banach space and n a non-
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negative integer. If X has property Pn1 then Q{n\X) = 1. If X does
not have property Pn, then Q{n){X) = oo.

Proof. If X has property Pn and Si is a norm-closed subspace
of X*, then S1e^'n(S1) and hence C^iSJ = 1. If S is an arbitrary
subspace of X* and S2 the norm-closure of S, then Cχ](S) = C^Si)
and therefore Q(%)(X) = 1.

If X does not have property P n , then X* has a norm-closed sub-
space S such that KX(S) contains an (n 4- l)-dimensional subspace
V such that S ΓΊ F = {0}. Now V has a basis {flf , /w+1} of vectors
with 11/ l̂ — 1, and there exist F19 •••, Fn+1eX** such that for each
j e { l , . . . , n + l}, F y (/) = 0 for every fe S and Fs(fi) = did for each
i G {1, , n + 1} [7, p. 186]. Let α = max {|| Z*7,- \\:l^j ^n + 1}.
Further, there exist vectors xu , a;Λ+1 e X such that /i(#y) = δi3 for
1 ^ i, 3 ^ n + 1 [7, p. 138].

Since /i, , fn+1 e KX{S), the restrictions of cΓxfti, , t7xajll+1 to
S must be linearly independent on S, and hence for each

there exists ^ e S such that ff<(a?y) = δiS for each i [7, p. 138], Now
for each i = 1, , n + 1 there is a sequence {pα} c S such that

p ί ; ι >fi. The sequence {pίΛ} may be chosen so that
h

for each i . If we let / „ = pth + ΣSΆ [*« ~ Prtί*/)!^, then /«(*,) = a,,-

for a l i i , Λ, i , and \\fih-pih\\< 2~\ so that / α —-»• / t clearly {/„} c S.
h

For each i e {1, , n + 1} and heω, let # α = /<Λ - /<. Thus

^a(^) = 0 and F3 (gik) = — δ<y for all i, Λ,i, and ^ ί Λ -τ~>0 for each i.
It

Generalizing a method of Fleming [3], for each positive number N
we let JB^ be the linear span and SN the norm-closed linear span of
{/•* + Ngih :l^i<Zn + l;heω}. Note that for each

i e {1, , n + 1}, fih + Ngih —^ f<

thus V S KX{RN). Now let / be a nonzero element of V and {vm} a

sequence in i2^ such that i;m > /. Clearly / has the form
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and each vm has the form

71+1 hmi

= Σ Σ ccmih{fik + Ngih) .
i = l h = l

For every j e {1, , n + 1},

ocj = f(xj) = Hmm ^ m ( ^ ) - l im m Σ ocmjh ,
A = l

and since F, (fih + Λfyα) = -Nδid, it follows that

Thus limm Fj(vm) exists and is equal to —Najt Now

n i | ^ \Fj{vm)\
ii . ι ι = ] l F A l ,

and hence lim infm || vm \\ ̂ N\aά\j\\Fi\\ ^ N \aά \/a. Since j is arbi-

trary, lim infw || vm || ^ (N/a) max \oc, \. From the definition of φSN, it

follows t h a t φRN(f) = φRN(f) ^ JV/αmax, \as\^N\\f\\Kn + 1). If

Te^~n(SN), then T must contain some nonzero feV since V is (n + 1)-

dimensional, and hence CX(SN, T) Ξ> N/a(n + 1). Therefore C^(S^) ^

N/a(n + 1). Since iV is arbitrary and α:(w + 1) is independent of

JV, it follows t h a t Q ( ί l ) (^) = + ° ° .

THEOREM 2. Lβί X be a real Banach space and n a nonnegative
integer. If X is quasi-reflexive of order ^n, then X has property
Pn. If X is separable and has property Pn, then X is quasi-reflexive
of order ^n.

Proof. If X is quasi-reflexive of order m ^ n and S is a norm-
closed subspace of X*, then it can be seen from the proofs of Theo-
rems 5 and 6 of [4] that KX(S) is the direct sum of S with a sub-
space of X* of dimension ^m. Hence Se j7~n{S), and consequently X
has property Pn.

On the other hand, let X be separable and suppose that X has
property Pn. Let Fu , Fn+1 be linearly independent elements of
X** and S = ΓiUl { / e Γ : F^f) = 0} . Thus S is a norm-closed sub-
space of X* of codimension n + 1, and hence, by property Pn, KX(S)
has codimension m for some me {1, , n + 1}. There exists a sub-
space U of X* of codimension 1 such that KX(S) £ ?7. Thus *7 =
S 0 7 for some subspace F of X* of dimension w. Now U = KX(U).

Indeed, if {#*} c ?7 and #{ > #, and if P is the projection of U onto
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V along S, then as in the proof of Theorem 5 of [4], P is bounded
and {#J is bounded, so that {P#J is bounded and hence has a subse-
quence {Pgij} which converges inner m to some v in the finite-dimension-

al subspace V. It follows that g{. — Pgij > g — veKZ(S) and hence
that g e KX(S) + V = U.

Since U = KX{U) and X is separable, it follows, by an argu-
ment involving the bw*-topology of X* [3], that U is w*-closed. If
n = 0, let F = Flm If n > 0, there exist linearly independent vectors
fu •••»/» spanning V, and there exist scalars au , au+1, not all of
which are zero, such that Σ?ίί ai^i(fj) = 0 for 1 <^ j ^ n; indeed,
the (n + 1) vectors

in ^-dimensional Euclidean space must be linearly dependent. Let
F = Σ?+ί oΓίî . Thus, for n ^ 0, ί7 Φ 0 and ί7 - {/ e X* : i^(/) = 0}.
Since U is w*-closed, F is w*-continuous on X* [7, p. 139], and
hence FeJzX. Thus every (w + l)-dimensional subspace of X** con-
tains a nonzero element of JXX, which means that X is quasi-reflexive
of order <*n.

REMARK. Theorems 1 and 2 contain a generalization of Flem-
ing's theorem [3] that if X is a separable Banach space, then X is
reflexive if and only if Q(X) = 1. The following theorem generalizes
a theorem of [3] and [4].

THEOREM 3. A real Banach space X is quasi-reflexive of order
^n, where n ^ 0, if and only if every norm-closed separable sub-
space Y of X has the property Pn.

Proof. If X is quasi-reflexive of order <=n and 7 is a closed
subspace of X, then Y is also quasi-reflexive of order <,n [1] and
hence Y has property Pn by Theorem 2. Conversely, if every norm-
closed separable subspace Y of X has property Pn, then every such
Y is quasireflexive of order <*n by Theorem 2, and hence X is quasi-
reflexive of order ^n by a theorem of Singer [6].

REMARK. In Theorem 3 the word "separable" can be deleted.
By virtue of Theorem 1, Theorem 3 is also true if "property Pn" is
replaced with "property that QW(Y) = 1". Since a space X is quasi-
reflexive of order n if and only if X is quasi-reflexive of order <^n
but not of order <̂  (n — 1), Theorem 3 can easily be rewarded in such
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a way as to give a necessary and sufficient condition t h a t X be quasi-
reflexive of order exactly n.

4. T H E O R E M 4. If X is a real Banach space, then Q{0)(X) = 1
if and only if w-sequential convergence and w*-sequential convergence
coincide in X*.

Proof. Suppose the two kinds of sequential convergence coincide

and S is a subspace of X * . If {/,} c S and /« >/, then /< •/
and hence some sequence of averages far out in {/J converges in
norm to / [2, p. 40]; t h u s feSu the norm-closure of S, and hence

Ψs(f) = | | / | | . Therefore, Cj?>(S) = 1 and Q ( 0 )(X) = 1.
Conversely, suppose there are a sequence {ft} in X * and an

/o e X * such t h a t /< >f0 but /, ys* /0. Then there exists a n f e Γ *
such that F(fi) y> F(f0). The sequence {jP(/i)} is bounded and hence
contains a subsequence {F(fi.)} such that the limit α = lim^ F(fi)
exists, but aΦF(f^). Since ί7 Φ 0, there exists geX* such that

0. Let gs = /,. - (Fif^/Fig^g for each j e ω and

Then FίflTy) = 0 for each j e ω, but F(g0) Φ 0. For every xeX,

so that flry > g0. Let S be the norm-closed subspace of X* spanned
by {fir,-:i e ω}. Then goeKΣ(S), but ^ 0 ^ S , since F(flr0) ^ 0 whereas
F(f) = 0 for all feS. Thus Sί^KS), and hence X does not have
property Po, so that Q(0)(X) = oo by Theorem 1.
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