A CHARACTERIZATION OF RESTRICTIONS OF FOURIER-STIELTJES TRANSFORMS

Haskell P. Rosenthal

The main result that we prove here is as follows: Let E be a Lebesgue measurable subset of R, the real line, and let φ be a bounded measurable function defined on E. Then the first of the following conditions implies the second:
(1) There exists a constant K, so that

$$
\left|\sum_{j=1}^{n} c_{j} \varphi\left(x_{j}\right)\right| \leqq K\|P\|_{\infty}
$$

for all trigonometric polynomials of the form

$$
P(y)=\sum_{j=1}^{n} c_{j} e^{i x x_{j} y}, \quad \text { where } x_{j} \in E \text { for all } 1 \leqq j \leqq n .
$$

(2) φ is E-almost everywhere a Stieltjes transform. Precisely, there exists a finite (complex Borel) measure μ, so that

$$
\varphi(x)=\hat{\mu}(x)=\int_{-\infty}^{\infty} e^{-i x y} d \mu(y)
$$

for almost all $x \in E$. Moreover, μ may be chosen such that $\|\mu\| \leqq K$, where K is the constant in (1). ($\|\mu\|$ denotes the total variation of μ.)

In 1934 (c.f. [3]), Bochner established this result for the case when E is the entire real line. Our result also generalizes a theorem of Krein. Indeed Krein proved (c.f. [1] pp. 154-159) that (1) and (2) are equivalent for the case when E is an interval and φ is a continuous function defined on E. Now if we assume that E is closed and of uniformly positive measure, (meaning that if U is an open subset of \boldsymbol{R} with $U \cap E$ nonempty, then the measure of $U \cap E$ is positive), and if $\varphi \in C(E)$ and satisfies (1), then our result implies that (2) holds for all $x \in E$. (i.e. $\varphi \equiv \widehat{\mu} \mid E$ for some finite measure μ on \boldsymbol{R}). (It is trivial that (2) implies (1) under these hypotheses.)

Note finally that it E is a closed subset of T, the circle group, of uniformly positive measure, and if $\varphi \in C(E)$ and satisfies (2), then $\varphi \in A(E)$. That is, φ can be extended to a function defined on all of \boldsymbol{T}, with absolutely convergent Fourier series. (We identify \boldsymbol{T} with the real numbers modulo 1 ; in this case, the polynomials of condition (2) are almost-periodic functions defined on the integers.)

We obtain our main result by first proving the result mentioned in the above paragraph in Theorem 3; next by establishing the analogue of the main result for \boldsymbol{T} in Theorem 4, and finally by passing from the circle to the real line in §3.

The core of the proof of Theorem 3 is found in Lemma 2; the technique used there was suggested by a method due to C.S. Herz, as exposed in Théorème VII, pp. 124-126 of [4]. An essential step in the proof of Lemma 2 is Lemma 1, where we show that a measurable subset of \boldsymbol{T} may be approximated in measure by nicely-placed closed subsets ${ }^{1}$.

1. Preliminaries. The following two results are not essential for the main result, but they do provide some motivation for it. We let \boldsymbol{Z} denote the integers; if μ is a finite measure on \boldsymbol{R} (resp. \boldsymbol{T}), $\|\hat{\mu}\|_{\infty}=\sup _{x \in R}|\hat{\mu}(x)|\left(\right.$ resp. $\sup _{n \in R}|\hat{\mu}(n)|$ where $\hat{\mu}(n)=\int_{0}^{1} e^{-i 2 \pi n t} d \mu(t)$ for all $n \in \boldsymbol{Z}$).

Proposition A. Let E be an arbitrary subset of \boldsymbol{R} (resp. T), and let φ be a bounded function defined on E. Then the following two conditions are each equivalent to (1).
(3) There exists a constant K, so that

$$
\left|\int \varphi d \mu\right| \leqq K\|\widehat{\mu}\|_{\infty}
$$

for all discrete measures μ supported on E.
(4) There exists a finite (complex regular Borel) measure ν defined on the Bohr compactification of \boldsymbol{R} (resp. of \boldsymbol{Z}), so that $\varphi(x)=$ $\hat{\nu}(x)$ for all $x \in E$.

The fact that (1) and (3) are equivalent is a triviality. The equivalence of (1) and (4) is a consequence of the Riesz-representation theorem, together with the fact that the almost-periodic polynomials on \boldsymbol{R} (resp. \boldsymbol{Z}) may be regarded as being dense in the space of continuous functions on the Bohr compactification of the respective groups. (See [5], pp. 30-32, for these and other properties of the Bohr compactification).

For the next proposition, we recall that for E a closed subset of $T, A(E)$ is the set of all $\varphi \in C(E)$ for which there exists an $f \in C(T)$, such that $f(x)=\varphi(x)$ for all $x \in E$, and $\sum_{n=-\infty}^{\infty}|\hat{f}(n)|<\infty . A(E)$ is. a Banach algebra under the norm

$$
\|\varphi\|_{\boldsymbol{A}(E)}=\inf \left\{\sum_{-\infty}^{\infty}|\widehat{f}(n)|: f \in A(\boldsymbol{T}) \text { with } f \mid E=\varphi\right\}
$$

Proposition B. Let E be a closed subset of T such that if

[^0]$\varphi \in C(E)$ and φ satisfies (3), then $\varphi \in A(E)$. Then there exists a finite constant K, so that for all $f \in A(E)$,
\[

$$
\begin{gathered}
\|f\|_{A(E)} \leqq K\| \| f \|, \text { where } \\
\left\|\|f\|=\sup \left|\int f d \mu\right|, \quad\right. \text { the supremum }
\end{gathered}
$$
\]

being taken over all discrete measures μ supported on E with $\|\hat{\mu}\|_{\infty} \leqq 1$.

Proof. ||| $\cdot||\mid$ defines a new norm on $A(E)$, and we have that $\mid\|f\|\|\leqq\| f \|_{A(E)}$, for all $f \in A(E)$. Now our hypotheses imply that $A(E)$ is complete under this norm also. Indeed, suppose $\left\{f_{n}\right\}$ is a Cauchy sequence in the norm $\left\|\|\cdot\|\right.$. Fix $x \in E$, and let μ_{x} be the measure assigning a mass of one to x. Then $\left\|\hat{\mu}_{x}\right\|_{\infty}=1$, so we have that

$$
\left\|\left|\left|f_{n}-f_{m}\| \| \geqq\left|\int\left(f_{n}-f_{m}\right) d \mu_{x}\right|=\left|f_{n}(x)-f_{m}(x)\right|\right.\right.\right.
$$

for all integers n and m. Hence, $\left\{f_{n}\right\}$ is a Cauchy sequence in $C(E)$, so $\left\{f_{n}\right\}$ converges uniformly to a continuous function φ. Also, since $\left\{f_{n}\right\}$ is a Cauchy sequence in $|\|\cdot \mid\|$, there exists a constant K so that $\left|\left|\left|f_{n}\right| \| \leqq K\right.\right.$ for all n. This means that

$$
\left|\int f_{n} d \mu\right| \leqq K\|\widehat{\mu}\|_{\infty}
$$

for all discrete measures μ. Now fixing μ a discrete measure, we have that

$$
\lim _{n \rightarrow \infty}\left|\int f_{n} d \mu\right|=\left|\int \varphi d \mu\right|
$$

Hence φ satisfies (3), so $\varphi \in A(E)$ by hypothesis, whence

$$
\lim _{n \rightarrow \infty}\left|\left\|f_{n}-\varphi \mid\right\|=0\right.
$$

Thus, since $A(E)$ is a Banach space under the weaker norm $\|\|\cdot\|\|$, we have that $\|\|\cdot\|$ is equivalent to the norm $\| \cdot \|_{A(E)}$.

Remark 1. Walter Rudin has constructed a closed independent set E which supports a measure whose Stieltjes transform vanishes at infinity (see [6]). Such a set does not satisfy the conclusion of Proposition B, since the independence of E implies that $\|\|f\|\|=\|f\|_{\infty}$ for all $f \in A(E)$, whereas the set cannot have its $C(E)$ and $A(E)$ norms equivalent (cf. [5], pp. 114-120).

Remark 2. It follows from a theorem of Banach (Theorem 2, p. 213 of [2]), that the conclusion of Proposition B is equivalent to the following: if $F \in A(E)^{*}$, then there exists a sequence of discrete measures μ_{n} such that μ_{n} tends to F in the weak ${ }^{*}$ topology of $A(E)$. ($A(E)^{*}$ denotes the conjugate space of A; the definition of $A(E)$ imples that if μ is a measure supported on E, then $\|\mu\|_{A(E)^{*}}=\|\hat{\mu}\|_{\infty}$, where $\|\mu\|_{A(E)^{*}}=\sup \left|\int_{j} f d \mu\right|$, the supremum being taken over all $f \in A(E)$ with $\|f\|_{A(E)} \leqq 1$.

In the terminology of [4] (cf. p. 115), our Theorem 3 thus implies that if E is of spectral synthesis and of uniformly positive measure, and if S is a pseudo-measure carried by E, there exists a sequence of linear combinations of point masses carried by E and tending weakly to S.

We note finally, that Proposition A holds for arbitrary locally compact abelian groups, and Proposition B holds for compact subsets of l.c.a. groups.
2. Throughout this section, E denotes a subset of \boldsymbol{T} of positive Lebesgue measure; m denotes Lebesgue measure on \boldsymbol{T} (with $m(\boldsymbol{T})=1$); if S and T are two subsets of T,

$$
S+T=\{s+t: s \in S \text { and } t \in T\}
$$

If ψ is a Lebesgue-integrable function defined on a closed set E_{1}, and if φ is a bounded measurable function defined on a closed set E_{2}, we recall that the continuous function $\varphi * \psi$, defined by

$$
(\varphi * \psi)(y)=\int_{0}^{1} \varphi(y-x) \psi(x) d x \quad \text { for all } y \in \boldsymbol{T}
$$

is supported on the set $E_{1}+E_{2}$.
Finally, if S is a subset of T, χ_{s} denotes the characteristic function of S. i.e.

$$
\chi_{s}(y)=1 \quad \text { if } \quad y \in S ; \quad \chi_{s}(y)=0 \quad \text { otherwise }
$$

Lemma 1. Given E and $\delta>0$, for all sufficiently large integers N there exists a closed subset $F^{\prime} \subset E$, depending on N, with $m\left(F^{\prime}\right) \geqq$ $(1-\delta) m(E)$, so that for some $0 \leqq \beta<1 / N$, each of the numbers $\beta+k / N, k=0,1, \cdots, N-1$; either belongs to F^{\prime}, or is a distance at least $1 / N$ away from F^{\prime}.

Proof. Let $\varepsilon>0$ be given. Then we may choose a closed set $F \subset E$, so that $m(F) \geqq m(E)(1-\varepsilon)$, and so that for all N sufficiently
large,

$$
m\left(F+\left[-\frac{1}{N}, \frac{1}{N}\right]\right) \leqq m(F)(1+\varepsilon)
$$

(We may accomplish this by simply choosing a finite number of disjoint closed intervals which approximate E closely in measure. Precisely, if S and T are two subsets of T, let

$$
S \Delta T=(S \cap \mathscr{C} T) \cup(\mathscr{C} S \cap T)
$$

First, choose F_{1} a closed subset of E, with $m\left(E \Delta F_{1}\right)<(\varepsilon / 2) m(E)$. Next, choose I_{1}, \cdots, I_{p} disjoint closed intervals with

$$
m\left(F_{1} \Delta \bigcup_{j=1}^{p} I_{j}\right)<\frac{\varepsilon^{\prime}}{2} m\left(F_{1}\right),
$$

where $\varepsilon^{\prime}=\min \{\varepsilon, 2 \varepsilon /(2+\varepsilon)\}$. Finally, let

$$
F=\bigcup_{j=1}^{p} I_{j} \cap F_{1} ;
$$

then the desired inequalities hold for all integers $N \geqq(4 p / \varepsilon m(F))$.
Now fix such an N; then

$$
m(F)=\sum_{k=1}^{N} m\left(F \cap\left[\frac{k-1}{N}, \frac{k}{N}\right]\right)
$$

Let g be defined on $[0,1 / N)$ by

$$
g(x)=\frac{1}{N} \sum_{k=0}^{N-1} \chi_{F}\left(x+\frac{k}{N}\right)
$$

Then

$$
N \int_{0}^{1 / N} g(x) d m(x)=m(F)
$$

Since $g(x) \geqq 0$ for all x, we must have that $g \geqq(1-\varepsilon) m(F)$ on a set of positive measure; thus, we may choose a $\beta, 0 \leqq \beta<(1 / N)$, with

$$
g(\beta) \geqq(1-\varepsilon) m(F)
$$

Now consider the family of intervals,

$$
I_{k}=\left[\beta+\frac{k}{N}, \beta+\frac{k+1}{N}\right], \quad \text { for } k=0,1, \cdots, N-1
$$

We remark that if $f \in F$ belongs to one of these intervals, then the entire interval is contained in the set $F+[-1 / N, 1 / N]$. (Of course,
T equals the union of these intervals).
Thus, let \mathscr{K} be the subset of $\{0,1, \cdots, N-1\}$ so that $k \in \mathscr{K}$ if and only if I_{k} contains a point of F. Then

$$
F \subset \bigcup_{k \in \mathscr{M}} I_{k} \subset F+\left[-\frac{1}{N}, \frac{1}{N}\right]
$$

Hence if r is the number of elements in \mathscr{K}, we have that

$$
m(F) \leqq \frac{r}{N} \leqq m(F)(1+\varepsilon)
$$

Now, let

$$
\mathscr{J}=\left\{I_{k}: k \in \mathscr{K} \text { and both end points of } I_{k} \text { belong to } F\right\} .
$$

We shall show that \mathscr{J} is nonempty; in fact, letting l be the cardinality of \mathcal{J}, we shall show that l is very close to r.

First, let
$\mathscr{K}^{\prime}=\{k \in \mathscr{K}: \beta+(k / N) \in F\}$; let q be the cardinality of $\mathscr{K}^{\prime}:$ Then $(q / N)=g(\beta)$.

Now, let

$$
\mathscr{K}^{\prime \prime}=\left\{k \in \mathscr{K}^{\prime}: \beta+\frac{k+1}{N} \notin F\right\},
$$

and let s be the cardinality of $\mathscr{K}^{\prime \prime}$. Noticing that $k \in \mathscr{K}^{\prime \prime}$ if and only if $\beta+(k / N)$ is not a left-hand end point of an interval in \mathscr{J}, we thus have that $q-s=l$.

Now to each $k \in \mathscr{K}^{\prime \prime}$ corresponds a unique member of $\mathscr{K} \cap \mathscr{C} \mathscr{K}^{\prime}$, namely the least of the numbers $q \in \mathscr{K}$ such that $q>k$ if there are such numbers; otherwise the least number in \mathscr{K}. (Recall that $\beta=$ $\beta+1$, as members of T.) Thus

$$
\operatorname{card} \mathscr{K}^{\prime \prime} \leqq \operatorname{card}\left(\mathscr{K} \cap \mathscr{C} \mathscr{K}^{\prime}\right)
$$

But

$$
\mathscr{K}^{\prime \prime} \cup\left(\mathscr{K} \cap \mathscr{C} \mathscr{K}^{\prime}\right) \cup\left(\mathscr{K}^{\prime} \cap \mathscr{C} \mathscr{K}^{\prime \prime}\right) \subset \mathscr{K} .
$$

Hence $s+s+q-s \leqq r$. Thus, $q+s \leqq r$. Hence, since $s=q-l$, we obtain that $r-l \leqq 2(r-q)$. Now, let

$$
F^{\prime}=F \cap_{J \in \mathcal{J}} J
$$

Then F^{\prime} has the property that each number $\beta+(k / N)$ belongs to F^{\prime}, or is a distance at least $1 / N$ away from F^{\prime}. For if $\beta+(k / N)$ is not an endpoint of an interval $J \in \mathscr{J}$, then $\beta+(k / N)$ is at least distance $1 / N$ away from the nearest point in \mathscr{J}. Moreover, F^{\prime} was
obtained by removing at most $r-l$ intervals from F^{\prime}, each of length $1 / N$. Thus, recalling that

$$
\frac{r}{N} \leqq m(F)(1+\varepsilon) \quad \text { and } \quad \frac{q}{N} \geqq m(F)(1-\varepsilon)
$$

we have that

$$
\begin{aligned}
m\left(F^{\prime}\right) \geqq m(F)-\frac{r-l}{N} & \geqq m(F)-2\left(\frac{r-q}{N}\right) \\
& \geqq m(F)[1-2[(1+\varepsilon)-(1-\varepsilon)]] \\
& =m(F)(1-4 \varepsilon) \geqq m(E)(1-4 \varepsilon)(1-\varepsilon)
\end{aligned}
$$

Thus, given $\delta>0$, we simply choose ε so that

$$
(1-4 \varepsilon)(1-\varepsilon) \geqq(1-\delta) .
$$

Remarks. We note incidentally that l / N provides a good approximation to $m(E)$, since

$$
m(E)(1+\varepsilon) \geqq \frac{r}{N} \geqq \frac{l}{N} \geqq m\left(F^{\prime}\right) \geqq m(E)(1-4 \varepsilon)(1-\varepsilon)
$$

This shows that given $\varepsilon>0$, we may, for all N sufficiently large, give an upper estimate to $m(E)-\varepsilon$ by considering some system of equally spaced intervals of length $1 / N$, then adding up the lengths of all these intervals such that both their endpoints belong to E.

The next lemma is directed toward showing that if φ is a measurable function satisfying (3), then φ also satisfies (3) for a larger class of measures supported on E. (See the first line of the proof of Theorem 3.)

Lemma 2. Let φ be a bounded measurable function defined on E. Then there exists a sequence of discrete measures $\left\{\nu_{\mu}\right\}$ supported on E, so that

$$
\begin{array}{ll}
\left\|\nu_{M}\right\| \leqq\|\varphi\|_{\infty} & \text { for all } M, \text { with } \\
\left\|\hat{\nu}_{M}\right\|_{\infty} \leqq\left(1+\frac{1}{M}\right)\|\hat{\rho}\|_{\infty} & \text { and } \\
\lim _{M \rightarrow \infty} \hat{\nu}_{M}(l)=\hat{\rho}(l) & \text { for all integers } l .
\end{array}
$$

Proof. Fix M an integer. Since $\varphi d m$ is absolutely continuous with respect to m, we may choose a $\delta>0$ so that if K is a Lebesgue measurable set with $m(K) \leqq \delta$, then

$$
\int_{K}|\varphi| d m<\frac{1}{M}\|\widehat{\varphi}\|_{\infty}
$$

(Of course we assume that $\|\varphi\|_{1}>0$.) Now by Lemma 1, we may choose a closed set $F \subset E$, an integer $N \geqq M$, and a number $0 \leqq$ $\beta<(1 / N)$, so that $m(E \cap \mathscr{C} F) \leqq \delta$, and so that each of the numbers $\beta+(k / N)$, for $k=0,1, \cdots, N-1$, either belongs to F, or is a distance at least $1 / N$ from F. Let φ^{\prime} be the restriction of φ to F, i.e. $\varphi^{\prime}=\varphi \chi_{F}$.

Let $m_{N \beta}$ be the discrete measure supported on $\{\beta+(k / N)\}_{k=0}^{N-1}$, and which assigns mass $1 / N$ to each of the points $\beta+k / N$.

Now let Δ_{N} be the function whose graph is an isosceles triangle of height N and base $[-1 / N, 1 / N]$. Finally, let

$$
\nu_{M}=\left(\Delta_{N} * \varphi^{\prime}\right) m_{N \beta}
$$

Now, since $\Delta_{N}^{*} \varphi^{\prime}$ is supported on $F+[-1 / N, 1 / N]$, it follows that ν_{M} is supported on F. Moreover,

$$
\left\|\Delta_{N}\right\|_{1}=1,\left\|\varphi^{\prime}\right\|_{\infty} \leqq\|\varphi\|_{\infty}, \quad \text { and } \quad\left\|m_{N \beta}\right\|=1
$$

hence

$$
\left\|\nu_{M}\right\| \leqq\left\|\Delta_{N} * \varphi^{\prime}\right\|_{\infty}\left\|m_{N \beta}\right\| \leqq\|\varphi\|_{\infty} .
$$

For the next two assertions of the Lemma, we need the following easily established properties of $\hat{\Lambda}_{N}$ and $\hat{m}_{N \beta}$:
(a) $\Delta_{N}(j) \geqq 0$ for all j.
(b) $\sum_{l=-\infty}^{\infty} \Delta_{N}^{\hat{N}}(l)=N$.
(c) $\sum_{j=-\infty}^{\infty} \hat{\Delta}_{N}(l+j N)=1$ for all integers l.
(d) $\lim _{j \rightarrow \infty} \hat{\Delta}_{j}(l)=1$ for all l.
(e) $\hat{m}_{N \beta}(j)=0$ if j is not a multiple of N; otherwise, $\widehat{m}_{N \beta}(j)=e^{-i 2 \pi \beta j}$.
We thus have, for all integers l, that

$$
\begin{aligned}
\hat{\nu}_{M}(l) & =\left[\left(\Lambda_{N} * \varphi^{\prime}\right) m_{N \beta}\right]^{\wedge}(l) \\
& =\sum_{j=-\infty}^{\infty} \hat{\Lambda}_{N}(l-j N) \widehat{\varphi}^{\prime}(l-j N) e^{-2 \pi i \beta j N}
\end{aligned}
$$

Hence,

$$
\left|\hat{\nu}_{M}(l)\right| \leqq \sup _{j}\left|\hat{\varphi}^{\prime}(l-j N)\right| \sum_{j=-\infty}^{\infty}\left|\hat{\Delta}_{N}(l-j N)\right| \leqq\left\|\hat{\varphi}^{\prime}\right\|_{\infty} .
$$

By the first two statements of this proof, we have that

$$
\left\|\varphi-\phi^{\prime}\right\|_{1}<\frac{1}{M}\|\hat{\rho}\|_{\infty}
$$

from which it follows that

$$
\left\|\hat{\varphi}^{\prime}\right\|_{\infty} \leqq\left(1+\frac{1}{M}\right)\|\hat{\varphi}\|_{\infty} ;
$$

hence the second assertion follows. Finally, we fix l an integer; then

$$
\begin{aligned}
& \left|\hat{\nu}_{M}(l)-\hat{\rho}(l)\right| \\
& =\left|\hat{\Delta}_{N}(l) \hat{\phi}^{\prime}(l)-\hat{\rho}(l)+\sum_{j \neq 0} \hat{\Delta}_{N}(l-j N) \hat{\phi}^{\prime}(l-j N) e^{-2 \pi i \beta j N}\right| \\
& \leqq \hat{\Delta}_{N}(l)\left|\hat{\varphi}^{\prime}(l)-\hat{\varphi}(l)\right|+\left(1-\hat{\Delta_{N}}(l)\right)|\hat{\varphi}(l)| \\
& +\sup _{j \neq 0}\left|\hat{\varphi}^{\prime}(l-j N)\right| \sum_{j \neq 0}{\hat{J_{N}}}(l-j N) \\
& <\frac{1}{M}\|\hat{\rho}\|_{\infty}+3\|\hat{\rho}\|_{\infty}\left(1-\hat{\Delta}_{N}(l)\right) .
\end{aligned}
$$

(The last inequality follows from (c) and the fact that $\left\|\hat{\rho}^{\prime}\right\|_{\infty} \leqq$ $2\|\hat{\rho}\|_{\infty}$.) Hence by (d), we have that $\lim _{M \rightarrow \infty} \hat{\nu}_{M}(l)=\hat{\rho}(l)$ for all integers l.

Theorem 3. Let E be a closed subset to \boldsymbol{T} of uniformly positive measure. Then if $\psi \in C(E)$ and if ψ satisfies condition (3) with the constant K, there exists an $f \in A$ with $\|f\|_{A} \leqq K$, and with $\left.f\right|_{E}=\psi$.

Proof. First, the hypotheses together with Lemma 2 show that

$$
\left|\int \psi \varphi d m\right| \leqq K\|\hat{\varphi}\|_{\infty}
$$

for all bounded measurable functions φ supported on E.
Indeed, fix such a φ, and choose $\left\{\nu_{M}\right\}$ a sequence of discrete measures supported on E and satisfying the conclusion of Lemma 2. Since the total variations of the sequence are uniformly bounded, it follows that ν_{M} tends to φ in the weak* topology of $C(E)^{*}$. (Some subsequence converges by Alaoglu's theorem, but any convergent subsequence must converge to φ by the uniqueness of Fourier-Stieltjes transforms.) Hence,

$$
\lim _{M \rightarrow \infty} \int \psi d \nu_{M}=\int \varphi \psi d m
$$

Thus,

$$
\left|\int \varphi \psi d m=\lim _{M \rightarrow \infty}\right| \psi d \nu_{M} \mid \leqq \varlimsup_{M \rightarrow \infty} K\left\|\hat{\nu}_{M}\right\|_{\infty} \leqq K\|\widehat{\varphi}\|_{\infty} .
$$

Now, let X be the subspace of $c_{0}(\boldsymbol{Z})$, the sequences on the integers vanishing at infinity, defined as
$X=\{\hat{\rho}: \Phi$ is a bounded measurable function, defined on $E\}$.
Now define F a linear functional on X by

$$
F(\widehat{\rho})=\int \psi \varphi d m .
$$

(Since $\widehat{\varphi}_{1}=\hat{\varphi}_{2}$ if and only if $\varphi_{1}=\varphi_{2}$ a.e., F is well defined.) Thus F is a bounded linear functional on X; so by the Hahn-Banach theorem and the fact that $c_{0}(\boldsymbol{Z})^{*}$ may be identified with $L^{1}(\boldsymbol{Z})$ (the space of all absolutely convergent sequences), there exists an $f \in A$, with $\|f\|_{A} \leqq K$, so that

$$
F(\widehat{\varphi})=\sum_{n=-\infty}^{\infty} \widehat{\varphi}(n) \hat{f}(-n)=\int f \varphi d m
$$

for all bounded measurable φ supported on E. The last equality shows that $f=\psi$ a.e.; since ψ is continuous and E is of uniformly positive measure, this implies that $\left.f\right|_{E}=\psi$.

We are finally prepared to establish the analogue of our main result for the circle group \boldsymbol{T}.

Theorem 4. Let ψ be a bounded measurable function defined on E, and satisfying (3) with constant K. Then there exists an $f \in A$ with $\|f\|_{A} \leqq K$, and such that

$$
f(e)=\psi(e) \text { for almost all } e \in E .
$$

Proof. By Lusin's theorem, given an integer N, we may choose F a closed subset of E, with $m(E \cap \mathscr{C} F)<(1 / N)$, so that $\psi \mid F$ is continuous; let ψ_{N} denote $\left.\psi\right|_{F}$. We may also assume that F is of uniformly positive measure, by simply taking N large enough and replacing F by the support of the measure $\chi_{F} d m$, if necessary.

For each N, ψ_{N} satisfies the hypotheses of Theorem 3, with constant K. Hence we may choose an $f_{N} \in A$, with $\left\|f_{N}\right\|_{A} \leqq K$ and $\left.f_{N}\right|_{F}=\psi_{N}$. Again by Alaoglu's theorem, since the $\widehat{\hat{f}_{N}}$'s are uniformly bounded in $c_{0}(\boldsymbol{Z})^{*}$, there exists a function τ defined on Z and a subsequence $\hat{f}_{N_{j}}$ of the \hat{f}_{N} 's, so that

$$
\|\tau\|_{L^{1}(\mathbb{Z})}=\sum_{n=-\infty}^{\infty}|\tau(n)| \leqq K,
$$

and so that

$$
\lim _{j \rightarrow \infty} \sum_{n=-\infty}^{\infty} \hat{f}_{N_{j}}(n) \beta(-n)=\sum_{n=-\infty}^{\infty} \tau(n) \beta(-n)
$$

for all $\beta \in c_{0}(\boldsymbol{Z})$. Thus, let

$$
f(x)=\sum_{-\infty}^{\infty} \tau(n) e^{2 \pi i n x}
$$

for all $x \in T$; then $\|f\|_{A} \leqq K$, and

$$
\lim _{j \rightarrow \infty} \int f_{N_{j}} \varphi d m=\int f \varphi d m
$$

for all bounded measurable functions φ defined on E. But fix such a φ; then

$$
\lim _{N \rightarrow \infty} \int f_{N} \varphi d m=\int \psi \varphi d m
$$

indeed, for fixed N, taking the corresponding F as in the first statement of this proof, we have that

$$
\int\left|f_{N}-\psi\right| \rho d m=\int_{E \cap \varnothing_{F}}\left|f_{N}-\psi\right| \rho d m \leqq \frac{1}{N}\left(K+\|\psi\|_{\infty}\right)\|\rho\|_{\infty}
$$

Hence, $\psi=f$ a.e. an E.
3. Proof of the main result. We first have need of the following lemma, showing that the Stieltjes transform of a finite compactly supported measure on the real line may be nicely approximated by its values on a discrete subset.

Lemma 5. Given ε and $N>0$, there exists an $M>0$, so that if $L \geqq M$ and if ν is a finite measure supported on $[-N, N]$,

$$
\sup _{x \in R}|\hat{\nu}(x)| \leqq(1+\varepsilon) \sup _{j \in Z}\left|\hat{\nu}\left(\frac{\pi j}{L}\right)\right|
$$

Proof. We first note that given λ real number, there exists $f \in L^{1}(\boldsymbol{R})$ with $\hat{f}(x)=e^{i \lambda x}-1$ for all $|x| \leqq N$, and such that $\|f\|_{1} \leqq$ $6|\lambda| N$. For example, let

$$
k(x)=\frac{1}{2 N}\left(\chi_{[-N, N]}\right)^{\wedge}(x)\left(\chi_{[-2 N, 2 N]}\right)^{\wedge}(x)
$$

for all real x, and set

$$
f(x)=\frac{1}{2 \pi}(k(x+\lambda)-k(x))
$$

for all real x.
(To see that f has the desired properties, one may use an argument analogous to that given in the proof of 2.6.3, page 49 of [5]. Briefly, for $|y| \leqq N$, we have that

$$
\begin{aligned}
& \frac{1}{2 N} \chi_{[-N, N] *} \chi_{[-2 N, 2 N]}(y)=1 ; \text { hence } \\
& \hat{f}(y)=\left(e^{i \lambda y}-1\right) \frac{\hat{k}(y)}{2 \pi}=e^{i \lambda y}-1
\end{aligned}
$$

by the inversion theorem. Now

$$
\begin{aligned}
& f(x)=\frac{1}{2 \pi} \frac{1}{2 N}\left(e^{i \lambda \cdot} \chi_{[-N, N]}\right)^{\wedge}(x)\left(\left(e^{i \lambda \cdot}-1\right) \chi_{[-2 N, 2 N]}\right)^{\wedge}(x) \\
& \quad+\frac{1}{2 \pi} \frac{1}{2 N}\left(\left(e^{i \lambda \cdot}-1\right) \chi_{[-N, N]}\right)^{\wedge}(x)\left(\chi_{[-2 N, 2 N]}\right)^{\wedge}(x)
\end{aligned}
$$

Hence by the Plancherel theorem and the Schwartz inequality,

$$
\begin{aligned}
& \|f\|_{1} \leqq \frac{1}{2 N}\left\|\chi_{[-N, N]}\right\|_{2} \sup _{|y| \leqq 2 N}\left|e^{i \lambda y}-1\right|\left\|\chi_{[-2 N, 2 N]}\right\|_{2} \\
& \quad+\frac{1}{2 N} \sup _{|y| \leqq N}\left|e^{i \lambda y}-1\right|\left\|\chi_{[-N, N]}\right\|_{2}\left\|\chi_{[-2 N, 2 N]}\right\|_{2} \\
& \quad \leqq 3 \sqrt{2}|\lambda| N ;
\end{aligned}
$$

thus the constant " 6 " could be replaced by the constant " $3 \sqrt{2}$ ".)
Now, suppose $L>6 \pi N$, ν is supported on $[-N, N]$, and fix x a real number. Let j be the integer such that

$$
\frac{\pi j}{L} \leqq x<\frac{\pi(j+1)}{L}
$$

Next, choose f as in the first statement of the proof, with $\lambda=(\pi j / L)-x$, and let $f_{1}(y)=f(y-(\pi j / L))$ for all real y. Then

$$
\begin{aligned}
& \left|\hat{\nu}(x)-\hat{\nu}\left(\frac{\pi j}{L}\right)\right| \\
& \quad=\left|\int_{-N}^{N}\left(e^{-i x t}-e^{-i(\pi j / L) t}\right) d \nu(t)\right| \\
& \quad=\left|\int_{-\infty}^{\infty} \hat{f}_{1}(t) d \nu(t)\right| \\
& \quad=\left|\int_{-\infty}^{\infty} \hat{\nu}(t) f_{1}(t) d t\right| \\
& \quad \leqq\|\hat{\nu}\|_{\infty}\left\|f_{1}\right\|_{1} \leqq 6|\lambda| N\|\hat{\nu}\|_{\infty} \leqq 6 N \frac{\pi}{L}\|\hat{\nu}\|_{\infty} .
\end{aligned}
$$

Hence,

$$
|\hat{\nu}(x)|-6 N \frac{\pi}{L}\|\hat{\nu}\|_{\infty} \leqq\left|\hat{\nu}\left(\frac{\pi j}{L}\right)\right| \leqq \sup _{k \in Z}\left|\hat{\nu}\left(\frac{\pi k}{L}\right)\right| .
$$

Thus, since x was arbitrary,

$$
\|\hat{\nu}\|_{\infty} \leqq \frac{1}{1-\frac{6 N \pi}{L}} \sup _{k \in Z}\left|\hat{\nu}\left(\frac{\pi k}{L}\right)\right| .
$$

So, given $\varepsilon>0$, simply choose M so that $L \geqq M$ implies that

$$
\frac{1}{1-\frac{6 N \pi}{L}} \leqq 1+\varepsilon
$$

Remark. Our proof shows that the conclusion of Lemma 5 holds not only for Stieltjes transforms, but for any bounded continuous function φ whose spectrum is supported on the interval $[-N, N]$, i.e. we obtain that

$$
\sup |\varphi(x)| \leqq(1+\varepsilon) \sup _{j \in Z}\left|\varphi\left(\frac{\pi j}{L}\right)\right|
$$

for all $L \geqq M$.

Proof of the main result. (All terms are as defined on the first page of this paper.)

Fix N an integer; by Lemma 5, we may choose $L>N$ so that if ν is a finite measure supported on $[-N, N]$, then

$$
\sup _{x \in \boldsymbol{R}}|\hat{\nu}(x)| \leqq\left(1+\frac{1}{N}\right) \sup _{j \in Z}\left|\hat{\nu}\left(\frac{\pi j}{L}\right)\right|
$$

We assume that φ satisfies condition (1), or equivalently, condition (3); let $\varphi_{N}=\left.\varphi\right|_{E \cap[-N, N]}$. φ_{N} may be considered as being defined on a closed subset of the reals modulo $2 L$; we then have that if ν is a discrete measure supported on $E \cap[-N, N]$

$$
\left|\int \varphi d \nu\right| \leqq K \sup _{x \in R}|\hat{\nu}(x)| \leqq K\left(1+\frac{1}{N}\right) \sup _{j \in Z}\left|\hat{\nu}\left(\frac{\pi}{L} j\right)\right| .
$$

Applying the obvious version of Theorem 4 for the reals modulo $2 L$ instead of the reals modulo 1 , we obtain that there exists a sequence $\left\{a_{j}\right\}$ with

$$
\sum_{j=-\infty}^{\infty}\left|a_{j}\right|<\left(1+\frac{1}{N}\right) K
$$

such that

$$
\varphi_{N}(x)=\sum a_{j} e^{i(\pi / L) j x}
$$

for almost all $x \in E \cap[-N, N]$.
Now let μ_{N} be the discrete measure which, for each integer j, assigns mass a_{-j} to the point $(\pi / L) j$; then $\varphi_{N}=\hat{\mu}_{N}$ a.e. on $E \cap[-N, N]$, and $\left\|\mu_{N}\right\| \leqq(1+(1 / N)) K$.

Finally, by Alaoglu's theorem, since the finite measures on \boldsymbol{R} may be identified with the adjoint of $C_{0}(\boldsymbol{R})$, the Banach space of continuous functions vanishing at infinity, we may choose a finite measure μ, with $\|\mu\| \leqq K$, and a subsequence $\left\{\mu_{N_{j}}\right\}$ so that

$$
\int f d \mu=\lim _{j \rightarrow \infty} \int f d \mu_{N_{j}}
$$

for all $f \in C_{0}(\boldsymbol{R})$. Now if g is a continuous function with compact support, then

$$
\begin{aligned}
& \int_{-\infty}^{\infty} g(x) \varphi(x) d x \\
& \quad=\lim _{j \rightarrow \infty} \int_{-\infty}^{\infty} g(x) \varphi_{N_{j}}(x) d x \\
& \quad=\lim _{j \rightarrow \infty} \int_{-\infty}^{\infty} g(x) \hat{\mu}_{N_{j}}(x) d x \\
& \quad=\lim _{j \rightarrow \infty} \int_{-\infty}^{\infty} \hat{g}(x) d \mu_{N_{j}}(x)=\int_{-\infty}^{\infty} \hat{g}(x) d \mu(x)=\int_{-\infty}^{\infty} g(x) \hat{\mu}(x) d x .
\end{aligned}
$$

Hence $\hat{\mu}=\varphi$ a.e.
Remark. For the sake of simplicity in notation, we have only considered the one-dimensional case. However, all our results also hold in the context of \boldsymbol{R}^{p} and T^{p} for all $p>1$. We indicate briefly the necessary changes in the notation and arguments.

We identify \boldsymbol{T}^{p} with $\boldsymbol{R}^{p} / \boldsymbol{Z}^{p}$, and endow both \boldsymbol{T}^{p} and \boldsymbol{R}^{p} with the sup of coordinates metric. If a and b are real numbers, we define the half-open p-dimensional interval

$$
[a, b)_{p}=\left\{x \in \boldsymbol{R}^{p}: x=\left(x_{1}, \cdots, x_{p}\right) \text { and } a \leqq x_{j}<b \text { for all } 1 \leqq j \leqq p\right\}
$$

Similarly, we define closed and open intervals. If $x \in \boldsymbol{R}^{p}$ and $n \in \boldsymbol{Z}^{p}$, we define

$$
x n=n x=n_{1} x_{1}+\cdots+n_{p} x_{p}
$$

We then replace " \boldsymbol{Z} ", " \boldsymbol{R} " and " \boldsymbol{T} " by " \boldsymbol{Z}^{p} ", " \boldsymbol{R}^{p} ", and " \boldsymbol{T}^{p} " respectively, throughout the paper. Where summation indices run over \boldsymbol{Z}, we thus allow them to run over \boldsymbol{Z}^{p}, and where integrals are taken over intervals, we take them over p-dimensional intervals. With these changes, the statements and proofs of Theorems 3, 4, and the main result are exactly the same; a few more modifications are
required for the proofs of the three lemmas, as follows:
In Lemmas 1 and 2, we take β to be a point in $[0,1 / N)_{p}$. In the proof of Lemma 1, we allow the indices " k " to range over all $k \in \boldsymbol{Z}^{p}$ such that $k=\left(k_{1}, \cdots, k_{p}\right)$ and $0 \leqq k_{j} \leqq N-1$ for all $1 \leqq j \leqq p$. For each such k, we define

$$
I_{k}=\beta+\frac{k}{N}+\left[0, \frac{1}{N}\right]_{p} .
$$

\mathscr{J} is then defined to be all intervals such that all of their endpoints belong to F; i.e.

$$
\begin{aligned}
& \mathscr{J}=\left\{I_{k}: \text { for all } x \in Z^{p} \text { such that } x_{j}=0 \text { or } 1 \text { for all } j,\right. \\
& \text { we have that } \left.\beta+\frac{k+x}{N} \in F\right\} .
\end{aligned}
$$

Exactly the same definitions are given for $\mathscr{K}^{\text {and }} \mathscr{K}^{\prime}$, then $\mathscr{K}^{\prime \prime}$ is defined as

$$
\begin{aligned}
& \left\{k \in \mathscr{K}^{\prime}: \text { there exists an } x \in \boldsymbol{Z}^{p} \text { with } x_{j}=0 \text { or } 1 \text { all } j,\right. \\
& \left.\quad \text { so that } \beta+\frac{k+x}{N} \notin F\right\} .
\end{aligned}
$$

We may then correspond to each member of $\mathscr{\mathscr { K }}^{\prime \prime}$ a member of $\mathscr{K} \cap \mathscr{C} \mathscr{K}^{\prime}$ as follows:

Given $k \in \mathscr{K}^{\prime \prime}$, choose $x \in \boldsymbol{Z}^{p}$ with $x_{j}=0$ or 1 for all j, such that $\beta+((k+x) / N) \notin F$. Now let l be the least integer with $1 \leqq l \leqq N-1$ so that there exists a $q \in \mathscr{K}$ and an $m \in \boldsymbol{Z}^{p}$ with $k+l x-q=N m \quad$ (i. e. such that $k+l x \equiv q \bmod N \boldsymbol{Z}^{p}$); then $q \in \mathscr{K} \cap \mathscr{C} \mathscr{K}^{\prime}$, so we correspond q to k.

Given such a q and such an x, k is uniquely determined by the relation $k \equiv q-l x \bmod N Z^{p}$, where l is chosen to be the least integer with $1 \leqq l \leqq N-1$, so that $\beta+((q-l x) / N) \in F$.

However, for different x 's, we may have different k 's in $\mathscr{K}^{\prime \prime}$ corresponded to the same q in $\mathscr{K} \cap \mathscr{C} \mathscr{K}^{\prime}$. Since there are at most $2^{p}-1$ such x 's (x_{j} must equal 1 for some j), it follows that

$$
\frac{1}{2^{p}-1} \operatorname{card} \mathscr{K}^{\prime \prime} \leqq \operatorname{card}\left(\mathscr{K} \cap \mathscr{C} \mathscr{K}^{\prime}\right)
$$

We thus obtain that $r-l \leqq 2^{p}(r-q)$, where r, l, and q are as defined in Lemma 1; the term " 4ε " must then be replaced by the term " $2^{p+1} \varepsilon$ ".

One other modification is required: in all rational numbers having N as denominator (and not having a " k " as a numerator !), we replace " N " by " N " ${ }^{p}$. Thus the function $g(x)$ is defined on $[0,1 / N)$), by

$$
g(x)=\frac{1}{N^{p}} \sum_{\substack{k_{j} j=0 \\ 1 \leq j \leq p}}^{N-1} \chi_{F}\left(x+\frac{k}{N}\right) ;
$$

we then have that

$$
N^{p} \int_{[0,1 / N)_{p}} g d m=m(F)
$$

For the proof of Lemma 2, we replace the function Δ_{N} by the function

$$
\Delta_{N, p}=N^{2 p} \chi_{[0,1 / N]_{p}} * \chi_{[-1 / N, 0]_{p}}
$$

$m_{N \beta}$ is then defined as the discrete measure which assigns mass $1 / N^{p}$ to each of the points $\beta+(k / N)$, where $k=\left(k_{1}, \cdots, k_{p}\right)$ and $0 \leqq k_{q} \leqq$ $N-1$ for all $1 \leqq q \leqq p$. Exactly the same proof then holds.

Finally, in the proof of Lemma 5, the number " 6 " should be replaced by a constant K that depends only on p. (Of course, λ is taken as a point in \boldsymbol{R}^{p}, with $|\lambda|=\sup _{1 \leq j \leqq p}\left|\lambda_{j}\right|$.) An example of a function with the property given in the first line of the proof of Lemma 5, may then be obtained by setting

$$
k(x)=\frac{1}{2^{p} N^{p}}\left(\chi_{[-N, N]_{p}}\right)^{\wedge}(x)\left(\chi_{[-2 N, 2 N]}\right)^{\wedge}(x)
$$

for all $x \in \boldsymbol{R}^{p}$, and then putting

$$
f(x)=\frac{1}{2^{p} \pi^{p}}(k(x+\lambda)-k(x)) \text { for all } x \in \boldsymbol{R}^{p}
$$

References

1. N. T. Akhiezer, Theory of Approximation, Ungar Publ. Co., New York, 1956.
2. S. Banach, Theorie des Operations Lineaires, Monografje Matematyczne, Warsaw, 1932.
3. S. Bochner, A theorem on Fourier-Stieltjes integrals, Bull. Amer. Math. Soc. 40 (1934), 271-276.
4. J. P. Kahane and R. Salem, Ensembles Parfaits et séries Trigonometriques, Hermann, Paris, 1963.
5. W. Rudin, Fourier Analysis on Groups, Interscience Publ., New York, 1962.
6. -, Fourier-Stieltjes transforms of measures on independent sets, Bull. Amer. Math. Soc. 66 (1960), 199-202.

Received January 17, 1967. This research was partially supported by NSF-GP-5585.
University of California at Berkeley

[^0]: ${ }^{1}$ Benjamin Halpern independently discovered a different proof of Lemma 1, and we are indebted to him for a stimulating discussion concerning this result.

