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A CLASS OF MEASURES ON THE BOHR GROUP

MAHENDRA NADKARNI

Let Rd denote the real line with the discrete topology.
Let B = Rd be its dual. R, the real line is continuously
isomorphic to a dense subgroup of B. Let μbea, finite positive
measure defined for Borel subsets of B. Let χt denote the
character on B corresponding to the real number t. We shall
denote by Hs the subspace of L2(B9 μ) spanned by {χt: t ^ S}.
Assume that Π-°o<s<°° Hs = {0}. In this case the subspaces
Hs are strictly increasing in the sense that Ήs S Hs> whenever
S < Sf. The increasing subspaces generate a spectral measure
E defined for intervals a < x ^ b by E(a, b] = orthogonal
projection on Hb Q Ha. We shall say that E has multiplicity
1 if there exists an element w e L2(B, μ) such that {E(σ)w: a e £&'}
spans L2(B, μ). Here & denotes the class of Borel subsets
of R.

THEOREM 1. Assume that
(i) Γ\sHs = {0}.
(ii) E has multiplicity 1.

Then μ sits on a coset of R in B.

The present work was suggested and is strongly influenced by
papers of Helson and Lowdenslager [6, 7] and Helson [4, 5]. Other
papers that were useful are also listed in the references.

2* In this section we shall state some general results about
spectral measures pertinent to us and prove some results that shall
be of use. Proof of Theorem 1 will be given in §3.

Let H be a (complex) Hubert space. Let £Jbea spectral measure
defined on Borel subsets & of the real line. Values of E are
orthogonal projections on subspaces of H. Suppose that E has multi-
plicity 1, i.e., there exists a vector zeH such that {E(σ)z: σ e ^}
spans H. This implies that H is separable. Such a z is called cyclic
vector for E. Write m(σ) = || E(σ) ||2, σe&m Then m is a finite
positive measure on &. If we write z(σ) = E(σ)z, then z(σ) is a
vector valued measure taking values in H. It can be shown that
under the assumption of multiplicity 1, every element he H has an

S oo

φh(X)dz(X), with

φh(X)\2dm(X) < oo

[ § 1 , p . 2 6 4 ] . F u r t h e r E(σ)h = \ φh(X)dz(X). L e t h19h2,h3, ••• b e a
Jσ
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complete orthonormal set in H. Let measures m^ i = 1, 2, 3, be
defined by m^σ) = || E(σ)hi \\\ Let i; denote the measure v((τ) =

m^σ). The following lemma is known and easy to prove.

LEMMA 1. If E has multiplicity 1 and z its cyclic vector, then
measure m and v are mutually absolutely continuous. Here m is
the measure defined by m(σ) = || E(σ)z ||2.

The next lemma is known and its proof can be found in ([9], p.
318). For any measure μ0 we shall write μt for the measure μt(σ) =
μ(σ + ί), C Γ G ^ , t eR.

LEMMA 2. μQ is a finite positive measure defined on Borel subsets
of R. Assume that μ0 and μt are mutually absolutely continuous.
Then μ0 and Lebesgue measure are mutually absolutely continuous.

A function called cocycle presents itself in the proof of Lemma 5.
It is necessary to show that, in our context, such function has a
special form called coboundary.

DEFINITION 1. A function A(t, X) on R x R is called a cocycle if
( i ) I A(ί, λ) I = 1 for all ί, λ.
(ii) A(t,X) is Borel measurable in λ for every fixed t.
(iii) A(t + u, X)A(t, \)A(u, λ + ί) for almost every Xe R (with

respect to the Lebesgue measure).
The set of Lebesgue measure zero where (iii) does not hold may

depend on (t,u).

DEFINITION 2. A cocycle A(t, λ) is called a coboundary if it is of
the type B(X + ^Z?-1^) for some function B on R of absolute value 1.

We shall prove the following

LEMMA 3. Every cocycle is a coboundary.

Few remarks should be made before we prove this lemma. The
proof of Lemma 3 is trivial if condition (iii) of cocycle held everywhere
instead of almost everywhere. For in that case we need only put
λ = 0 in (iii) and observe that

A(u, t) = A(t + u, 0)A-\t, 0) .

Cocycles and coboundaries occur very crucially in the works of
Henry Helson and David Lowdensager although domain of definitions
of these functions changes according to context in their work. In his
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book on invariant subspace [41, Helson proved Lemma 3 under an
additional hypothesis which is equivalent to requiring that A(t, X) be
jointly measurable in (£, λ). There are cases however where one has
to deal with cocycles A(t, X) which are measurable in X for every
fixed t. The present paper is one such case.

Finally we remark that the idea of our proof is already contained
in the papers of Mackey [9] and Helson [4, 5]. We state here, without
proof, a theorem of Mackey [9, p. 317] which we shall need in the
proof of Lemma 3.

THEOREM 2. Let M1 and M2 be sigma finite measure spaces with
measures μ1 and μ2. Suppose that there is a countably generated
Borel field ^ of measurable subsets of M2 such that every measurable
subset of M2 differs from some member of ^ by subset of a set of
measure zero. Let f be a complex valued function on Mί x M2 which
is measurable and essentially bounded as a function on M2 for each

fixed point in MίΛ Suppose that \ f(x, y)dμ2(y) is measurable on Mι
JE

for each fixed measurable subset E of M2 of finite measure. Then
there exists a function f'(x, y) jointly measurable on M1 x M2 such
that for all xe Mί

f(xf y) — /'(sc, y) for almost all y £ M2 .

Proof of Lemma 3. Consider

F(u, t, X) = A(t + u, X)A~ι(t, X)A-'(u, X) .

From the cocycle relations (iii) we see that for each fixed v,, t
(1) F(u, t, X) = A(u, X + t)A-\u, X) a.e. X .
(2) F(u, t, X) = A(t, X + ^A- 1^, λ) a.e. λ .

(1) and (2) show that F(u, t, X) is measurable in (£, λ) for each fixed
u and measurable in (u, X) for each fixed t. We show that F can be
chosen to be measurable in all three variable (u,t,X) and still satisfy
(1) and (2). Let σ be a measurable set in (£, λ) of finite measure.
Consider

[ [

F(u, t, X)dλdt .

We show that this integral moves continuously in u.

F(u, t, X) - F(s, t, X) I dXdt

= [[ I A(t + u, X)A~1(t, X)A~\u, X)

- A(t + s, X)A~1(tJ X)A-\s, X) I dXdt

(*) = ί ( I A(t + u, \)A-\u, X) - A(t + s, λ )^- 1 ^, λ) I dXdt .
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This identity holds since | A(t, X) | = 1. Again by cocycle identity
(iii), (*) is equal to

Si. I A(t, X + u) — A(t, X + s) I dxdt —> 0 as s —> u .
a

Thus for each (£, λ) measurable set σ of finite measure

F(u, t, X)dXdtss.
moves continuously in u. So by Theorem 2, we can replace F(u, t, λ)
by a measurable function in all three variables.

So we assume now that F is measurable in all three variables.
Now

(**) A(t + u, X)A-\tt X)A~1(uf λ) = A(u, X + t)A~ι(u, X)
for almost every X for fixed (t,u). But the left hand side is
measurable in (u, ί, λ) and so by Fubini theorem there exists λ0 such
that (**) holds for almost every (u, t). So for almost every (u, t)

A(t + u, X0)A~ί(t1 X^A-'iu, λ0) = A(u, λ0 + t)A~\u, λ0)

A(t + u, XQ)A~1(t, λ0) - A(w, λ0 + ί) .

Put λ0 + ί = s, then

A(s - λ0 + u, X0)A~ί(s - λ0, λ0) = A(u, s) .

Write B(x) = A(x - λ0, λ0). Obviously A(u, s) = £ ( ^ + s)^^^).

REMARK. We note that

B(u + s)^- 1^)^- 1^) = A(u + s - λ0, λo)A-1(s - λ0, λo)^-1^ - λ0, λ0)

is jointly measurable in (u,s).

DEFINITION. A spectral measure E on & is called stationary if
there exists a commutative group T\ teR, of unitary operators such
that for every Borel set σe<^, TtE(σ)T~t - E(σ + t).

LEMMA 4. Let E be a stationary spectral of multiplicity 1 and
let z be a cyclic vector for E. Then the measure m defined by
m(σ) = \\E(σ)z\\2 and Lebesgue measure are mutually absolutely
continuous.

Proof. Let hί9 h29 hs, be a complete orthonormal set in H.
Since T* is unitary Tιhu Tιh2l) is again a complete orthonormal
set in H. By Lemma 1, m is equivalent to μt defined by μt{o) =

K, Tιhn) for every t. Now
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μ*(o) = Σ -5J-(̂ (σ)Γ A., T'h.) = Σ {T-Έ(σ)T*K, K)

= Σ - 5 r ( ^ ( ^ + *)&•> Λ») = JMO(* + ί ) .

Thus μ0 and μέ are mutually absolutely continuous for every t, and
so by Lemma 2 μ0 and Lebesgue measure are mutually absolutely
continuous. So m and Lebesgue measure are mutually absolutely
continuous.

LEMMA 5. Let E be a stationary spectral measure of multiplicity
1. Then there exists a vector valued measure z{ ) on έ% and a
function A on R of absolute value 1 such that

( i ) z(A) 1 z(B) whenever Af]B= null set,
(ii) | |^(A)| |2 = L(A) where L stands for the Lebesgue measure,
(iii) every he H has a representation of the type

h = Γ φh(^)dz(X)X \φh(X)\2dX < oo ,
J_oo J_oo

(iv) E{σ)h = \

(v) A~1(X)A(X + t) is measurable in λ for every t,

(vi) T*h - J00 ftW^WAfλ + t)dz(X + t) .

Proof. Let w b e a cyclic vector for E and m the measure defined
by m(σ) = \\ E(σ)w ||2, σe^?. Let ^ denote the Radon-Nikodym
derivative m with respect to the Lebesgue measure L. Since m and
L are mutually absolutely continuous, p > 0 a.e. (L).

Define #(•) by £(σ) = \\ (l/\/ρ(λ))dw(X). Then properties (i) and
(ii) for 2( ) are easily verified. To prove (iii), let heH. Then A has

ψh(X)dw(X) with 1 I ψ^(λ) |2 dm(X) < oo.
_ o o J_oo

ί Now (l/i/ io(λ))d^(λ) is equal to
J

d«(λ). We write ψh(X)Vp(X) = 9?Λ(λ), and representation for Λ becomes

^Λ(λ)d^(λ) with 1 |<p λ(λ)|2(iλ< oo. This proves (iii). Again
E(σ)h = \ ψh(X)dw{X) = \ φh(X)dz(X) can be seen to be true. This

Jσ Jσ

proves (iv). It remains to show (v) and (vi). Let us write zt(σ) =
T*z(σ — t). zt is again a countably additive measure on & with
values in H. Since E is stationary, zt(σ) e E(σ)H. So zt(σ) has a
representation of the type: zt(σ) = \ A(t, X)dz(X) for some function

Jσ

A(t, λ), measurable in X for every t. Further
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|| zt{σ) ||2 = || T*z{σ - t) | |2 = || z(σ - t) | |2 = L(σ - t)

= L(σ) = [ \A(t,X)\2dX .

Since this holds for every σ, \ A(t, X) | = 1 for almost every λ. We

can write the relation between zt( ) and z( ) formally as dzt(X + t) =

A(t, X)dz(X + ί) which is the same as Tιdz(X) = A(t, X)dz(X + t). Now

Ts+tdz(X) = TsTιdz{X) = TsA(t, X)dz(X + t)

= A(t, X)A(s, X + t)dz(X + t + s)

= A(s + t, X)dz(X + s + t) .

From this equation we get A(t, X)A(s, X + t) = A(s + t, λ). Thus

A(t, X) is a cocycle. By Lemma 3 A is of the type A(X + t)/A(X) for

some functions A. We choose this A for A of Lemma 5. Obviously

I A(t) I = 1 for every t. Further A(t, X) = A^Q^AiX + t) is measurable

in λ for every ί. This proves (v). Finally let h = i φh(X)dz(X). Then

- Γ %(λ)T^(λ) - p φA(λ)A(ί, λ)ώ(λ + ί)
J-co J_oo

ί) .

This proves (vi).

3* Let us return to the notation and terminology of Theorem 1.
For feL2(B,μ), write Ttf = χtf, where χt is a character on B
corresponding to the real number t. It is obvious that T { is a
commutative group of unitary operators on L2(B, μ). Further following
two identities can be easily verified:

(A) T\H(b) θ H{a)) = H(b + t) Q H(a + t) where a, b (a < b)
are any two real numbers.

(B) For any feL2(B, μ), \\E(a, b]f - / | | 2 = || TΉia, b]f - T*f\\\
(A) and (B) together imply that E is a stationary spectral measure,
TtE(σ)T~t = E(σ + t).

Proof of Theorem 1. The spectral measure E of Theorem 1 is
stationary as shown in the above paragraph. By hypothesis E has
multiplicity 1. By Lemma 5 there exists a vector valued measure
z(') with values in L2(B, μ) and a function A on R of absolute value
1 satisfying (i)-(vi) of Lemma 5. χoe L2(B, μ) has a representation

S o
f(X)dz(X).

It - Xtlo = T% = \° f(X)A^(X)A(X + t)dz(X + t) .

(*) χtA-\t) = Γ f(X)A-1(X)A(X + t)A-ι(t)dz(X + t) .
J —oo
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We shall show that χt{b)A"\t) is measurable in t for almost every
beB (with respect to μ). First observe that, by remark following
Lemma 3, A"1(λ)A(λ + t)A~\t) is measurable in (£, λ). Next the integral
representation (*) for χtA~\t) exists in the sense that approximating
sums of the type Σί/(λ ί)A~1(λ ί)A~1(λ ί + t)A"\t)z(σ^ converge to
χtA~\t) in L2(B, μ). Since μ is a finite measure the sequence of
approximating sums converges to χtA~\t) almost everywhere on B
with respect to μ. But each of the approximating sum is measurable
in t for every beB. Hence for almost every beB (with respect to μ)
χt(b)A-\t) is measurable in t (see [2], p. 430). Now fix a bf e B such
that χt(b')Ar1(t) is measurable in t. Consider χt{br — b). χt(b' — b) =
XtΦ)(lMYι = χt{bf)A~ι(t){χt{b)A-\t)Yι = ratio of two measurable
functions in t for almost every b. So χt(b — bf) is measurable in t
for almost every beB (with respect to μ). But a measurable character
on R is necessarily continuous. So bf — beR for almost every beB
(with respect to μ). Hence bebr + R for almost every beB (with
respect to μ). So μ sits on a coset of R in B.

Much more is true than simply the fact that μ sits on a coset of
R in B. For example, μ restricted to the appropriate coset is absolutely
continuous with respect to the Lebesgue measure on that coset and if
/ is its Radon-Nikodym derivative, then

: - ([2], p. 586) .

A converse of Theorem 1 is true: If f]Hs — {0} and μ sits on a
coset of R in B, then E has multiplicity 1. This is essentially a
consequence of a result of 0. Hanner [3] on representation of weakly
stationary purely nondeterministic stationary stochastic process.

A finite regular measure v on B is called analytic if I χtφ)v(db) = 0

for t < 0. Let μ denote the total variation measure of v. It can be
shown that the subspaces Hs in L2(B,μ) have the property Π-°o<s<oo Hs =
{0}. Let E be the spectral measure generated by Hs — CXD < s < oo.
If E has multiplicity 1 then by Theorem 1 μ sits on a coset of R in
B and so v sits on a coset of R in B.

Recently in collaboration with V. Mandrekar, we have studied
finite regular measure μ on B for which Π-oo<s<oo Hs = {0} without
assuming that spectral measure E has multiplicity 1. These results
will be published elsewhere.

I would like to express my sincere thanks to Professor S. Koh
for explaining to me the algebraic meaning of cocycles and coboundaries,
and to Professor V. Mandrekar for useful discussions.
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