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A SPHERICAL HELLY-TYPE THEOREM

M. J. C. BAKER

The purpose of this paper is to prove for all positive
integers n and r that if a family of n + 1 + 2r, or more,
strongly convex sets on the n dimensional sphere Sn is such
that each intersection of n + 1 + r of them is empty, then the
intersection of some n + 1 of them must be empty. (Sn is the
set of points in n + 1 dimensional Euclidean space satisfying
x\ + x\ + + xί+i = 1. A set on a sphere is called strongly
convex if it does not contain any pair of diametrically opposite
or antipodal points, and if together with any two of its points
it contains the whole of the minor arc of the great circle
joining them.)

In a previous paper [1] I established the result for the special
case r = 1. The present theorem, while more general, has a simpler
proof. Theorems of a somewhat similar nature have been established
by Robinson [5] using a different definition of convexity. A survey
of Helly-type theorems together with a full bibliography is to be found
in Danzer, Grϋnbaum and Klee [2]. As before, the proof depends on
the following theorems:

THEOREM 1. (Separation) [4]. Two disjoint closed strongly con-
vex sets on a sphere can he strictly separated by a hyperplane through
the centre.

THEOREM 2. (Molnάr) [3]. If a family of closed strongly convex
sets on an n dimensional sphere is such that no n + 2 of them cover
the sphere and each intersection of n + 1 of them is nonempty, then
the intersection of them all is nonempty.

The result is first proved for n + 1 + 2r closed sets.

LEMMA. For all positive integers n and r, if a family of
n + 1 + 2r closed strongly convex sets on Sn is such that each inter-
section ofn + 1 of them is nonempty, then the intersection of some
n + 1 + r of them must be nonempty.

Proof. Let A Z be a family of n + 1 + 2r closed strongly-
convex sets on Sn such that

(1) each intersection of n + 1 + r of them is empty and

(2) no intersection of n + 1 of them is empty:
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we shall obtain a contradiction.
The n + 1 + r sets A P (say) have empty intersection (1) and

so, by Molnar's theorem,

(3) some n + 2 of them cover the Sn; for otherwise some intersec-
tion of n + 1 of them would be empty, contradicting (2).

Let x be any point on the Sn. By (3) x must lie in at least one
of the n + 1 + r sets A P. Suppose, without loss of generality,
that xeA. A similar argument shows that x belongs to at least one
of the n + 1 + r sets B Q; to B, say. Repeating this procedure
until all the sets Q Z have been used, it follows that x is in at
least r + 1 of A Z.

(4) Thus any point of the Sn is in at least r + 1 of A Z.

(5) Moreover, no point can be in more than r + n sets, for if there
were such a point, the antipodal point which could not belong
to any of the same sets, would have to belong to less than
r + 1 sets since there are only n + 1 + 2r available; and this
contradicts (4).

Now consider a great Sn_τ not intersecting A. There must be
one since A is strongly convex, and therefore A and — A are disjoint
and closed and convex, and can therefore by the separation theorem
be strictly separated by a hyperplane through the centre.

Every point on the S»_i must, by (4), belong to at least r + 1
of the sets B Z, and can belong at most to r + n — 1 by a similar
argument to that at (5) except that this time there are only the
n + 2r sets B Z available. The intersections of these sets with
the Sn_x are closed and strongly convex, so there is a great S%_2 on
the £>„_! which does not meet B.

The procedure is repeated until finally we have a great circle not
meeting any of the n — 1 sets A F (say). Those parts of the
2 + 2r sets G Z that lie on the circle are still closed and strongly
convex. Consider now a pair of antipodal points neither of which is
in G. These are points of the original Sn and so by (4) must each
belong to r + 1 of the sets A Z. But the n sets A G are, by
construction, not available; so, of the original n + 1 + 2r sets, only
2r + 1 are left. None of these can contain both antipodal points;
Thus a contradiction of (4) has been obtained and the lemma established.

The extension to a family of sets whether closed or not is routine.
It may be found for example in [1] if the appropriate substitutions
are made.

Finally if the family has more than n + 1 + 2r sets and satisfies
the rest of the hypothesis the result follows immediately by considering
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just n + 1 + 2r of the sets. This completes the proof of the theorem.

Note. If a closed strongly convex set is defined to be the inter-
section of open hemispheres, instead of by the equivalent conventional
definition used here, then the separation theorem may be dispensed
with in the proof.
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