$A W^{*}$-ALGEBRAS ARE $Q W^{*}$-ALGEBRAS

B. E. Johnson

Abstract

G. A. Reid has introduced a class of B^{*}-algebras called $Q W^{*}$-algebras which includes the W^{*}-algebras and which is included in the class of $A W^{*}$-algebras. In this paper it is shown that the $Q W^{*}$-algebras are exactly the $A W^{*}$-algebras.

We shall use Reid's notation (see [2]) without further explanation.
Theorem. Let A be an $A W^{*}$-algebra. Then A is a $Q W^{*}$-algebra.
Proof. Let B be a norm-closed *-subalgebra of A. Then, using [1; Theorem 2.3] we see that A contains a hermitian idempotent P such that $P A$ is the right annihilator of B. Since B is a *-subalgebra we see that the left annihilator of B is $(P A)^{*}=A P$. Thus $B_{0}=$ $A P \cap P A=P A P$ and $B_{00}=(I-P) A(I-P)$. It follows by [1; Theorem 2.4] that $B_{00} \supset B$ is an $A W^{*}$-algebra with identity $I-P$.

Using the Gelfand-Naimark Theorem [3; 244] we can consider B_{00} as an algebra of operators on a hilbert space H where the identity in B_{00} corresponds to the identity operator I_{H} in H. Let $(\mathscr{T}, \mathscr{S})$ be a double centraliser on B and let T be the element of $\mathscr{B}(H)$ corresponding to (\mathscr{T}, \mathscr{S}) under the isomorphism in [2; Proposition 3]. We have $T B \subset B, B T \subset B$ and wish to show that there is an element S of B_{00} with $S L=T L$ and $L S=L T$ for all $L \in B$.

We may clearly suppose T to be symmetric since the general case follows by considering separately the real and imaginary parts of T. Let K be the closed linear subspace of H generated by $B H$ and P_{K} the orthogonal projection onto K. Let $\left\{F_{\lambda}\right\}$ be the spectral family of T [4; p. 275] and put $E_{\lambda}=P_{K} F_{\lambda}=F_{\lambda} P_{K} . \quad\left\{E_{\lambda}\right\}$ is essentially the spectral family of T considered as an operator in K. Define

$$
\begin{array}{ll}
C_{\lambda}=\left\{P_{K} f(T) ; f \in C(\sigma(T)), f\left(\lambda^{\prime}\right)=0\right. & \text { for } \left.\lambda^{\prime} \leqq \lambda\right\} \\
D_{\lambda}=\left\{P_{K} f(T) ; f \in C(\sigma(T)), f\left(\lambda^{\prime}\right)=0\right. & \text { for } \left.\lambda^{\prime} \geqq \lambda\right\}
\end{array}
$$

where $C(\sigma(T))$ is the set of continuous complex valued functions on $\sigma(T)$. The elements of C_{λ}, D_{λ} are essentially functions of T in $\mathscr{B}(K)$. Since the elements of C_{λ} and D_{λ} are limits in the uniform operator topology of sequences of polynomials in T we see that $C_{\lambda} B, D_{\lambda} B, B C_{\lambda}$ and $B D_{\lambda}$ are subsets of B and hence of B_{00}. Using Kaplansky's result [1; Theorem 2.3] we can find an orthogonal projection $P_{\lambda} \in B_{00}$ such that $P_{\lambda} B_{00}$ is the right annihilator of $B C_{\lambda}$ in B_{00}. Since B_{00} contains I_{H} we see $P_{\lambda} \in P_{\lambda} B_{00}$ and so $B C_{\lambda} P_{\lambda}=\{0\}$ and $P_{\lambda} C_{\lambda} B=\{0\}$. Thus for $\xi \in B H$, and hence for $\xi \in K, P_{\lambda} C_{\lambda} \xi=\{0\}$. However for $\xi \in H \ominus K, C_{\lambda} \xi=\{0\}$ and
so $P_{\lambda} C_{\lambda} \xi=\{0\}$ for all $\xi \in H$, that is $P_{\lambda} C_{\lambda}=\{0\} . \quad P_{K}-E_{\lambda+0}$ is a strong operator limit of elements of $C_{\lambda}[4 ; \mathrm{p} .263]$ so that $P_{\lambda}\left(P_{K}-E_{\lambda+0}\right)=0$. Thus, with the usual ordering of projections, $I_{H}-P_{\lambda} \geqq P_{K}-E_{\lambda+0}$.

We have $C_{\lambda} D_{\lambda}=\{0\}$ so that $D_{\lambda} B \subset P_{\lambda} B_{00}$ and $D_{\lambda} B H \subset P_{\lambda} B_{00} H=$ $P_{\lambda} H$. Thus $D_{\lambda} K \subset P_{\lambda} H$ and, since $D_{\lambda}(H \ominus K)=\{0\}$ we have $D_{\lambda} H \subset P_{\lambda} H$. Again taking strong operator limits we obtain $E_{\lambda-0} H \subset P_{\lambda} H$ and so $P_{\lambda} \geqq E_{\lambda-0 .}$

If $\lambda \leqq \mu$ we have $C_{\lambda} \supset C_{\mu}$ and so $P_{\lambda} B_{00} \subset P_{\mu} B_{00}$. This implies that $P_{\lambda} H \subset P_{\mu} H$ and so $P_{\lambda} \leqq P_{\mu}$. If $\lambda<-\|T\|$ then $P_{K} \in C_{\lambda}, B C_{\lambda}=B$ and, since the annihilator of B in B_{00} is $\{0\}$, we have $P_{\lambda}=0$. Similarly for $\lambda>\|T\|, P_{\lambda}=I_{H}$. Accordingly we can form the operator $S=$ $\int_{-\infty}^{+\infty} \lambda d P_{\lambda}$, where the integral converges in operator norm, which lies in
\boldsymbol{B}_{00}. We also have $T=\int^{+\infty} \lambda d E_{\lambda}$.

Suppose $\xi \in K$. The monotonically increasing function $\left\|E_{\lambda} \xi\right\|$ has only a countable number of discontinuities and so for each $\varepsilon>0$ we can find $\lambda_{0} \leqq \lambda_{1} \leqq \cdots \leqq \lambda_{n}$, points of continuity of $\left\|E_{\lambda} \xi\right\|$ such that

$$
\begin{aligned}
& \left\|S-\sum_{i=1}^{n} \lambda_{i}\left(P_{\lambda_{i}}-P_{\lambda_{i-1}}\right)\right\|<\varepsilon \\
& \left\|T-\sum_{i=1}^{n} \lambda_{i}\left(E_{\lambda_{i}}-E_{\lambda_{i-1}}\right)\right\|<\varepsilon
\end{aligned}
$$

At a continuity point λ of $\left\|E_{\lambda} \xi\right\|$ we have

$$
\begin{aligned}
\xi & =E_{\lambda} \xi+\left(P_{\boldsymbol{K}}-E_{\lambda}\right) \xi \\
& =E_{\lambda-0} \xi+\left(P_{\boldsymbol{K}}-E_{\lambda+0}\right) \xi,
\end{aligned}
$$

thus, at continuity points of $\left\|E_{\lambda} \xi\right\|, P_{\lambda} \xi=E_{\lambda-0} \xi=E_{\lambda} \xi$ and so

$$
\sum_{i=1}^{n} \lambda_{i}\left(P_{\lambda_{i}}-P_{\lambda_{i-1}}\right) \xi=\sum_{i=1}^{n} \lambda_{i}\left(E_{\lambda_{i}}-E_{\lambda_{i-1}}\right) \xi
$$

Hence $\|S \xi-T \xi\|<2 \varepsilon\|\xi\|$, and since this holds for all $\varepsilon>0, S \xi=T \xi$ for all $\xi \in K$. Thus we have successively $S L \xi=T L \xi$ for all $L \in B$, $\xi \in H ; S L=T L$ for all $L \in B$; and, using the fact that S, T, B are self-adjoint, $L S=L T$ for all $L \in B$. Thus $S \in B_{00}$ and determines the same double centraliser on B as T, that is $(\mathscr{T}, \mathscr{S})$ is determined by $S \in B_{00}$.

Corollary. A is a $Q W^{*}$-algebra if and only if it is an $A W^{*}$ algebra.

Proof. Follows from the theorem and [2; Theorem 1].

References

1. I. Kaplansky, Projections in banach algebras, Ann. of Math. 53 (1951), 235-249.
2. G. A. Reid, A generalisation of W^{*}-algebras, Pacific J. Math. 15 (1965), 1019-1026.
3. C. E. Rickart, General Theory of Banach Algebras, Van Nostrand, New York, 1960.
4. F. Riesz and B. Sz.-Nagy, Functional Analysis, Ungar, New York, 1955.

Received May 25, 1966.
The University
Newcastle upon Tyne

