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THE VOLUME OF A TOTALLY-GEODESIC
HYPERSURFACE IN A PINCHED MANIFOLD

NATHANIEL GROSSMAN

We will give necessary conditions for a compact hyper-
surface to be totally-geodesic in a manifold of strictly positive
curvatures. These conditions relate the volume of the hyper-
surface to the pinching of the manifold. The method consists
of obtaining estimates from above and below for the volume
of the manifold. Comparison of these estimates gives ine-
qualities for the volume of the hypersurface. The method
appears on the surface to apply to totally-geodesic submani-
folds of arbitrary codimension with but a little modification.
We are grateful to R. L. Bishop for pointing out that below
the surface are snags that we have not yet been able to
avoid.

The existence theory for closed geodesies, highly developed yet
still incomplete, stands in sharp contrast to the existence theory for
higher-dimensional critical submanifolds of Riemannian manifolds. It
has long been known that every compact Riemannian manifold carries
a closed geodesic. Of course, if the fundamental group of the mani-
fold is not trivial, every nontrivial homotopy class of closed curves
contains at least one closed geodesic.

If the kth homotopy group of a manifold is not trivial, one might
hope analogously for a minimal fc-sphere in each nontrivial homotopy
class. Aside from the obvious (and classical) difficulties with the
behavior of the higher-dimensional volume functionals, there is an
even more fundamental difficulty, pointed out by Kervaire and Milnor:
a nontrivial homotopy class on a smooth manifold may fail to have
an embedded smooth (C1) representative! Part of the difficulty may
be side-stepped by working in a larger category. Thus, Almgren has
obtained strong results using his theory of varifolds. However, the
extremal objects may fail to be manifolds on sets which are small in
some measure-theoretic sense.

On the other hand, some positive results are known in the category
of manifolds. For example, a holomorphic embedding of a Kahler
manifold into a complex protective space (with the canonical Fubini-
Study metric) is minimal. But the positive results are still meager.

1* Notation and preliminary matters* All manifolds to be
considered will be smooth and all Riemannian metrics will be complete.
M will be a manifold of dimension m, carrying a Riemannian metric
<•, •)> and associated norm || ||. Let N be a compact smoothly-embedded
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hypersurface in M with normal bundle N1 carrying induced norm on
the fibers again denoted by 11 11. Let exp be the exponential map of
the Levi-Civita connection V of <•,•)> and denote the restriction of
exp to N1 by exp1.

Let U(δ) = {v e N1 | || v \\ < δ} and define

zN = sup {d I exp1 is one-to-one on U(d)} .

We have previously considered the problem of estimating τN and obtained
the following result:

LEMMA 1. ([3, Theorem 2]) Let M have positive sectional cur-
vatures K ^ 1 and let N be a compact totally-geodesic hyper surf ace.
Then τN ^ π/2.

(Remark: The proof given in [3] for the above result can be
generalized in an obvious fashion to show that the inequality τN >̂ π/2
persists if N is not necessarily a hypersurface but merely has codi-
mension <m/2. Notice that the definitions of U(δ) and τN make sense
for submanifolds of arbitrary codimension.)

We will have need for some properties of the index form. Let N
be a totally geodesic hypersurface and let σ be an iV-geodesic; that
is, σ is a geodesic parametrized by arc-length with σ(0)eNλ. If X
and Y are vector fields along σ and orthogonal to it, the index form
of the pair (X, Y) on (0, r] is given by

, Y) = Γ{<X', Γ'> - <R(σ, X)σ, Γ>} |, dt ,
Jo

where the prime denotes covariant differentiation along σ and

R(U, V) = [FU,ΓV]-Fίu,n

is the curvature transformation. A Jacobi field is a vector field Y
along σ and orthogonal to it satisfying Y" + R(σ, Y)σ — 0. If Y is
a Jacobi field, then

We use the minimizing properties of Jacobi fields in the following
form.

LEMMA 2. Let Y be a Jacobi field along σ on [0, r] with Y'(Q) = 0
and let X be any field orthogonal to σ with X(r) = Y(r). Then
I(X, X) ;> I(Y, Y) with equality exactly when X — Y.

Proof. If X Φ Y, then X - Y Φ 0. I is positive definite, so
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0 <I(X - Y,X- Y)

= I(X, X) - 2I(X, Y) + I(Y, Y)

, X) - 2<X,

, X) -

= I(X, X) -

)-I(Y, Y).

The point σ(r) (or r itself) is called focal (resp. conjugate) to
σ(0) along σ if there is a Jacobi field Y along σ with F'(0) = 0 (resp.
F(0) = 0) and Y(τ) = 0. Well-known theorems of Myers [5] and
Berger [1] show that, if the Ricci curvatures of M satisfy Ri Ξ> a2 > 0,
there is a focal (resp. conjugate) point along each iV-geodesic at
distance at most π/2a (resp. π/a) from N.

Finally, let <om_i denote the volume of the Euclidean unit sphere
S™-1 and let

2* Volume estimates* We will prove the following.

THEOREM. Let N be a totally-geodesic, compact hyper surface of
M and suppose 0 < a2 ^ Ri and 0 < K ίg b2 on M. Then

1°. volume N ^ ωm_ιb/am;
2°. i/ either
(i) 62/4< K^b2 on M, or
(ii) If is orientable, even-dimensional, and 0 < a2 ^ K on M,

then
volume N >̂ ωm_ιa/bm.

Before giving the proof, it is convenient to state a lemma about
exp1. We recall that R. L. Bishop [cf. 2] has considered the behavior
of the volume element under the exponential map exp^ at a point p
in M. Let σ be a geodesic parametrized by arc-length with σ(0) = p
and σ(0) = v. Suppose that Ri >̂ a2 > 0 and 0 < JK" <̂  62 on Λf. Then
Bishop proves that the Jacobian determinant J(t) of exp^ at tv e Mp

satisfies

sin bt λ™"1 ^ Ύl.κ ^ ( sin at λ™"1

at least out to the first conjugate point of p. Equality holds only in
the case of constant curvatures. Dually one can consider an N-geodesic
σ with σ(0) = v and the Jacobian determinant j(t) of exp1 at tv.
Bounds on the growth of j(t) are given by the following.
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LEMMA 3. Suppose 0 < a2 <: Ri and 0 < K <; b2 on M. Then

co^-'bt £ j(t) ^ cos^'at ,

at least out to the first focal point of N along σ.

Proof. Pick peN and {yl9 , ym-i} be an orthonormal basis of
Np. Let σ be an iV-geodesic with σ(0)eiV1. Let Eu-"JEm_1 be
parallel extensions of yl9 , ym_τ along σ. Suppose p has no focal
points along σ for 0 < t ^ r.

Let Z< be the Jacobi field along σ with Z/(0) = 0 and Z<(r) = ^ ( r ) .
(Existence of ^ is assured since r is nonfocal.) Then

where Z=\\ Z1(0) Λ Λ ^w-i(0) ||. Notice that i(0) = 1. Moreover,
the values {Z^r)} are orthonormal. It follows by direct calculation
that

3(r)

Using the assumptions 0 < ί g δ ! and ^'(0) = 0, we obtain

|| Z/1|2 - K{σ, Z,) \\ Zt ||2} | ( dt

using Lemma 2. Here, h(t)Ei(t) corresponds to a "Jacobi field" for
the sphere of constant curvature b2 with h(r) = 1 and h'(0) = 0. Thus,

= cos 6ί/cos 6r. It follows that

^ - 6 t a n 6 r .

Summing,

i M ^ -(w - 1)6 tan δr ,

from which (using j(0) = 1)

j(r) ^ cos"1"1 br .

Next, using Lemma 2 applied to the Jacobi fields Zi and the vector
field hEi9
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<Z«(r), Zl{φ ^ [{(hj - K(σ, EtW} |, dt .
JO

Summing and using Ri ^ a2 > 0,

i ^ i ^(n- ΐ)[r{(h')2 - a2h2} \t dt
j(r) Jo

^ — (n — l)a tan ar ,

if &(£) = cos at/cos ar. Thus, as above,

j(r) g cos74"1 ar .

This completes the proof of the Lemma.

Proof of the Theorem.
1°. By a well-known theorem of S. B. Myers [5], the assumption

Ri :> α2 > 0 implies that the diameter of M is at most π/α. Pick p
in M and let B(π/a) be the ττ/α-ball in Mp. Using Bishop's estimates,

volume M ^ I (Jacobian determinant of expp) dB
JB(πla)

Next, exp1 is a bisection on U(π/2b) by Lemma 1, so that from
Lemma 3 we get

volume M ^ volume (exp1 U(π/2b))

= \ (Jacobian determinant of exp1) dU
JU(π[2b)

S Cπ/2b

I j(r)dr dN

= (volume N) —

τr/26

cos"1""1 br dr dN
-τr/26

Comparing the two estimates of volume M, we get the first inequality
of the theorem.

2°. If either (i) or (ii) holds, the injectivity radius of M is at
least π/b [4]. Therefore, as in 1°, we estimate
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volume M ^ ί Γ\™M s m br Y"'dr dωm_x

On the other hand, by Berger's extension [1] of the Rauch Com-
parison Theorem, every JV-geodesic must carry a focal point of N at
distance at most πβa. Therefore,

S Γπ/2a

1 cos™"1 ar dr dNS Γπ/2a
1

NJ-πl2a

Comparing these two estimates for volume N, we get the second
inequality of the Theorem, thereby completing the proof.

It may be instructive to point out the difficulty which arises in
codimension greater than one. Let N be a smoothly embedded sub-
manifold of M of dimension p. There is again a normal bundle NL

and a restriction exp1 of the exponential map to N1. If p > m/2,
Lemma 1 above is still valid. What is needed is an estimate of the
growth of the Jacobian determinant of exp\ We might try to imitate
the above process, choosing an AΓ-geodesic σ, p Jacobi fields Zif Z2, ,ZP

along σ with Z^r) = Et(r) and Zl(0) = 0, and m — p — 1 Jacobi fields
Zp+1, , Zm_λ along σ with Zά(ΰ) = 0 and Z'ό{r) = Eά{r). Unfortunately,
one has no control over the interrelations between Jacobi fields of the
first type and those of the second. For the calculation to proceed as
above, one needs that fields of the first type remain orthogonal to
those of the second type and this can not be assured.
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