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AN EXTREMAL LENGTH CRITERION FOR THE
PARABOLICITY OF RIEMANNIAN SPACES

WELLINGTON H. OW

It is the purpose of this paper to show that a given
Riemannian space satisfying a regularity condition is parabolic
if and only if the extremal distance of a fixed ball in the
space from the ideal boundary of the space is infinite.

We will also show that the harmonic modulus of a space
bounded by two sets of boundary components coincides with
the extremal distance between the two sets.

STATEMENTS OF MAIN RESULTS

1* Regularity condition* Throughout this paper we denote by R

a noncompact C°° Riemannian space with the ideal boundary β. We
always assume that R is orientable and connected. Let A be the
complement of a regular subregion of R with the relative boundary
a. We also assume that A-a is connected. We consider the follow-
ing regularity condition for R (more precisely, for A):

For any nonconstant harmonic function u defined on a region
Ωa A, the set {xe Ω\\ Fu(x) | = 0} has zero capacity.

This condition is always satisfied if the dimension of R is two.
This is also true, for example, when the metric tensor giό is real
analytic on A-a. A typical case is furnished by a locally flat A-a.

In this paper we only consider those spaces R for which the above
regularity condition is met.

2* Extremal length* Let p be a density, i.e. a nonnegative
Borel function on A, and let Γ be a family of curves 7 which issue
from a point in a and lie in A-a. We define the harmonic extremal
length, or simply the extremal length of Γ, by

(1) λ(Γ) = sup
V(A, p)

p2dV and L(Γ, p) — infΓ \ pds. Here dV and ds

A )y

are the volume and the line element
We are particularly interested in the family ΓβCiΓ of all curves

yeΓ terminating at β.

3* Parabolicity* We call R parabolic, ReOG, if R carries no
nonconstant positive superharmonic function. The main object of this
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paper is to prove:

THEOREM 1. The space R is parabolic if and only if\(Γβ) = oo.

4* Moduli* Let Ω be a regular subregion of R with relative
boundary βΩaA — a, and let uΩ be the continuous function on Ω n A
which is harmonic in the interior of Ω f] A with uΩ | = 0 and uΩ\βΩ = 1.
The constant μΩ given by

log μΩ = 1/ I _
J Ω

^ Λ

is called the harmonic modulus, or simply the modulus of Ω 0 A with
respect to a. It is easy to see that

( 3) μΩ ^ μw

for flcfi'. Therefore, we can define /*R, the harmonic modulus of
A. with respect to a, as the directed limit

( 4 ) μR = lim μfl .

It is again easy to see that uR = lim^^u^ exists and is continuous on
A, harmonic on A — a with wβ | <x = 0. Moreover,

r
log μR = 1/ \ d Λ *

It can be seen that ReOG if and only if μR = oo (Glasner [3]).
Thus Theorem 1 may be considered as a special case of

THEOREM 2. The following identity is valid:

(6) \(Γβ) = logμR.

The proof will be given in 5-9.

PARABOLIC CASE

5* A general inequality* We start with proving

(7)

Let ΓBQ be the family of curves 7 6 Γ which lie in Ω Π A and
terminate at a point of βΩ. Define p as (log μΩ) \ VuΩ \ in the interior
of Ω n A and as zero elsewhere in R. For 7 e ΓβQ1

\pds=\ (logμΩ) I VuΩ I ds ^ (log^) f ^ds = log ^ .
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Therefore

L(ΓβΩ, p) = inf \ pds ^ log μΩ .
Γ J7

By (2) we also obtain

V(A, p) = \_ (log μΩf I VuΩ \2dV = (log μΩ)A_duΩ /\*duΩ = log μΩ ,

and infer by (1) that

( 8 )

Since every 7 eΓβ contains a 7' e ΓβΩ, we can easily see that
MΓβ) ^ Ί{ΓβΩ) (cf. Ahlfors-Sario [1, p. 222]). Thus (8) implies that

= l°2 fa f ° r every Ω. On letting Ω-+R we obtain (7).

6. Now suppose that i2G0G. Then since μR = ^°, (7) implies
that

( 9 ) λ(Γ,) = log /iΛ = 00 .

In order to complete the proofs of Theorems 1 and 2, we have
only to show the validity of (6) under the assumption RgOG. Note
that in our discussion thus far we have not made any use of the
regularity condition.

HYPERBOLIC CASE

7* %-lines* Hereafter we assume that R£θG. Then uR} to be
denoted simply by u, is not constant on A. Since u \ a — 0 and
u I A — a > 0, we infer that | Vu \ can be extended continuously to all
of A and that | Vu \ \ a Φ 0.

For each x e a we consider the unique curve lx issuing from x
and such that lx — x c A — α, *du = 0 on Zβ> | Vu \ Φ 0 on lx. More-
over we require that lx either terminates at β or at a point of A at
which I Vu I = 0 . Such an lx will be called a u-line. As 2/ traces
ϊ»ι u(y) increases. Thus we can classify points of a as follows:

a0 = {x e a | lim u(y) < 1} ,
y-*β,veix

aλ — {x e a \ lim u(y) = 1} ,
3 € i

with

(10) a = a0 U ax .
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8* Vanishing surface area* We denote by dS the surface
element of α. We wish to show that

(11) S(aQ) = ί dS =

Let F_λ be the set of points x e a such that lx terminates at some
point of R. Clearly F^ c aQ, and we set Fo — aQ — F_x. By the re-
gularity condition in § 1, we see that S(F^) — 0 (cf. Brelot-Choquet
[2]). Therefore we only have to show that S(F0) = 0. Let

n = ixFn = ix 6 FQI lim (1 - u(y)) ^ —
I v->β,yeiχ n

Since Fo = (JΓ-^, it is sufficient to show that S(Fn) = 0.
We can find a positive harmonic function ω in the interior of A

with the following properties (cf. Nakai [4]): (a) ω has the boundary

values 0 on a, (b) \imy__>β>yelχω(y) = co for xeF0, (c) I \Fωc\
2dV^ c,

with ωc = min (ω, c) for every positive number c.
Fix a c > 0 arbitrarily and a point ^ e L with ^^T/J = c for

each x G Fn.
Set v = 1 — u on A. In a neighborhood of a point in a with

respect to A we may incorporate v into a coordinate system, say
v — x\ while α;2, , xm are m — 1 linearly independent parameters for
a. Then

3v

Since *dv = \Fv\dS = Vg^ dS on α:, S(Fn) = 0 is equivalent to

dv = 0. Observe that

f Γ

J ^ ~ }F.

j ί Λ J *

- ί Γ

3 α > c

—

dxι

dv Λ *dv

glldV.

By the Schwarz inequality we have

1/2
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\Vv\2dV
1/2

^ V c ( \ du A *du)' .
1/2

From this we infer that

*dv

Since the number c can be arbitrarily large, we have \ * dv = 0,

and (11) follows.

9. Let p be a density with p ΐ 0 on 4, Since

du A * du = I Vu I d F ,

we can compute

F(A, p) = \ p2dV = ί -J^—du A *du
x • )A \\7%\2

—±-——du ) * du

du- [ l2dvλ*du

du)\du .

On lx(x e aj we have du = \Fu\ds, and thus

V(A,ρ) ^\ (\ ρds)\du .

From lxeΓβ for ̂ e ^ we obtain \ pds ^ L(Γβ, p), and therefore

(12) V(A, p) ^ L(Γβ, pA *du.

On the other hand, by (11), we have \ *du = \ *du. Take

arbitrary regular region Ω with β0 c A — a. Then

1 * du = lim \ * dt6β .

Here we see that

\ *duΩ = \ *duΩ = \ uΩ*duΩ = \_ d^ 0 Λ * d ^ β ,
Jα J/30 Jβo-a JΩf]A

an
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and infer that

I *du = lim I duΩ Λ *duΩ — \ du Λ *du
Ja Ω-*R JΩΠA JA

This together with (5) and (12) implies the inequality

*~ V(A,p)

Since p was arbitrary, we now conclude that

log μR ^ X(Γβ) .

We combine this with (7) and obtain (6).

The author is indebted to Professor Leo Sario, chairman of his
doctoral committee, who guided his research, and also to Professor
Mitsuru Nakai, with whom the author had many invaluable discussions.
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