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DECOMPOSITION SPECTRA OF RINGS OF
CONTINUOUS FUNCTIONS

CARL W. KOHLS

Let S be a subset of a completely regular Hausdorff space
X. Sufficient conditions on S and X are obtained for the
ring of continuous real-valued functions on 5 to be isomorphic
to an inverse limit of quotient rings of the ring of continuous
functions on X, or, alternatively, of the ring of bounded con-
tinuous functions on X. An application to the theory of rings
of quotients of rings of continuous functions is given.

A decomposition spectrum of a set with some kind of structure
is an inverse system of quotient structures of the same type. Decom-
position spectra have been discussed recently by various authors: For
topological spaces by Flachsmeyer [2], Pasynkov [4], and Vegrin [6];
and for ordered sets by Rinow [5]. Vegrin also considers briefly
decomposition spectra of rings of continuous functions; however, the
question he investigates is different from those considered here.

DEFINITION. A decomposition spectrum of a ring A is an inverse
system of quotient rings of A.

The ring of all continuous real-valued functions on a completely
regular Hausdorff space X will be denoted by C(X), and the subring
of bounded functions by C*(X).

The inverse limit of a decomposition spectrum of a ring is, of
course, a ring. In the papers on decomposition spectra mentioned
above, it often turns out that the inverse limit is an extension of the
original structure (topological space or ordered set). Now if S is a
subset of X, C(S) is often an extension of C(X); and C(X) is always
an extension of C*(X). This suggests the following questions: (1)
For a subset S of X, when is C(S) isomorphic to the inverse limit of
some decomposition spectrum of C(X)1 (2) When is C(X) isomorphic to
the inverse limit of some decomposition spectrum of C*(X)?

The first question has the trivial answer: When S is C-embedded
in X, that is when every function in C(S) can be extended to a
function in C(X); for then, in fact, C(S) is isomorphic to a quotient
ring of C(X), since the restriction mapping is a homomorphism onto
C(S). (This observation also leads naturally to the first question.)
So some particular answers are: When S is compact, or when S is
closed and X is normal, or when S is open-and-closed. The second
question has the trivial answer: When X is compact; for in that case,
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C(X) — C*(X). We show below that there are some nontrivial
answers to both questions.

For any feC(X) and any subset B of X, the restriction of / to
B will be designated by /1 B, and the image of B under / will be
written f[B]. The constant function in C(X) whose value is r will
be denoted by r, and the greatest lower bound of / and g in the
lattice C{X) will be symbolized by / Λ 0. When we say that a
collection {Br} of subsets of a space Y containing a point p determines
the topology of Y at p, we mean that if / is a real-valued function
on Y and f\Br is continuous for all Br, then / is continuous at p.

The following lemma is used in obtaining all of our results on
decomposition spectra. A parallel statement to the one given explicitly
is indicated by the symbols in square brackets.

LEMMA. Let S be a subset of a completely regular Hausdorff
space X. Suppose there exists a collection {Tr} of subsets of S with
the following properties:

(1) {TV} is closed under finite unions;
(2) For each peS, the collection of all sets in {Tr} containing

p determines the topology of S at p;
(3) For each feC(S) and each Tr, the function f\ Tγ can be

extended to a function in C(X) [C*(X)].
Then C(S) is isomorphic to the inverse limit of a decomposition

spectrum of C(X) [C*(X)].

Proof. One obtains the proof of the parallel statement by
replacing "C(X)'r with "C*(X)" throughout the following proof.

From (1), {Tr} is directed by the relation ID. For each 7, let Ir

be the ideal {he C(X): h[Tr] = {0}}. Now each C(X)/Ir is isomorphic
to {g \Tγ:ge C(X)}, so we shall view each element of C(X)/Ir as an
element of {g \Tr:ge C(X)}. Thus, if Tr => Γδ, then the natural
homomorphism defined by g | Tr —> g | Γδ for g e C(X) may be considered
a homomorphism of C(X)/Ir onto C(X)/I5. Also, the transitivity
property is clearly satisfied by restriction mappings. Hence {C(X)/Ir}
and the natural homomorphisms comprise a decomposition spectrum
of C(X).

Now let fe C(S) be given. We define an element (fr) e lim (C(X)/I7)
as follows: For each 7, f7 is the image in C(X)/Ir of a function in
C(X) whose restriction to Tr coincides with f\Tr; the existence of
such a function is ensured by (3). Then (fr)e\im(C(X)/Ir), because
Γ p Γ δ implies fr | Γδ = (/| Tr) \Th=f\ Γδ=/δ. Th^ mapping σ:f-+(fr)
embeds C(S) in lim (C(X)/Ir), since / Φ g implies f(p) Φ g(p) for some
p e S , whence fr*Φ gγ for any 7 such that pe Tr. Furthermore, σ is
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an isomorphism, because (/ + g)r — fr + gr and (fg)r — frgr for each
7.

To prove that σ is surjective, let (br) e lim (C(X)/Ir) be given.
Then bγ is the restriction of a function in C(X) to Tγ, and, since
7 < d implies that br maps to b8 under the natural homomorphism, br

is an extension of b5. By (2), {Tr} covers S, so (br) maybe associated
with a function b on S. Since b is continuous on each Tr, (2) implies
that b e C(S); and σ(b) = (br).

THEOREM 1. If X is a first countable space and S is any subset
of X, then C(S) is isomorphic to the inverse limit of a decomposition
spectrum of C(X) [

Proof. Let {Tr} be the collection of all subsets of S consisting
of a finite number of points of S together with sequences converging
to those points. It is clear that (1) holds; (2) holds because X, and
hence S, is first countable; and (3) holds because each Tr is compact.
Hence the Lemma is applicable.

COROLLARY 1. If X is a first countable space, then C(X) is
isomorphic to the inverse limit of a decomposition spectrum of C*(X).

THEOREM 2. If X is a locally compact space, and S is any open
subset of X, then C(S) is isomorphic to the inverse limit of a decom-
position spectrum of C*(X).

Proof. Let {Tr} be the collection of finite unions of some family
of compact neighborhoods of the points of S. It is evident that (1)
and (2) hold; and (3) holds because each Tr is compact. Hence the
Lemma is applicable.

COROLLARY 2. If X is a locally compact space, then C(X) is
isomorphic to the inverse limit of a decomposition spectrum of C*(X).

THEOREM 3. If X is any completely regular Hausdorff space,
and S is any open subset of X, then C(S) is isomorphic to the inverse
limit of a decomposition spectrum of C(X).

Proof. Let pe S. By complete regularity, there exists an
hp e C(X) such that hp[X - S] = {0}, hp(p) = 2, and 0 ̂  hp ^ 2. Hence
the nonnegative function gp = hp Λ 1 has the properties gp[X —S] =
{0} and gp[Up] = {1}, where Up is a neighborhood of p. Choose one
such neighborhood for each point of S, and let {Tr} be the collection
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of finite unions of these neighborhoods. Again, (1) and (2) are clear.
To see that (3) holds, consider a particular Tr = UPι (J U Up%.
The nonnegative function gPi + + gPn is zero on I - S and at
least one on Tr, whence gγ = (gPi + + gpj Λ 1 has the properties
gr[X - S] = {0}, gr[Tr] = {1}, and 0£gr^ί! If fe C(S), we define
fr e C(X) by fr[X - S] = {0} and fr(x) = tan ((flrr(aj))(arctan(/(aj)))) for
x G S. Then fr\T7 = (tan o arctan °f)\Tr=f\T7, as required. Thus
(3) holds, and again the Lemma is applicable.

REMARK. If S is a cozero-set in X, say S = {xeX:h(x) =£ 0},
where h e C(X), then the decomposition spectrum can be formed
from an ω*-sequence of quotient rings of C(X). For each positive
integer n, we set Tn = {x e X: \ h(x) | ^ 1/n}. There exists a function
gneC(X) such that gn[X - S] = {0}, gn[Tn] = {1}, and 0^gnSh
since Γn is completely separated from X — S [3; 1.15]. The proof
that the collection {Tn} satisfies (3) then concludes as in the proof
of Theorem 3. Now (1) is evident, and (2) holds because each peS
is in the interior of some Tn; so the Lemma is applicable to this
situation too.

We now give an application of Theorem 3. First recall that the
maximal ring of quotients of a commutative ring A with identity may
be obtained as the direct limit of the A-homomorphisms of dense
ideals of A into A [1; 1.9], and that the classical ring of quotients
may be obtained similarly from the A-homomorphisms of dense principal
ideals [1; 1.10]. Fine, Gillman, and Lambek have shown that (1) the
maximal ring of quotents of C(X) has a representation as the direct
limit of rings C(U), U ranging over the dense open sets in X, and
that (2) the classical ring of quotients of C(X) has a representation
as the direct limit of rings C(U), U ranging over the dense cozero-sets
in X [1; 2.6]. Combining Theorem 3 with these facts yields the
following result.

COROLLARY 3. // X is any completely regular Hausdorff space,
then both the maximal and classical rings of quotients of C(X)
have representations as a direct limit of inverse limits of quotient
rings of C(X).
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