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IMAGES OF ORDERED COMPACTA ARE LOCALLY
PERIPHERALLY METRIC

SIBE MARDESIC

In this paper we study the class S of Hausdorff compact
spaces X which are obtainable as images of ordered compacta
K under (continuous) maps /: K —»X onto X. The topology
of K is the order topology induced by a total (linear) ordering
< on K. We find that X is locally peripherally metric (Theo-
rem 5), i.e., it has a basis of open sets with metrizable
frontiers.

In fact, our main result is this stronger statement.

THEOREM 1. Let X be a continuous image of an ordered com-
pactum K and let G be an open Fσ-set in X. If Cl G is connected,
then the frontier Fr G is metrizable.

Theorems 1 and 5 answer in the affirmative two questions raised
by the author in [3].

As an immediate consequence, we obtain

COROLLARY 1. Let X be a continuous image of an ordered com-
pactum K and let G be an open Fσ-set in X. If every point x e F r
G has a connected open neighborhood in Cl G, then Fr G is metrizable.

Another easy consequence of Theorem 1 is the following theorem
of L. B. Treybig [10]:

COROLLARY 2 (Treybig). Let Xbea continuous image of an ordered
compactum K. If X is connected and separable, then it is metrizable.

The proof of Theorem 1 given in §5 depends on an apparently
new metrization theorem for Hausdorff compact spaces (Theorem 2 of
§1), on earlier work of the author on separation properties of images
of ordered compacta [3], on the earlier joint work with P. Papic ([5],
[6],) and on the following product theorem due to A. J. Ward [13]
and L. B. Treybig [9] (see also [3] and [4]).

PRODUCT THEOREM (Ward, Treybig). Let X and Y be infinite
compacta such that X x Y is the image of an ordered compactum.
Then both X and Y are metrizable.

The proof of Theorem 1 does not depend on Corollary 2 and,
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therefore provides a new proof of this important result (For another
proof of Corollary 2 see [3]).

1* A metrization theorem for Hausdorfϊ compact a • In this
paper a compactum is a Hausdorff compact space and a continuum is
a connected compactum. If Y is a compactum, Z(Y) denotes the
space of components of F, i.e., Z(Y) is the quotient space Y/R,
where y Ry', y, yf e F, means that both y and y' belong to the same
(connected) component of Y. It is well-known that Z(Y) is again a
compactum and that the natural projection π: Y'—+ Z(Y) (π(y) is the
component of y in F) is a continuous mapping onto (see e.g. [8]).

We now consider, for compacta Y, the following two properties:

PROPERTY μ. For every closed subset A c Y the space of com-
ponents Z(A) is metrizable.

PROPERTY σ. There exists a countable family @ of open sets S
such that for any pair of disjoint closed sets M, Ncz Y there exists
an Se<3 which separates Y between M and N.

We say that S separates Y between M and N provided there
exist disjoint sets A,BcY such that Ma A, NaB, A\J B = Y\S,
and A and B are both closed in A{j B.

THEOREM 2. In order that a compactum Y be metrizable it is
necessary and sufficient that it has both properties μ and σ.

Proof. If F is metrizable, then so are its closed subsets A c F.
Therefore, their continuous images Z(A) = π(A) are also metrizable,
so that F has property μ.

To prove that F has property σ, consider a countable basis @
which is closed under finite unions. Given any pair of disjoined closed
sets M, Nd F, one readily finds a closed set Fez Y\(M{J N) which
separates F between M and N. Now it suffices to cover F by a set
Se@ which does not meet MU N.

Suppose now that F is a compactum with properties μ and σ.
We construct a countable basis 33 for the topology of F as follows.
Choose, by property σ, a countable family @ and consider for each
Se@ the closed set Y\S. Next, choose a countable basis SBf for the
topology of the metric compactum Z(Y\S) (property μ). Let fJB̂
consist of all sets of the form

( 1 ) U=SΌπ

where FeSBf and π: Y\S—+Z(Y\S) is the natural projection. Clearly
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( 2 )

is a countable collection of open sets of Y.
To show that 35 is a basis for Y, consider a point yoeY and a

closed set Ma Y,yog M. We shall exhibit a set U e S3 such that
yoe U and U f] M = 0.

First take an open set So e @ which separates Y between y0 and
Λf. Then choose a decomposition of Y\£o in two disjoint closed sets
A, B such that yoe A, Ma B. No component of Y\So meets simultane-
ously A and B. Hence,

( 3 ) π(A) Π π(B) = 0 ,

where π: Y\S0—> Z(Y\S0) is the natural projection. We obtain thus
a decomposition

(4 )

of Z(Y\SQ) in two disjoint closed and open subsets ττ(A), π(B). Since,

( 5 ) π(yo)eπ(A),

there exists an open set F G S 3 | 0 such that

( 6 ) π(yo)eVaπ(A) .

Consequently,

( 7 )

and we see that the set

( 8 ) ^ o

fulfills the requirements

( 9 ) yoeU, UΠM=O.

This completes the proof of Theorem 2.

REMARK. Property σ alone is not sufficient to imply metrizability
of Y. E.g. every separable ordered compactum K has property σ
(see Theorem 4 in §3), but K need not be metrizable. The corre-
sponding question for property μ is discussed in §2.

2* Property μ and the Suslin problem*1 A space Y is said to
have the Suslin property if every family of nonempty disjoint open
sets in Y is countable.

1 The results of this section are not used in the sections that follow.
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LEMMA 1. If a compactum Y has property μ, it also has the
Suslin property.

Proof. Let U = {Uλ}, XeL, be a family of nonempty disjoint
open sets in Y. Choose, for each λ e L, a point yλ£ Uλ. Let

(1) A =

Clearly, the points yλ are isolated in the set A and, therefore, π(yλ)
are isolated points in Z(A). Since, Z(A) is a metrizable compactum,
it can have only countably many isolated points. This proves that L
is countable, i.e., that Y has the Suslin property.

LEMMA 2. Let C be an ordered continuum with the Suslin proper-
ty. Then C has property μ.

Proof. An ordered continuum C is an ordered compactum which
is connected. If A is a closed subset of C, then the open set C\A
decomposes in a countable family of maximal disjoint open intervals
Un. Clearly, the space of components Z(A) is a totally disconnected
ordered compactum whose order is induced by the order < in C.

By a gap in an ordered compactum (K, <) we mean a pair of
points clf c2eK, such that the interval (cu c2)κ is empty. It is readily
seen that a totally disconnected ordered compactum K with only
countably many gaps is metrizable and is in fact a subset of the
Cantor set (see e.g. Lemma 1 of [9]).

Thus, in order to show that Z(A) is metrizable it suffices to show
that Z(A) has only countably many gaps. In fact, we can associate
with every gap Clf C2 of Z(A) the unique interval Un c C whose two
end-points belong to the components Cι and C2 of A respectively. In
this way we obtain a one-to-one mapping of the set of gaps of Z(A)
into the set of intervals Un. This proves that Z(A) has only countably
many gaps and is, therefore, metrizable. Since Z(A) is metrizable,
for every closed set AczC, the continuum C has property μ.

The author does not know of any example of a compactum Y
which has property μ but fails to be metrizable. However, if property
μ alone would imply metrizability of compacta Y, then Lemma 2
would imply that every ordered continuum C with the Suslin property
is metrizable and, therefore, homeomorphic to the real line segment
I. In other words, we would have a positive answer to the Suslin
problem (M. Ya. Suslin in Fund. Math. 1 (1920), p. 223).

THEOREM 3. The following two statements are equivalent:
(i) In the class 5ΐ of images of ordered compacta every compactum
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S with property μ is metrizable,
(ii) Every ordered continuum C with the Suslin property is

homeomorphic to the real line segment I.

Proof, (i) => (ii) is an immediate consequence of Lemma 2.
In order to prove that (ii) => (i), consider a compactum l e f i which

has property μ. It follows from Lemma 1 that X has the Suslin
property. Using (ii), P. Papic and the author have proved that a
compactum I G S with the Suslin property is separable (Corollary 6
of [6]), and in §3 of this paper we prove that every separable
compactum J G S has property σ (Theorem 4). Hence, X has both
properties μ and σ and is therefore metrizable, by Theorem 2.

3* Images of ordered compacta and property 0\ In this section
we prove

THEOREM 4. Let X be a continuous image of an ordered
compactum. If X is separable, it has property σ.

We first recall that if I e S has the Suslin property, then every
open subset of X is an Fσ-set (see Theorem 2 of [5] or Corollary 3,
p. 13 of [6]). This holds a fortiori if X is separable so that we have

LEMMA 3 (Mardesic-Papic). If J e S is separable, then every
closed subset of X is a GB-set and every open subset of X is an Fa-

of Theorem 4. The author has shown (Theorem 4 in [3])
that a separable J e S admits a countable family g of closed sets F
which separate X between any pair of disjoint closed sets M, Na X.
We now choose such a family g.

Each F e g is a Gδ-set (Lemma 3) so that we can choose a counta-
ble collection &F of open sets S c l such that Fa S and

(1) F= Π(CIS), Se&F .

The family

( 2 ) @ = U @ir, Fe% ,

is a countable collection of open sets in X which has the required
separation property σ.

Indeed, if M and N are disjoint closed subsets of X, then there
exists a set F e g such that F separates X between M and N. Since

(3) F c i p u ZV) ,
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and ( 1 ) holds, we can find a set S G S ^ C S such that

( 4 ) FdSc:G\Sc:X\(M\jN) .

Clearly, such a set S G @ separates X between M and N, which
concludes the proof.

4. The frontier of open Fσ-sets and its space of components*
In this section we prove the crucial

LEMMA 4. Let J e S and let G be an open Fσ-set dense in X.
If X is connected, the space of components Z(Fr G) is mβtrizable.

Proof. C h o o s e a s e q u e n c e o f o p e n s e t s HnaG, n = 1,2, •••, s u c h
t h a t

( 1 ) C\Hnd Hn+ι ,

( 2 ) \JC\Hn=G.

For each n, consider the compactum

( 3 ) X\Hn =) X\G .

Let

( 4) Zn = Z(X\Hn) , Z = Z(X\G) .

By (3), every component of X\G is contained in a unique com-
ponent of X\Hn. This inclusion defines a map

( 5 ) pn:Z-+Zn.

We shall now show that the maps pn,n = l,2, ", distinguish
points of Z, i.e. that for any two distinct components Cu C2 of X\G
there exists an n such that

( 6 ) p Λ Q Φ pn(C2) .

The maps pn, n = 1, 2, , will thus define an imbedding of Z in the
direct product

( 7 ) Π Pn(Z) .

We first choose two disjoint closed sets Fx, F2 in Fr G covering
Fr G and such that d c Fx and C2aF2. Since the sets Ft are at the
same time closed in X, we can surround them by disjoint open sets
Uu U2 of X. Thus
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( 8 ) Ctc:Ui9 ΐ = l , 2 ,

( 9 ) Uλ U U2 => Fr G .

We now choose an n such t h a t

(10)

The set X\Hn c U1 U U2 splits in two disjoint open sets Ui Π (X\Hn),
i = 1, 2, which contain CΊ and C2 respectively. This proves that CΊ
and C2 are included in different components of X\Hn so that (6) takes
place.

In order to complete the proof of Lemma 4 it now suffices to
show that the space pn(Z) is metrizable, for every n. In that case
the direct product (7) will be metrizable and so will be Z itself,
because Z is embeddable in this product.

To show that pn(Z) is metrizable, first notice that every component
C of X\Hn meets Cl Hn, because X is connected and compact. More-
over, if Cepn(Z). Then C also meets Fr G.

Next, consider the natural projection

(11) π:X\Hn^Z(X\Hn) = Zn

and a map

(12) φ:X\Hn-+I=[0,l],

such that

(13) φ((X\Hn) Π Cl Hn) = 0 ,

(14)

φ exists by Urysohn's lemma.

Using 7Γ and φ we define the map

(15) ψ = π x φ: X\Hn — Zn x I.

We now show that

(16) pn(Z) x Iaψ(X\Hn) .

Indeed, if Cepn(Z), then C meets Fr G and Cl i?π and so f(C) meets
both C x i and C x 0. Since, n/r(C)cC x I and f{C) is connected,
it follows that

(17) Cxl= f(C) c ψ(X\Hn)

and (16) is established.
Since X belongs to £, we conclude that also X\Hn,f (X\Hn) and

pn(Z) x I belong to $. Therefore, by the product theorem (see the



564 SIBE MARDESIC

introduction) pn(Z) is metrizable. This completes the proof of Lemma 4.

5* Proof of Theorem 1* We first prove

LEMMA 5. Let leffi and let G be an open Fa-set in X. If Cl
G is connected, then Fr G has property μ.

Proof. Let A be a closed subset of Fr G and let

(1) Γ = (C\G)\A.

Clearly, Γ is an open set, dense in Cl (?, and

( 2 ) Fr Γ = A .

We now show that Γ is an i^-set in Cl G = Cl Γ. In the first
place, Fr G is a separable compactum from $, for the author has
proved that the frontier of an open ί>set in a compactum I G S is
always separable (Theorem 2 of [3]). It follows, by Lemma 3, that
(FrG)\A is an i^-set.

On the other hand, G is by assumption an .Fσ-set. Consequently,

( 3 ) Γ = (Fr G\A) U G

is also an i^-set in X.
Applying Lemma 4 to Cl G and Γ, and taking into account (2),

we see that Z(A) = Z(Fΐ Γ) is metrizable. This concludes the proof
of Lemma 5.

Proof of Theorem 1. To complete the proof, notice that Fr G is
a separable compactum from $ and, therefore, has property σ (Theorem
4). On the other hand, by Lemma 5, FrG has also property μ.
Thus, by Theorem 2, Fr G is a metrizable compactum.

Proof of Corollary 1. Let Jeffi and let G be an open jPσ-set in
X with the property that there is a finite collection of connected open
sets E7i, , Un in Cl G such that

( 4 ) Fr G c U, U U Un .

Clearly, Cl [7* belongs to $ and is connected. On the other hand,
(Cl Ut) Π G is an open Fσ-set dense in Cl Ui9 because Ui c Cl G implies

( 5 ) Ui c Cl [Ui ΓΊ G] c Cl [Cl (Ui) n G] C Cl Ui ,

so that

(6)
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It follows from (6) and Theorem 1 that

(7) P r [ C l ( ^ ) n G l = (Cl i7*)\G

is metrizable. Since, by (4), the sets (Cl Ui)\G, i = 1, — ,n, cover
Fr G, we conclude that Fr G itself is metrizable.

Proof of Corollary 2. Corollary 2 is an immediate consequence
of Theorem 1 and this

LEMMA 6. If XeB is separable, there exists a compactum X' eB
and an open Fσ-set Ga X' dense in X' and such that X — Fr G.
Moreover, if X is connected, so is Xf.

Proof. Let /: K —> X be a map of an ordered compactum K onto
X and let D = {t19 , tn, •} be a countable subset of K such that
f(D) is dense in X. Let if' be a new ordered compactum obtained
from K by replacing each point tne D by a, copy In of the real line
segment J. We denote the two end-points of In by t'n and t" and its
interior by 1%. K\D can be considered as a subset of K'.

We now define a map

( 8) f':K'-+Xx I

as follows. For teK\D, let

(9) / ' ( « ) = / ( ί ) x θ ,

let

and let / ' | In be any map of In onto

(11) /(«.) x [θ, i ] ,

such that the end-points t'n, t" are the only points of In which are
mapped into f(tn) x 0. It is easy to verify that f':K'-+Xx I is
continuous.

We now define X' by

(12) X' = f'{K') dXxI.

X' e St and

(13) XxO = f'(κf\\J I*) c X' .
\ «=1 /

Clearly, the set
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(14) G = X'\(X x 0) = U f'HΆ

is an open i<Vset in X' and

(15) Fr G = X x 0 ,

because Cl Gz)f(D) x 0 and, therefore,

(16) Cl G =) Cl [f(D) x 0] = X' .

If X is connected, so is X', because it consists of X x 0 and
arcs (11) which meet X x 0 .

6* Local peripheral metrizablity*

LEMMA 7. Lei X be a continuous image of an ordered compactum.
If X is locally connected, then it is locally peripherally metrizable.

Proof. If F c l ί s a closed connected set and Uc X is open and
Fa U, then one can easily find (using regularity and local connected-
ness of X) an open connected set V in X such that

(1) FdVczCWczU.

Using this argument repeatedly, one can find, for each point xoe X
and each open neighborhood U of x0, a sequence of connected open
sets Vn, n = 1, 2, , such that

(2) ^ G F . C •.. c 7 H c C 1 7 , c 7 B + 1 c . . . c U.

Clearly,

(3 ) V = U Vn = U Cl Vn

is a connnected open i^-set in X such that

(4) xo

By Theorem 1, Fr V is metrizable, which proves that X is locally
peripherally metrizable.

THEOREM 5. Every continuous image X of an ordered compactum
K is locally peripherally metrizable.

The result follows immediately from Lemma 7 and this

LEMMA 8. Every continuous image X of an ordered compactum
K can be embedded in a continuous image Y of an ordered continuum C.
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Proof. Insert between any two consecutive points of K a copy
of the open real line interval filling thus all the gaps in K. Denote
the obtained ordered continuum by C. Consider X as embedded in a
cube /*. The map f:K—>Iκ can be extended to a continuous map
g:C^I% g\K = f. Clearly, XaY = g(C). Notice that Γ i s locally
connected and thus Lemma 7 applies.

REMARK. Local peripheral metrizability together with local con-
nectedness does not suffice for the conclusion that a compactum X
belongs to $ as the following example shows.

EXAMPLE. Let Ω = {a \ a < ω^ be the set of all countable ordinals.
Let L be the ordered continuum obtained by ordering lexicographically
the product Ω x [0,1) and adjoining a last point ωlm Let X be the
quotient space

( 5 ) X = (L x iyω, x I .

X is a nonmetrizable locally connected continuum and is locally pe-
ripherally metric. However, X does not belong to ίϊ, because no two
points separate X and every nonmetrizable continuum J e S has such
a pair of points (see Theorem 2 of [10]).

The author wishes to express his gratitude to Professor A. J.
Ward for many interesting and stimulating conversations concerning
the subject of this paper.
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