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TWO SOLVABILITY THEOREMS

I. M. ISAACS

In this paper we prove two theorems which have certain
similarities.

THEOREM I. Let G be a group with a cyclic Sp subgroup
P such that every p!-subgroup of G is abelian. Then either
G has a normal p-complement or else PAG.

THEOREM II. Let G be a group and let p Ψ 2 and q be
primes dividing | G |. Suppose for every H < G which is not
a (/-group or a g'-group that p \\ H\. If qa is the (/-part of
I G I and p > qa — 1 or if p = gα — 1 and an S p of G is abelian
then no primes but p and q divide \G\.

Both theorems are proved by studying minimal counter-examples
and in both cases contradictions are obtained for p > 3 without the
use of character theory. When p = 3 both minimal counterexamples
satisfy the hypotheses of the same character theoretic proposition
which is actually a special case of Theorem II, and this yields the
desired contradictions.

Both theorems imply that the respective groups in question are
solvable. In the first case the Schur-Zassenhaus Theorem (see 9.3.6
of [5]) is used and in the second case Burnside's p*qj theorem (see
12.3.3 of [5]) yields the solvability.

1* In this section we prove the character theoretic proposition
which is a special case of Theorem II and which is used to prove
both of our main results. We begin by giving a lemma which is a
restatement of some of the restlts of §11 of [1].

LEMMA 1. (Brauer-Fowler) Let G be a group of even order which
has only one class of involutions KQ with m = \K0\. Let K{, 1 ^ i rg r
be the remaining nonidentity real classes in G. Then

r

m2 = um +

where u is the number of involutions in the centralizer of an in-
volution and v{ is the number of involutions which transform x to
x~ι when xeKi9

PROPOSITION. Let G be a group with an abelian S3 subgroup P
with the properties

(1) |5Rβ(P)| = 4 | P | , | ( £ β ( P ) | = 2
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(2) <£β(P) is a T.I. set and
(3) if H < G has even order then | H\ | (4 | P\).

Then G is not simple.

Proof. Suppose G is simple. It is clear that the order of an S2

of G is 4 and thus by Burnside's theorem it must be elementary and
all of its involutions are conjugate in its normalizer. Put

S = (Eβ(P) = P x <s> and N = 9^(P) - Sφ ,

where s and t are commuting involutions. Since G is simple and P
is abelian, we have PflSW-P)) = 1 by 13.5.5 of [5] and thus &F(t) = 1
and t acts on P with no nontrivial fixed points. Therefore t trans-
forms every element of P and thus also of S into its inverse. Clearly
SAN and PΔ9ϊ*(S) and thus N = SRβ(S). If two elements of S are
conjugate in G they are conjugate in N since S is a 21. /. set and
if they are distinct they are inverses. Since the only elements of S
equal to their inverses are s and 1, the remaining 2 | P | — 2 elements
of S span | P | — 1 classes of G.

If y Φ 1 is a real element of G which is not an involution then
9M<X>) < G has even order and thus y has order divisible by 3 and
centralizes some element of order 3. By taking conjugates we may
suppose that this element is in P and therefore y eN. Since no ele-
ment of N — S centralizes any element φ 1 in P, we conclude that
y e S. Therefore the | P | — 1 classes spanned be the nonself-inverse
elements of S are the classes K{ of the lemma and r = \P\ — 1.

Since Kβ(s) 3 N and |Kσ(s) | I (4 | P | ) we must have (£(s) = N.
Every element of N — S is an involution and therefore in the lemma
we have u = 2\P\ + l. Since <E(s) = iV, m - [G : N] = \ G|/4 | P | .
If a; G S and a; ^ 1, s then eff(a?) = S and \Ki\ = [G : S] - 2m. Fin-
ally, the only involutions transforming x to x~ι are the elements of
N — S and hence each ^ = 2 | P | and the lemma yields

m2 = ( 2 | P | + l)m + ( | P | - l)(2 |P|)(2m)

and therefore m = 4 | P | 2 - 2 | P | + 1 and \G\ = 4 | P | m .
Now G has | P | + 1 real classes and thus by Theorem 12.4 of

[4] it has \P\ irreducible, nonprincipal real valued characters, χiy

1 ^ i ^ \P\. Since G has m involutions,

\p\

where e< = ± 1 by Theorem 3.6 of [4]. Therofore m ^ Σ S Z i ί 1 ) a n d

we have



TWO SOLVABILITY THEOREMS 283

Γ\P\ -\2 \P\

m 2 ^ [ g χ * ( i ) J ^ I P \ Σ U 1 ) 2
 = \ P \ [ \ G \ - Σ I fA±Y - i ]

where the ψά are the irreducible nonreal valued characters. Thus

I P | Σ ^-(l) 2 ^ I P\ (I GI - 1) - m2 ^ m(4 | P | 2 - m)

since | G | = 4 | P | m . Since 4 | P | 2 - m = 2 | P | - 1 < 2 | P | , we have
2 ^i(l) 2 < 2m. Because G contains elements of order prime to 6,
not every class of G is real and thus some ψ exists with ψ Φ ψ and
hence ^( l ) 2 < m.

Now [N: S] = 2 and S is abelian and thus all nonlinear irreduci-
ble characters of N have degree 2. Since t acts without fixed points
on P, it is clear that N' = P and N has exactly 4 linear characters
and thus has \P\ — 1 distinct irredudcible characters of degree 2, say
λi, , λip,^. Since [iV: S] = 2 and λ< | S is reducible, it follows that
λf vanishes on N — S and we may apply Theorem 38.16 of [3] since
S is a T. I. set. Therefore G has irreducible characters

and there is ε = ± 1 with λf - Xf = ε(ζ^ - ζs). Since each X? is real
valued, the same is true of the ζ* and thus we have the inner pro-
duct [f, (λf - λf)] = 0. Therefore

and by Frobenius Reciprocity, [ψ | N, λ j — [ψ̂  | JV, λ y]. We conclude
that the multiplicities of each λ{ in ψ\N are equal. Since ψ is
faithful and N is nonabelian, ψ \ N has some nonlinear constituent
and thus this common multiplicity is ^ 1 and therefore ^(1) ^ 2( |P | ~ 1).
Since ψ(l)2 <m < 4 | P | 2 , we have ^(1) < 2 | P | and thus

τlr(l) = 2 | P | - 2 or 2 | P | - 1 .

Let g be the largest prime divisor of ^(1) . If q = 2 then since
f (1) I I GI we must have -f (1) - 4 = 2 | P | - 2 and | P | = 3. In this
situation m = 31 and | G \ — 12-31 and since no simple group can have
this order, we have a contradiction. Thus qφ2 and since 3 | | P | ,
q > 3. Since q\\G\ we must have q \ m and 4 | P | 2 - 2 | P | + 1 Ξ 0
mod q. Since 2 | P | = 1 or 2 mod g, we have 4 | P ί 2 - 2 | P | + l = l
or 3 mod q. Since q > 3 this is our final contradiction.

2 . In this section we prove the first of our main results. We
begin with a lemma.

LEMMA 2. Let H be an abelian group with a collection of proper
subgroups {iQ such that H = \J K{ and Kif\ K5 = 1 if i Φ j . Then
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H is an elementary abelian p-group for some prime p.

Proof. If x, y e H* have different orders m and n respectively,
with m > n, choose Ki with x e K{. Then 1 Φ (xy)n = xn e Ki% If
xy e Kj then (xy)n G Kt Π ̂  and therefore i = j and α^ G i^. Thus
y G iΓ;. If ze H* is arbitrary then the order of z is different from
at least one of m and n and thus ze Ki. Thus Ki — H and this con-
tradiction shows that all elements of H% have equal orders and the
result follows.

THEOREM I. Let G be a group with a cyclic Sp subgroup P such
that every pr-subgroup of G is abelian. Then G has a normal p-
complement or else PAG.

Proof. Suppose the theorem is false and let G be a minimal
counterexample. Let N — %lG(P) and let K be an Sp, (p-complement)
of N whose existence is guaranteed by the Schur-Zassenhaus Theorem
(9.3.6 of [5]). If any element xe K centralizes a nonidentity element
of P, then because P is cyclic, x centralizes all of P. (See for inst-
ance 20.1 of [4]).

Every proper subgroup of G satisfies the hypotheses and thus
has either a normal SP or Sp,. If LAG and p\ \ L | then G/L satisfies
the hypotheses and does not have a normal Sp, and therefore if
L > 1, PLAG. By Burnside's theorem, KΆN and thus NL does not
have a normal Spf and if NL < G, L normalizes P and P is char-
acteristic in PL and thus is normal in G. This contradiction shows
that NL = G. Now put M = Γ\χβσNxAG. Since x = uv for some
ueN and v e L we have Nx = Nuυ = Nυ a iP . However KL is a
p'-subgroup and thus is abelian and Kυ = K. Since x was arbitrary,
M^K and thus Λf a Ku for all uGN. Since i ί is an Sv, of the
solvable group M we may conclude that Ku is conjugate to K in Λf
by P. Hall's theorem (9.3.10 of [5]) and therefore there exists w eM
with uw-1 e VlN(K). If 9lN(K) > K then WP(K) > 1. This group is
normalized and thus centralized by K and thus all of P is also. This
contradiction shows that ^N{K) = K, uw~ι e K, and thus N = MK.
Since p \\K\, P ξΞ, M and we have M=N and thus all Nx are
equal and NAG. Thus PAG and we have a contradiction. Our
assumption on the existence of L is therefore invalid and DP,(G) = 1.

If PoAG is a p-group, put C = &G(P0)AG. If C = G then K
centralizes Po and therefore K centralizes all of P and we have a
contradiction. Thus C < G and since P S C, C does not have a
normal Sp. Therefore C is not a p-group and has a normal Sy and
this contradicts DP,(G) = 1 and we conclude that ΌP(G) = 1. If L ^ 1
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is any proper normal subgroup of G then either an Sp or an Sp, of
L is normal in G and is >1 and this contradiction shows that G is
simple.

If P and P* are two Sp subgroups of G and Po = Pf\ P* > 1,
then since P is cyclic, U = %(P0) a N and 17 < G. Since N fails to
have a normal Sy, the same is true of U and thus the Sp P of U is
normal and P = P*. Therefore P is a T. I. set. Now let

If P* is another S, of G and S* = (E(P*), suppose that So = SflS* > 1.
Now So is not a p-group for otherwise SoξΞ: Pf\P* = 1, and thus
there is some a; ̂  1 in So which is a p'-element. Since

P,P*^ &G(x) < G,

Kβ(a?) has a normal Sp, L. Since x is a ^'-element of N we may suppose
that xeK and hence if £Ξ K(a?) because if is abelian. Thus K Q L
and if = 9^L(P). Since P normalizes L, it also normalizes if and this
is a contradiction. Therefore So — 1 and S is a T. I. set.

Now let A be any maximal p'-subgroup of G and i? a p'-subgroup
with Af\BΦ\. If F - <Eβ(A Π ^ X G then A,B^V. If F has
a normal Sp, L then A^ L and by maximality A = L and B ^ A.
If F has a normal Sp Po then V has a possibly not normal Sp, L and
since V is solvable, we may suppose that A £ L by P. Hall's theorem.
Thus A = L and some conjugate of B is contained in A. In this
situation, since A normalizes Po and P is a T. I. set we may conclude
that A normalizes some Sp of G.

If q is a prime, g| |A|, let Q be an Sg of G with Q Π ^ ^ l
Then some conjugate of Q is QA and thus A is a Hall subgroup of
G. If A* is another maximal p'-subgroup of G with q \ \ A* \ then
A* meets some conjugate of A and we may conclude that A* is con-
jugate to A and | A | = | A* |. If A does not normalize an Sp of G
then A is disjoint from all other maximal p'-subgroups of G and A
is a T. I. set. In this situation let Q £ A be an Sg of G. Since A
is abelian, QΛ%(A) and since A is a Γ. /. set, 9^(Q) = ^σ(A) and
thus by Burnside's theorem, ^(A) > A. By the maximality of A it
follows that p \ \ 5Ji(A) | and some element of order p normalizes A.

Continuing with the situation where A does not normalize an Sp

of G, suppose some element y of order p centralizes some a Φ 1 in
A. We may suppose yeP and since y e Pa also, we conclude that
P — Pa and we may suppose α e K. Then ϋΓ Π -A Φ 1 and therefore
if £ A. Since A is a T. /. set, y normalizes A and K = 9^(<χ» and
thus ?/ normalizes and hence centralizes K and therefore K centralizes
all of P and we have a contradiction. Thus no a e A different from
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1 commutes with any element of order p and since A is normalized
by such an element we have | A | = 1 mod p.

Let A*, Au •••, Aβ be a collection of maximal p'-subgroups of G
with all I A{ | distinct and including all posibilities and with K £ Ao.
If q I I G I and g ^ p then some At contains an Sg of G and if g | | A5 \
also, then A3- meets some conjugate of A{ and as we have seen this
implies that | Aά \ — \Ai\ and thus j = i. Therefore

\G\ =

Since K g Ao, no A4 f or i > 0 can normalize an Sp of G and if Ao > if,
the same is true of Ao. In this situation no p-element commutes
with a p'-element nontrivially and thus &σ(P) = P and if is isomorphic
with a subgroup of the automorphisms of P and since P is cyclic and
£ > / l Ί i f | , | l f | ί g p — 1. Continuing with the assumption that Ao> K
we see that all \Aι\=l mod p and thus | G | / | P | = 1 mod p. By
Sylow's theorem, \G\/\K\\P\ = 1 mod p and therefore 1 = | G |/| P\ =
I if I mod p. Since | jδΓ | < p we must have | K \ = 1 and this is a
contradiction by Burnside's theorem. Therefore Ao = K and K is a
maximal p'-subgroup.

Let Z = (E^P) < K and let Q be an Sq of JBΓ. Clearly, K £ ^ ( Q )
and thus by Burnside's theorem, iΓ<9 ίiβ(Q) and hence p\\^l(Q)\.
Since Z < K we may choose # with Q g Z. If 5β(Q) has a normal
Sp Po then Q centralizes Po and therefore Q centralizes all of some Sp

subgroup of G. It follows that Q is contained in some conjugate of
Z and thus Qu £ Z. However Qu is therefore an Sq of the abelian
K and Qw = Q. This contradicts Q £ Z and thus 9l(Q) fails to have
a normal Sp and hence has a normal Sp, L and L 3 Ϊ , By the max-
imality of K,K — L and if is normalized by an element x of order
p. lΐ xe P*, an S, of G, suppose JΓ g 5Ji(P*). Then if £ 9^«α;» and
thus x centralizes K and therefore K centralizes all of P * . Since
iΓP* = Nα(P*) we have a contradiction and no Sp containing x is
normalized by K. In particular, x $ P. We conclude that each of
P,PX, •• ,P a ; ? )~ 1 is normalized by if and they are all distinct. Now
f&κ(PΛi) - Zχi and since E^(P) is a T. /. set Z χ ί OZxj = 1 unless
i = i .

Put IZI = c. Since the direct product Z x Zx ^ Kwe have c21 | K \
and we set \K\ = c2t. We have \K-\JZβi\ = c2t - p(c - 1) - 1.
Now K/Z is a p'-group isomorphic with a subgroup of the automor-
phisms of P and thus is cyclic of order dividing p — 1. Since [K: Z] =
ct, we have ct \ (p — 1).

If a? centralizes any α Φ 1 in if then α normalizes and thus cen-
tralizes a full Sp P* ot G with # e P * . I f & e i f then αb = α centralizes
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(P*)b and thus P * - (P*)» because E e(P*) is a T7. /. set and thus K
normalizes P * . We have seen that this is impossible and thus x acts
without nontrivial fixed points on K and p \ (c2t — 1).

We have then, p \ (p — 1 + cH) and since ct \ (p — 1),

Since both p — 1/ct and c divide p — 1, we have (#> — l)/c£ + c < 2p
and thus (p ~ l)/ct + c = p. This implies that c\((p — T)/ct - 1) and
p — 1/ct I (c — 1). It follows that either p — 1/ct = 1 or c = 1. If c = 1
then t = 1 and thus | ίΓ | = 1 and this is a contradiction and therefore
p - 1/ct = 1. This yields t = 1 and c = p - 1 and thus | ϋΓ| = (p - I) 2.
We have then | K - U Zχi\ = c2ί - p(c - 1) - 1 = 0 and thus K =
U Z3'*. We may therefore apply Lemma 2 to if and conclude that K
is an elementary abelian g-group for some prime q. Since K/Z is
cyclic of order ct = p — 1, we conclude that p — 1 — q and thus p — 3
and g = 2. Therefore |5R*(P)| = | P | | K\ = 4 | P\ and

lί H < G has even order then so does an Sp, of i ϊ and thus a max-
imal p'-subgroup containing it has even order and this order must
equal \A0\ = \K\ = 4 and therefore | i 2 Ί | ( 4 | P | ) . Since (£β(P) is a
T. J. set, the proposition applies and G is not simple. This contradic-
tion proves the theorem.

We note here that an alternate method of completing the proof
is to use the theorem of Brauer, Suzuki and Wall [2] instead of the
proposition given here in § 1. While there are some similarities in
the proofs of these two results, the Brauer-Suzuki-Wall theorem is
considerably deeper.

3. Here we prove our second theorem.

THEOREM II. Let G be a group and let p Φ 2 and q be primes
dividing \G\. Suppose for every H <G which is not a q-group or
a q'-group that p\\H\. If qa is the q-part of \G\ and p > qa — 1
or ifp = qa — l and an Sp of G is abelian then no primes but p
and q divide \G\.

Proof. If the theorem is false, let G be a minimal counter-ex-
ample. Every H < G which is neither a g-group nor a g'-group satis-
fies the hypotheses and thus none has order divisible by any prime
different from p and g. Suppose NAG with 1 < N < G. If g | | N\
then no other prime but p can also divide it and thus some prime
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rΦp, q divides [G:N]. If Q is an Sq of N then ^&(Q)N = G and
since r)f\N\,r\ \yiΘ(Q) | and thus G has a subgroup of order r\Q\.
This contradiction shows that qJf\N\. If any r Φ p divides \N\, let
R be an Sr of JV. Then %lG(R)N = G and since g | | i V | , g | |9^(i?) |
and G has a subgroup of order q\R\. This contradiction shows that
N must be a p-group.

If Q is any g-subgroup of G then 9ϊβ(Q) < G and thus is not
divisible by any prime different from p or q. If for every
Q > 1, %lθ(Q)/(ί>G{Q) is a g-group then by Frobenius' theorm (see for
instance 21.8 of [4]) G has a normal £y which must be a p-group
and this is a contradiction. Thus for some Q, an Sp of 9^(Q) fails to
centralize Q and in particular is not normal. Thus an Sp of G is not
normal and Q is normalized by an element x of order pb which does
not centralize it. Some orbit of the elements of Q thus has size ^p
and qa ^ | Q | *> p + 1 ^ gα. We have equality and thus p + 1 = Qa

and Q is a full Sg of G, all of whose nonidentity elements are con-
jugate under x. Thus since p Φ 2, q = 2 and all 2-elements of G are
involutions and in one class. Furthermore, by hypothesis, an Sp sub-
group P of G is abelian.

If G has the proper normal subgroup N then we have seen that
N is a p-group but since G does not have a normal Sp, p | [G: AT],
If N S i ϊ < G and g | [ J ϊ : iV] then the only other prime which can
divide [H: N] is p and thus G/N satisfies the hypothesis and if N > 1
we have a contradiction. This shows that G is simple.

If H < G has even order and an S2 of H is not normal then H
does not have a normal p-complement. If PQ is an Sv of i ί then by
Burnside's theorem, Po is properly contained in its normalizer in H.
Therefore [H: $lH(P0)] < [H: Po] ^ 2a = p + 1. By Sylow's theorem
then, PoΔ-ff.

Suppose x Φ 1 is a real element of G. Then 9^«V>) < G has
even order and since the only 2-elements are involutions, the order
of x2 is a power of p and x2 is a real element. If G has no noniden-
tity real p-elements then for every real xeG, x2 = 1. Since the product
of two involutions is real, the set {x \ x2 — 1} is a normal subgroup of
G. Therefore there exists y Φ 1, a real p-element. Since y is trans-
formed into its inverse by an element of 9ΐ(?(<(2/̂ >), y is not central in
that group and thus 3^(<χ>) does not have a normal S2. It therefore
has a normal Sp which is a full Sp subgroup, P of G and thus ^ ( P )
has even order. It follows that 5Ji(P) = PS where S is contained in
an S2 T of G and P is the unique S^ of G containing y.

If no involution centralizes any nonidentity p-element then S acts
in a Frobenius manner on P and being abelian, it must be cyclic and
thus have order 2. If t e T is an involution then &a(t) = T and in
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the terminology of Lemma 1, m = | G |/2α and u = 2α — 1. If 1 Φ
s e S then s inverts every element of P. Therefore each nonidentity
element of P is real and thus is contained in a unique Sp and hence
P is a T. I. set. Thus if any two elements of P are conjugate in
G they are conjugate in 3lG(P) and thus are inverses and the noniden-
tity elements of P span (\P\ — l)/2 classes of G. These are the only
real classes other than {1} and the class of involutions and thus in
Lemma 1, r = (| P\ - l)/2. If χΦl,xeP then &G(x) = <£Ps(a) = P
and the set of involutions transforming x to x~ι is the coset Ps.
Therefore in Lemma 1, v{ = | P | and | K, \ = [G: P] for each i. The
lemma yields

m2 = m(2α - 1) + ^ P | ~ 1 \P\[G:P] .

Since | P\ \ m and 2α - 1 = p, p\P\ divides the left side and the first
term on the right side but not the remainder of the right side of the
above equation and thus we have a contradiction. Therefore an in-
volution centralizes some element of order p.

Now let C = &G(T) and suppose C > T. Then C = T x PΎ where
P1 > 1 is a ^-subgroup of G. Set A = (^Θ(P1) a C. Either Γ Δ i o r
an Sp subgroup P * of A (which is a full Sp of (?) is normal. If
P * Δ A then since | A | = | P | | T\ ^ | 3 ^ ( P ) | , A = 9^(P*) and

and this is impossible in a simple group by 13.5.5 of [5]. Thus T Δ A.
Let s e S , s ^ l and let B = &G(s). If P2 is an Sp of B then s e WB(P2)
and thus [ 5 : 3lB(P2)] < p + 1 and P2AB. Since P ^ J S we have
P2 S P2 and thus P 2 g A and thus P2 normalizes T. Since T Q B, T
normalizes P2 and thus P2 centralizes T and P2 g P l β Now

and therefore S acts without nontrivial fixed points on P and every
p-element of G is real. In particular x e Pu x Φ 1 is real. However,
we have yiβi ζx)) a A and since | A \ = \ P \ \ T\, we have equality and
x is central in ^(<V>) and this is a contradiction. We have shown
that C = Ktf(Γ) = Γ.

If a; ^ 1 is a p-element centralized by an involution then K̂ (α )
has even order but does not contain a full S2 of G and thus has a
normal Sp which is a full Sp of G. Hence x is contained in a unique
Sp of G which is normalized by an involution centralizing x. By
taking conjugates we may suppose that x e P is centralized by se S.
Put E = (£P(s) > 1. Now Kff(s) has the normal Sp Po 3 i? and since
2*7 can meet no S^ of G other than P we see that PoξΞ: P and thus
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PQ = E. If P* ΦP is an Sp of G then Po f\ P * - 1 and thus <£Ps|i(s) = 1.
Choose t e S, t Φ 1. Since all involutions of T are conjugate in

5R(T), choose we5R(Γ) with β = ί\ If Pu Φ P, then 1 = <£P«(s) =
g>(ί ) = eP(ί) t t and thus &P(t) = 1. Otherwise, P t t = P and % e 9ΐ(P) =
PS so that u = ry for some r e S and ί/eP. Now Su normalizes P
and S w s Γ and thus S* g 5RΓ(P) - S and therefore S = Su = Sv

and ye%lP(S). This group is normalized and thus centralized by S
and ί / e P f l 8(^σ(P)) which as we have seen is trivial. Thus y = 1
and u = r and hence s = ί. We have therefore shown that s is the
only involution in S which centralizes any nonidentity element of P.

If I S I = 2 then 1 Φ eP(s) g ? Π 3(9ίβ(P)) and this is a contradic-
tion. Thus I S I Ξ> 4 and we may find two involutions t and V in S,
both different from s. Then both £ and V invert every element of
P. Therefore W centralizes P and hence tV — s and <Y> has index
2 in S. We have now |9lβ(P) | = | S | | P | = 4 | P | and | Kβ(P) | =
|<(P, s)> I = 21 P | . Since we have seen that a nontrivial p-element
which is centralized by an involution is in only one Sp, P is a T. /.
set. If P* Φ P is an Sp of G then if K(P) f| ®(P*) > 1 it is not a
p-group and thus contains an involution. Because P Δ Sβ(s) this is
impossible and ©0(P) is a Γ. I. set. Furthermore, since T <Ξ K(s),
T normalizes P and Γ = S. Therefore \T\ = 4 = p + 1 and p = 3.
If H < G has even order then | £ Γ | | ( | T | | P | ) and the hypotheses of
the proposition are satisfied. Since G is simple, we have a contradic-
tion and the theorem is proved.

We note that for p — 2 we can get a counterexample to the
theorem by taking G = Aδ and q = 3.

REFERENCES

1. R. Brauer and K. A. Fowler, On groups of even order, Ann. of Math. 62 (1955),
565-583.
2. R. Brauer, M. Suzuki and G. E. Wall, A characterization of the one-dimensional
unimodular projective groups over finite fields, Illinois. J. Math. 2 (1958), 718-745.
3. C. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative
Algebras, Interscience, New York, 1962.
4. W. Feit, Characters of finite groups, Mimeographed notes, Yale University Math.
Dept., 1965.
5. W. R. Scott, Group Theory, Prentice Hall, Englewood Cliffs, N. J., 1964.

Received August 8, 1966.

UNIVERSITY OF CHICAGO




