AW^* -ALGEBRAS ARE QW^* -ALGEBRAS

B. E. JOHNSON

G. A. Reid has introduced a class of B^* -algebras called QW^* -algebras which includes the W^* -algebras and which is included in the class of AW^* -algebras. In this paper it is shown that the QW^* -algebras are exactly the AW^* -algebras.

We shall use Reid's notation (see [2]) without further explanation.

THEOREM. Let A be an AW^* -algebra. Then A is a QW^* -algebra.

Proof. Let B be a norm-closed *-subalgebra of A. Then, using [1; Theorem 2.3] we see that A contains a hermitian idempotent P such that PA is the right annihilator of B. Since B is a *-subalgebra we see that the left annihilator of B is $(PA)^* = AP$. Thus $B_0 = AP \cap PA = PAP$ and $B_{00} = (I - P)A(I - P)$. It follows by [1; Theorem 2.4] that $B_{00} \supset B$ is an AW^* -algebra with identity I - P.

Using the Gelfand-Naimark Theorem [3; 244] we can consider B_{00} as an algebra of operators on a hilbert space H where the identity in B_{00} corresponds to the identity operator I_H in H. Let $(\mathcal{T}, \mathcal{S})$ be a double centraliser on B and let T be the element of $\mathcal{B}(H)$ corresponding to $(\mathcal{T}, \mathcal{S})$ under the isomorphism in [2; Proposition 3]. We have $TB \subset B, BT \subset B$ and wish to show that there is an element S of B_{00} with SL = TL and LS = LT for all $L \in B$.

We may clearly suppose T to be symmetric since the general case follows by considering separately the real and imaginary parts of T. Let K be the closed linear subspace of H generated by BH and P_{κ} the orthogonal projection onto K. Let $\{F_{\lambda}\}$ be the spectral family of T [4; p. 275] and put $E_{\lambda} = P_{\kappa}F_{\lambda} = F_{\lambda}P_{\kappa}$. $\{E_{\lambda}\}$ is essentially the spectral family of T considered as an operator in K. Define

$$C_{\lambda} = \{ P_{\kappa} f(T); f \in C(\sigma(T)), f(\lambda') = 0 \text{ for } \lambda' \leq \lambda \}$$
$$D_{\lambda} = \{ P_{\kappa} f(T); f \in C(\sigma(T)), f(\lambda') = 0 \text{ for } \lambda' \geq \lambda \}$$

where $C(\sigma(T))$ is the set of continuous complex valued functions on $\sigma(T)$. The elements of C_{λ} , D_{λ} are essentially functions of T in $\mathscr{B}(K)$. Since the elements of C_{λ} and D_{λ} are limits in the uniform operator topology of sequences of polynomials in T we see that $C_{\lambda}B$, $D_{\lambda}B$, BC_{λ} and BD_{λ} are subsets of B and hence of B_{00} . Using Kaplansky's result [1; Theorem 2.3] we can find an orthogonal projection $P_{\lambda} \in B_{00}$ such that $P_{\lambda}B_{00}$ is the right annihilator of BC_{λ} in B_{00} . Since B_{00} contains I_{H} we see $P_{\lambda} \in P_{\lambda}B_{00}$ and so $BC_{\lambda}P_{\lambda} = \{0\}$ and $P_{\lambda}C_{\lambda}B = \{0\}$. Thus for $\xi \in BH$, and hence for $\xi \in K$, $P_{\lambda}C_{\lambda}\xi = \{0\}$. However for $\xi \in H \bigoplus K$, $C_{\lambda}\xi = \{0\}$ and so $P_{\lambda}C_{\lambda}\xi = \{0\}$ for all $\xi \in H$, that is $P_{\lambda}C_{\lambda} = \{0\}$. $P_{\kappa} - E_{\lambda+0}$ is a strong operator limit of elements of C_{λ} [4; p. 263] so that $P_{\lambda}(P_{\kappa} - E_{\lambda+0}) = 0$. Thus, with the usual ordering of projections, $I_{\mu} - P_{\lambda} \ge P_{\kappa} - E_{\lambda+0}$.

We have $C_{\lambda}D_{\lambda} = \{0\}$ so that $D_{\lambda}B \subset P_{\lambda}B_{00}$ and $D_{\lambda}BH \subset P_{\lambda}B_{00}H = P_{\lambda}H$. Thus $D_{\lambda}K \subset P_{\lambda}H$ and, since $D_{\lambda}(H \bigoplus K) = \{0\}$ we have $D_{\lambda}H \subset P_{\lambda}H$. Again taking strong operator limits we obtain $E_{\lambda=0}H \subset P_{\lambda}H$ and so $P_{\lambda} \ge E_{\lambda=0}$.

If $\lambda \leq \mu$ we have $C_{\lambda} \supset C_{\mu}$ and so $P_{\lambda}B_{00} \subset P_{\mu}B_{00}$. This implies that $P_{\lambda}H \subset P_{\mu}H$ and so $P_{\lambda} \leq P_{\mu}$. If $\lambda < -||T||$ then $P_{\kappa} \in C_{\lambda}$, $BC_{\lambda} = B$ and, since the annihilator of B in B_{00} is $\{0\}$, we have $P_{\lambda} = 0$. Similarly for $\lambda > ||T||$, $P_{\lambda} = I_{H}$. Accordingly we can form the operator $S = \int_{-\infty}^{+\infty} \lambda dP_{\lambda}$, where the integral converges in operator norm, which lies in B_{00} . We also have $T = \int_{-\infty}^{+\infty} \lambda dE_{\lambda}$.

Suppose $\xi \in K$. The monotonically increasing function $||E_{\lambda}\xi||$ has only a countable number of discontinuities and so for each $\varepsilon > 0$ we can find $\lambda_0 \leq \lambda_1 \leq \cdots \leq \lambda_n$, points of continuity of $||E_{\lambda}\xi||$ such that

$$ig\|S-\sum\limits_{i=1}^n\lambda_i(P_{\lambda_i}-P_{\lambda_{i-1}})\,\Big\|
 $\Big\|T-\sum\limits_{i=1}^n\lambda_i(E_{\lambda_i}-E_{\lambda_{i-1}})\,\Big\| .$$$

At a continuity point λ of $||E_{\lambda}\xi||$ we have

$$egin{array}{lll} \xi &= E_{\lambda} \xi + (P_{{\scriptscriptstyle m K}} - E_{\lambda}) \xi \ &= E_{\lambda - 0} \xi + (P_{{\scriptscriptstyle m K}} - E_{\lambda + 0}) \hat{\xi} \;, \end{array}$$

thus, at continuity points of $||E_{\lambda}\xi||$, $P_{\lambda}\xi = E_{\lambda-0}\xi = E_{\lambda}\xi$ and so

$$\sum_{i=1}^n \lambda_i (P_{\lambda_i} - P_{\lambda_{i-1}}) \xi = \sum_{i=1}^n \lambda_i (E_{\lambda_i} - E_{\lambda_{i-1}}) \xi.$$

Hence $|| S\xi - T\xi || < 2\varepsilon ||\xi ||$, and since this holds for all $\varepsilon > 0$, $S\xi = T\xi$ for all $\xi \in K$. Thus we have successively $SL\xi = TL\xi$ for all $L \in B$, $\xi \in H$; SL = TL for all $L \in B$; and, using the fact that S, T, B are self-adjoint, LS = LT for all $L \in B$. Thus $S \in B_{00}$ and determines the same double centraliser on B as T, that is $(\mathcal{T}, \mathcal{S})$ is determined by $S \in B_{00}$.

COROLLARY. A is a QW^* -algebra if and only if it is an AW^* -algebra.

Proof. Follows from the theorem and [2; Theorem 1].

References

1. I. Kaplansky, Projections in banach algebras, Ann. of Math. 53 (1951), 235-249.

2. G. A. Reid, A generalisation of W*-algebras, Pacific J. Math. 15 (1965), 1019-1026.

3. C. E. Rickart, General Theory of Banach Algebras, Van Nostrand, New York, 1960.

4. F. Riesz and B. Sz.-Nagy, Functional Analysis, Ungar, New York, 1955.

Received May 25, 1966.

THE UNIVERSITY NEWCASTLE UPON TYNE