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ON w*-SEQUENTIAL CONVERGENCE AND
QUASI-REFLEXIVITY

R. D. McWILLIAMS

This paper characterizes quasi-reflexive Banach spaces in
terms of certain properties of the w*-sequential closure of
subspaces. A real Banach space X is quasi-reflexive of order
n, where 7 is a nonnegative integer, if and only if the can-
onical image JxX of X has algebraic codimension 7 in the
second dual space X**, The space X will be said to have
property P, if and only if every norm-closed subspace S of
X* has codimension <7 in its w*-sequential closure Kx(S).
By use of a theorem of Singer it is proved that X is quasi-
reflexive of order <7 if and only if every norm-closed separ-
able subspace of X has property P,. A certain parameter
Q™(X) is shown to have value 1 if X has property P, and to
be infinite if X does not have P,. The space X has P, if and
only if w-sequential convergence and w*-sequential converg-
ence coincide in X*, These results generalize a theorem of
Fleming, Retherford, and the author.

2. If X is a real Banach space, S a subspace of X*, and K.(S)
the w*-sequential closure of S in X*, then K,(S) is a Banach space
under the norm ¢y defined by

Pi(f) = int {sup,e. || £ull: 1£} © S, £ = 7}
for fe Kx(S) [5]. If SS T < Kx(S), let
Cx(S, T) = sup{ps(f): fe T, [| fII = 1}.

Thus, K(S) is norm-closed in (X*,|| |[]) if and only if C4(S, Kx(S))
is finite [5]. For each integer » = 0 let .7,(S) be the family of all
subspaces T of X* such that S S T S Kx(S) and such that K.(S) is
the algebraic direct sum of T and a subspace of dimension =u.
Let

C®(S) =inf{Cx(S, T): Te 7 .S},
and let
Q™(X) = sup {CP(S): S a subspace of X*}.

It will be said that X has property P, if and only if Se .7,(S) for
every norm-closed subspace S of (X*,| |[)).

3. THEOREM 1. Let X be a real Banach space and n & mon-
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negative integer. If X has property P,, then Q™ (X) =1. If X does
not have property P,, then Q™ (X) = oo.

Proof. If X has property P, and S, is a norm-closed subspace
of X*, then S,e.7,(S, and hence C¥(S,) = 1. If S is an arbitrary
subspace of X* and S, the norm-closure of S, then C{(S) = C{(S)
and therefore Q™ (X) = 1.

If X does not have property P,, then X* has a norm-closed sub-
space S such that K.(S) contains an (n -+ 1)-dimensional subspace
V such that SNV = {0}. Now V has a basis {f}, -+-, f.+.} of vectors
with || f;]| = 1, and there exist F}, --., F,,; € X** such that for each
jef{l, -+, m 4+ 1}, Fi(f) = 0 for every fe S and F,(f;) = d;; for each
1e{l,---,n+1} [7,9.186]. Let a=max{||F;||:1<j<n+ 1}.
Further, there exist vectors x,, -+, x,,, € X such that fi(x;) = 9d,; for
1<4,j<n+1/[7, p. 138].

Since f,, =+, far1 € K£(S), the restrictions of Jxx;, «+-, Jx%,.; to
S must be linearly independent on S, and hence for each

1e{l, -+, m + 1}
there exists g; € S such that g,(x;) = d;; for each j [7, p. 138]. Now
for each 9 =1,..-,n + 1 there is a sequence {p;,} © S such that
Din —w—,:—>f,~. The sequence {p;,} may be chosen so that
2—-h.

o+ gl
for each j. If welet fin = pu + 2351 [0:5 — pan(5)]g;, then fiu(w;) = dy;
forall ¢, h,7, and || fir — D || < 27*, so that f;, j—”}j—»fi; clearly {f:,} < S.

For each ¢e€{l,:--,n + 1} and hew, let g,, = fi, — fi;. Thus
gin(x;) = 0 and Fy(g;,) = —0;; for all 4, h, 7, and gi,,—w{—»O for each 1.

[ Dan(®;) — 055 <

Generalizing a method of Fleming [3], for each positive number N
we let R, be the linear span and S, the norm-closed linear span of
{fin + Ngi;n : 1 <9 <n+ 1;hew}. Note that for each

£
1e{l, «oo,m + 1}, fiy +Ngih’w7’fi;

thus V & Kx(Ry). Now let f be a nonzero element of V and {v,} a
sequence in R, such that vm—%ﬁ» f. Clearly f has the form
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and each v,, has the form

n

Vy =
%

+

1 hmi
] h2=‘.1 Qpin(firn + Ngin) .

For every je{l,---,n + 1},

i
a; = f(;) = lim,, va(@;) = im,>, @,

=1

and since F(f;, + Ng;;) = —N0,;, it follows that

hmj
Fi(va) = =N 3 ttuss -
Thus lim,, F(v,) exists and is equal to —Nea;. Now

v, = L@
= F |

and hence lim inf, ||v, || = N |a;|/|| F;|| = N |a;|/a. Since j is arbi-
trary, liminf,, ||v, || = (N/a) max |a;|. From the definition of ¢y, it
follows that @p,(f) = @ry(f) = Njamax;|a;| = N || f|/ja(n + 1). If
Te 7 .(Sy), then T must contain some nonzero f € V since V is (# + 1)-
dimensional, and hence Cx(Sy, T) = N/a(rn + 1). Therefore C¥(Sy) =
N/a(n + 1). Since N is arbitrary and a(n + 1) is independent of
N, it follows that Q@™ (X) = + .

THEOREM 2. Let X be a real Banach space and n a nonnegative
integer. If X is quasi-reflexive of order =n, then X has property
P,. If X is separable and has property P,, then X is quasi-reflexive
of order =mn.

Proof. If X is quasi-reflexive of order m < n and S is a norm-
closed subspace of X*, then it can be seen from the proofs of Theo-
rems 5 and 6 of [4] that K,(S) is the direct sum of S with a sub-
space of X* of dimension <m. Hence S e .7,(S), and consequently X
has property P,.

On the other hand, let X be separable and suppose that X has
property P,. Let F, ---, F,,, be linearly independent elements of
X** and S = Nt {feX*: Fi(f) =0}. Thus S is a norm-closed sub-
space of X* of codimension » + 1, and hence, by property P,, K:(S)
has codimension m for some me{l, ---,n + 1}, There exists a sub-
space U of X* of codimension 1 such that K;(S)S U. Thus U =
S @V for some subspace V of X* of dimension n. Now U = K (U).

Indeed, if {g;} < U and g; o, g, and if P is the projection of U onto



116 R. D. MCWILLIAMS

V along S, then as in the proof of Theorem 5 of [4], P is bounded
and {g;} is bounded, so that {Pg;} is bounded and hence has a subse-
quence {Pg;;} which converges inner m to some v in the finite-dimension-

al subspace V. It follows that 9:; — Py, w—*> g — v € Kx(S) and hence
that ge K(S) + V = U.

Since U = Kx(U) and X is separable, it follows, by an argu-
ment involving the bw*-topology of X* [3], that U is w*-closed. If
n =0, let F=F,. If n>0, there exist linearly independent vectors
fi, *++, f. spanning V, and there exist scalars «y, ---, a,,;, not all of
which are zero, such that >\ a,Fi(f;) =0 for 1 <j < n; indeed,
the (n + 1) vectors

Fi(f)
(i=1,+-,m+1)
Fi( fa)

in m-dimensional Euclidean space must be linearly dependent. Let
F=>mlaF,, Thus, for n =0,F+0 and U= {feX*: F(f) = 0}.
Since U is w*-closed, F is w*-continuous on X* [7, p. 139], and
hence Fe JzX. Thus every (n + 1)-dimensional subspace of X** con-
tains a nonzero element of J;X, which means that X is quasi-reflexive
of order <.

REMARK. Theorems 1 and 2 contain a generalization of Flem-
ing’s theorem [3] that if X is a separable Banach space, then X is
reflexive if and only if Q(X) = 1. The following theorem generalizes
a theorem of [3] and [4].

THEOREM 3. A real Banach space X 1is quasi-reflexive of order
=n, where n =0, if and only if every norm-closed separable sub-
space Y of X has the property P,.

Proof. If X is quasi-reflexive of order <n and Y is a closed
subspace of X, then Y is also quasi-reflexive of order < [1] and
hence Y has property P, by Theorem 2. Conversely, if every norm-
closed separable subspace Y of X has property P,, then every such
Y is quasireflexive of order <n by Theorem 2, and hence X is quasi-
reflexive of order <n by a theorem of Singer [6].

REMARK. In Theorem 3 the word “separable” can be deleted.
By virtue of Theorem 1, Theorem 3 is also true if “property P,” is
replaced with “property that Q™ (Y) = 1”. Since a space X is quasi-
reflexive of order = if and only if X is quasi-reflexive of order <=
but not of order < (= — 1), Theorem 3 can easily be rewarded in such
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a way as to give a necessary and sufficient condition that X be quasi-
reflexive of order exactly .

4. THEOREM 4. If X is a real Banach space, then QV(X) =1
if and only if w-sequential convergence and w*-sequential convergence
coincide tn X*,

Proof. Suppose the two kinds of sequential convergence coincide
and S is a subspace of X*. If {f;} < S and f; -u—’f—>f, then fiLf
and hence some sequence of averages far out in {f;} converges in
norm to f [2, p. 40]; thus fe S,, the norm-closure of S, and hence
@s(f) = || f1l. Therefore, CH(S) =1 and Q(X) = 1.

Conversely, suppose there are a sequence {f;} in X* and an
fo€ X* such that f; i*»fo but f; ;vé fo. Then there exists an Fe X**
such that F(f;) 4 F(f,). The sequence {F'(f;)} is bounded and hence
contains a subsequence {F(f;)} such that the limit « = lim; F(f;)
exists, but a = F(f,). Slnce F # 0, there exists ge X* such that
F(g) #0. Let g; = fi;, — (F(fi;)/F(9))g for each jew and

=Ju= F(g)

Then F(g,;) = 0 for each jew, but F(g,) # 0. For every z¢ X,

9i(®) — fo(®) —

F( ) 9(@) = go(®) ,

so that g; —7-‘-’*—> g.. Let S be the norm-closed subspace of X* spanned
by {g9;:7e®}. Then g,e Kx(S), but g,¢ S, since F(g,) + 0 whereas
F(f) =0 for all feS. Thus S¢.7S), and hence X does not have
property P,, so that Q“(X) = « by Theorem 1.
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