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ALGEBRAS OF GLOBAL DIMENSION ONE
WITH A FINITE IDEAL LATTICE

W. EDWIN CLARK

Let A denote a finite-dimensional (associative) algebra over
an algebraically closed field K. It is well known that A has
global dimension zero if and only if A is the direct sum of
a finite number of full matrix algebras over K. In this paper
a specific representation is given for those algebras A which
have global dimension one (or less) and have only a finite
number of (two-sided) ideals. It is shown that every such
algebra is isomorphic to a (contracted) semigroup algebra K[S]
over a subsemigroup S of the semigroup of all n x n matrix
units {βij} U {0} which (i) contains en, --,enn and (ii) contains
βij or βji whenever there are h and k such that eu, enc and
βhj, βjk are in S. Conversely, if S satisfies (i) and (ii) then
K[S] has global dimension one or less and has a finite ideal
lattice.

We use the definitions and notation of Cartan-Eilenberg ([2], VI,
2) and Jans ([11], 4). If A is a finite-dimensional algebra then A is
Noetherian and therefore 1. gl. dim. A — r. gl. dim. A. In this case one
writes gl. dim. A for this number. It is perhaps worthwhile to point
out that if A is over an algebraically closed field, then gl.dim. A is
precisely dim. A, the so-called Hochschild dimension of A (see [2],
p. 176) and [8]). In [10] Hochschild proved that dim. A ^ 1 if and
only if A is segregated in every extension, i.e., every exact sequence
of (finite-dimensional) algebras B —> A —• 0 splits. In [12] Jans gives
a structure theorem for this class of algebras. By the above comments,
for algebraically closed fields Jans' theorem is in fact a structure
theorem for algebras of global dimension one or less. Unfortunately,
however, we are unable at this time to relate the results of this paper
to those of Jans.

Harada [9] has also given a characterization of semiprimary rings
of global dimension fg 1 which is in spirit somewhat related to the
methods of this paper. But again we are unable to deduce our results
from Harada's.

On the other hand, Barry Mitchell has pointed out to the author
that part of the main theorem of this paper is an immediate corollary
of his work on the global dimension of abelian categories, see [15],
pp. 229 if. Specifically, one infers immediately from Mitchell's results
that if S is a subsemigroup of {eiά\ (J {0} which contains all eii9 then
gl. dim. K[S] ^ 1 if and only if whenever ehi, eik and ehj, ejk are in S
then either ei3 or ej{ is also in S. In this paper, however, we prefer
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to retain our original proofs since they require no special knowledge
of category theory.

For convenience we define a semigroup S of matrix units (of
degree n) to be a subsemigroup of the semigroup of all n x n matrix
units {ei3) U {0} which contains all ei{. If K is a field, K[S] will
denote the algebra of all n x n matrices over K which is spanned by
S. If n = 1 and S = {βn}, then K[S] ~ K is the semigroup algebra
of S over K; in all other cases S contains en and β22 and therefore
contains 0 = en e22. In this case K[S] is the so-called contracted semi-
group algebra of S over K, i.e., the semigroup algebra of S over K
modulo the ideal generated by the zero of S(cf. [6]).

In general K[S] has global dimension greater than one. The
smallest K[S] which is not of global dimension ^ 1 is the algebra of
all 4 x 4 matrices

in K .

Ignoring the zeros above the main diagonal, we note that the zero
in the (3, 2)-position is "surrounded by nonzero positions". To des-
cribe this situation more precisely we introduce the graph
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of a matrix units semigroup S. Clearly there is a one-one correspon-
dence between transitive, reflexive (directed) graphs on n vertices and
matrix units semigroups of degree n. We say that S (or G(S)) sur-
rounds no zeros if whenever (fe, i), (i, k) and (h, j), (j, k) are elements
of G(S), then either (i, j) or (j, i) is also in S. This is equivalent to
the existence of unique paths of maximal length joining any two
vertices. Mitchell ([15], p. 236) calls such a graph a decision free
graph.

We now state our main result:

THEOREM. Let A be a finite-dimensional algebra with identity
over an algebraically closed field K. Then A = K[S] for some semi-
group S of matrix units which surrounds no zeros if and only if
gl. dim. A ^ 1 and A has only a finite number of ideals.

The remainder of the paper will be devoted to a proof of this
theorem.

LEMMA 1. If A = K[S] where S is a semigroup of matrix units
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which surrounds no zeros, then gl. dim A <Ξ 1.

Proof. Let eζ = eii9 and let N denote the radical of A. Since
1 = Σβi and the e{ are primitive, each simple A-module has the form
AeJNeif [7]. It therefore suffices by ([11], p. 56) to show that Nβi
is protective for each i.

As in the introduction to [4], we may assume that the vertex
incidence matrix C = {ciό) {ci5 = 0 if ei3 ί S and ciά = 1 if etj ί S) has
the block triangular form

( 1 )

Cn

^ 2

Cmm f

where the diagonal blocks are square matrices each entry of which
is 1 and each of the blocks below the diagonal is either a zero block
or else has all entries equal to 1.

Let J be the set of i such that eip e Nep. Clearly, Nep is the
vector space direct sum of the KeiΊn ieJ. Let G = G(S). Set nγ =
min J and define

J, = {i: (i, nλ) e G} .

Since nλe J, (nup) e G; hence for ίeJx we have eip = ei%ieniP eNep.
Thus J i g / .

Having defined integers nγ < n2 < < nk in / and subsets
Jii i Jk of / such that for each t ^ k nt = min / — (Jλ U U J"t_i)
and Jt = {i: (i, nt)eG}, if / Φ J, U U Jk, let us define

nk+ι = min / - (Jx U U Jk)

and Jk+ί = {ί: (i, wΛ+1) GG}, AS in the case above for nx we have
Jfc+i S J By the way we chose wt for ί ^ /c, clearly ^fc+1 > nk. Since
J is finite this process must end, and so, there is an integer m such
that J = Jx U U Jm.

We now show that the J; are pair-wise disjoint. Assume that
for 8 > t, Js (Ί Jt contains a nonzero element i. Then (i, nβ) and
{i, nt) e G. Since ns1 nteJ we also have (wβ, p) and (nt, p) in G. But,
(n8, nt) % G since s > t implies that ns<£jt. Now since S surrounds
no zeros we must have (nt9 ns) in G. This implies that the vertex
incidence matrix C has a diagonal block (not necessarily one of the
Co) of the form:
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o . . .
where the three ones correspond to the edges (nt, nt), (nt, n8), (ns, ns)
and the zero represents the fact that (ns, nt) & G. But this contradicts
the fact that C has square diagonal blocks with all entries 1. Hence
we have Js n Jt = 0 .

Let now M{ = Σ{Kejp: j e JJ . We claim that Mt is a left ideal
of A. To show this it suffices to show that if ekj e S where j e J{1

then keJ{: Note that j e J{ if and only if (j, n{) e G; hence if
(k, j) e G and j eJt, by transitivity (k, n{) e G and so keJίt Since the
Ji are pairwise disjoint we have Nep = Mι 0 « 0 Mm.

Observe next that Aen. = Σ{Kejn.: j e J.}. Now one easily verifies
that the mapping φ: M{ —> Aen. defined by φ(ΣaόeJV) = Σaάeάni is an A-
isomorphism. It follows that Nep is isomorphic to the direct sum of
the protective A-modules Aen., and is therefore itself projective. This
completes the proof of the lemma.

One easily verifies that every ideal / of a matrix units semigroup
algebra K[S] is generated by I n S and so K[S] has only a finite
number of ideals. This fact with Lemma 1 proves one half of our
theorem.

Recall that a ring R is called hereditary if every left ideal is
projective. It is well known that I. gl. dim. R <̂  1 if and only if R
is hereditary (see [2], p. 112). If XQR, let l(X) denote the left
annihilator of X in R. After Kaplansky [13], we call a ring Baer
if it has an identity and the left annihilator of every subset is gen-
erated by an idempotent.

LEMMA 2. A hereditary, Artinian ring (with identity) is a Baer
ring.

Proof. If a e R, then, Ra is a left ideal of R and therefore pro-
jective. Hence R —^-> Ra —* 0 splits where φ(r) = ra. This says that
ker φ — l(a) is a direct summand of RR. If RR = L 0 i(α), 1 = / + e
where feL,eeL,ee i(α), then l(a) = Re and β2 = e.

By an argument due to Maeda [14] (which we include for the
convenience of the reader) we can extend this to two elements: Let
a,beR. If l(a) = Re and l(b) = Rf where e2 = e, p = /, then l(a) =
ϊ(l — e) and i(6) = 1(1 — / ) . As shown above there is an idempotent
# such that l(e(l — /)) = Rg. It is now straightforward to show that
(gef = #e and that ϊ(α,6) = 1(1 — e, 1 — /) = ϋ!#β.

Now since R is Artinian one show easily that l(X) = Ae for any
subset X of R.
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DEFINITION. Let S be a semigroup of matrix units. By a twisted
matrix units semigroup algebra of S over a field K we shall mean
an algebra Kφ[S] which has a basis {a*/, (ΐ, j)eG(S)} which multiplies
as follows: aiόajk ~ φ(i, j , k)aik where <p(ί, j , k) is a nonzero element
of K; all other products are zero.

In case ψ = 1 (when defined), we clearly have that Kφ[S] = K[S]
where K[S] is the (contracted) semigroup algebra of S over K.

The following lemma follows immediately from results in [5],
however, for the sake of completeness we give a proof here.

LEMMA 3. Let A be a finite dimensional algebra over an alge-
braically closed field K. If A is Baer and has a finite ideal lattice
then A is a twisted matrix units semigroup algebra over K.

Proof. First we note that if A is Baer and if e is an idempotent
in A, then eAe is Baer (see [14]). Hence, if e is primitive then eAe
has only one idempotent and therefore the left annihilator of every
nonzero subset is zero. This implies that the radical of eAe is zero
and that eAe is a divisor ring. Since K is algebraically closed we
have then that eAe = Ke.

Now let 1 = Σβi where {β<} is a family of pairwise orthogonal
idempotents. Let us first show that if eixeύyek — 0, then βtXβj = 0 or
etyek = 0: Suppose eάyek Φ 0 and let Af, f2 = /, be the left annihilator
of βjyek. Now fe/yek = 0 and hence e^fe^βj, = 0; since eύfeύ e Keά we
must have esfe3 = 0. On the other hand, e{xeά e Af and so e^βy =
eiXβjf. Multiplying on the right by eά we obtain e{xeά ~ 0.

Now it is clear that to complete the proof of this lemma it suffices
to show that e{Aeά has dimension <£ 1 over K for all i,j. Since eAe
has finite ideal lattice for all e2 — e, it suffices to assume that 1 —
0i + e2. First suppose that e1Ae2 Φ 0 and e2Aex Φ 0. Then, as shown
above, e2Ae1Ae2 Φ 0 and therefore e2AeιAe2 — e2Ae2. Hence, there
exist e21 e e2Aex and e12 e exAe2 such that e21β12 — β2. Now, if x21 e ezAet

we have x21 = e2x21 — e2le12x2l = β^iae^ = ae2ί. Thus, \e2Aeγ\ K] = 1.

Similarly, \e^Ae2\ K] = 1. In the remaining case assume that eγAe2 = 0.
It follows that A — Keλ + Ke2 + e2Ael9 One easily shows that any
iΓ-subspace of e2Aeγ is an ideal of A. Since K is infinite and A has
only finitely many ideals we can only conclude that \e2Aeγ\ K]^l.

Lemma 3 together with Lemma 2 tells us that a finite-dimensional,
hereditary algebra with finite ideal lattice over an algebraically closed
field K is isomorphic to a twisted matrix units semigroup algebra
KΨ[S]. Thus, to complete the proof of our main result we need only
show that such an S surrounds no zeros and that Kφ[S] = K[S],

LEMMA 4. Let S be a semigroup of matrix units such that
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A = Kφ[S] is Baer. Then, S surrounds no zeros.

Proof. Let apq, (p, q)eG = G(S) be a basis for A satisfying the
conditions in the above definition. Clearly we may choose app to be
idempotent. We write ep = app.

Now suppose that S does surround a zero. Then there exist
(h, i), (i, fc), (λ, j), (j, A;) e G, with (i, j) and (j, i) not in G. Let β =
f̂e + £; + βi + βΛ. Since A is Baer, eAe is also (see [13]). But eAe

is not Baer. To see this observe that eAe has a basis consisting
exactly of the elements of the array:

Note that (p, q)eG if and only if epAeg Φ 0. Now suppose that
ekAeι Φ 0, then aki is a basis element of A. But then

0 Φajkd^eejAei .

Hence (j, i) e G, contrary to our assumption. Similar arguments show
that the basis elements apq in the above array are indeed the only
ones which survive in eAe. It follows easily that eAe is isomorphic
to the algebra of all 4 x 4 matrices

xn 0 0

a? =
&S1 0 £33 0

s $ 4 1 X42 43 44

where cĉ  e if. But the left annihilator of the element α; where
x21 = χzι = 1 and all other entries are zero is not generated by an
idempotent. This establishes the lemma.

LEMMA 5. Let S be a semigroup of matrix units which sur-
rounds no zeros. Then, Kφ[S] = K[S].

Proof. Let A = KΨ[S], As in the proof of Lemma 1, we assume
that the vertex incidence matrix C of the graph G of S has the
normalized form (1). If C« is an n< x n{ block, then A/radA is isomor-
phic to the direct sum of algebras Kφ.[ ϊ^] where Ti is the semigroup
of all matrix units of degree n{. One shows easily that

and hence that



ALGEBRAS OF GLOBAL DIMENSION ONE 469

A/rad A = K[S]/md K[S] .

We conclude from this that if the reduced (basic) ring of A is isomor-
phic to that of K[S], then A is isomorphic to K[S] (see [1]).

Now from the block triangular form of C, it is clear that the
reduced ring of A is of the form Kφ(S') where S' is a semigroup of
matrix units whose associated graph is strictly triangular (not just
block triangular). Thus, without loss of generality we may assume
that S = S' and, hence that (ί,j)eG(S) implies that j <; i.

We now show that if {ai3 : (i,j)eG = G(S)} is a basis for A (which
satisfies the conditions in the above definition) then each ai3 may be
replaced by a nonzero if-multiple a'i3 of ai3 so that the basis

together with zero is a semigroup (necessarily isomorphic to S).
First we choose α« so that α« is idempotent. Clearly this can be done
since α« = a(i, i, i) au and a(ί, i, i) Φ 0. Now replace ai3 by α ^α^α^ ,
so that without loss of generality we may assume that a2

it = au and

GuUij — aija33 — aij*

Let now m denote the degree of S and let n < m. Assume
inductively that we have replaced all ai3 for ί < n by nonzero K-
multiples a'i3 so that the set T of all a'i3>, (i, j) e G and i < n, together
with zero is a semigroup. Let the "w-th row" of S consist of

Assume that we have replaced the last s + 1 elements of this row by
< ί s , , < v <n = Unn, so that Ts = T U {< ίβ, , a'nil, <w} satisfies the
following condition:

(*) // i, ft G {i, , i19 n}, then a'nja'jk = a'nk .

Choose α^<βJ_i = af

nta'tisΛι, if there exists t e {i8, , it} such that
(ί, iβ+1) G G. If there is no such t, let <C β+1 = αn<β+1 We now claim
that T s + 1 satisfies (*) with s + 1 replacing s: Since 0", ft) G G implies that
ft ^ j , it suffices to show that for any j such that n > j > i8+1 and
<i, is+i) eG we have < y α ^ s + i = a'nta'tia+1j: (The case where < , s + i = αnis+i

is clear). This means that (n,j),(j,i8+1) and (w, ί), (ί, iβ+1) are in G.
Since S surrounds no zeros we must therefore have (j, t) or (£, ̂ ') in
<?. Assume that (ί, j) e G then a«8 + l = α'tjα'jia+l and hence by our induc-
tive hypotheses α'ntα'tia+1 = a5»ta{iaj<e+l = < X ί s + 1 . A similar argument
takes care of the case (j, t) e G. This shows that T s + 1 satisfies (*).
By induction Tp satisfies (*) with s = p, i.e., Tp together with zero in
a semigroup. Now it is clear that by induction on n, we can choose
{α'i3'} as desired. This completes the proof of the lemma and therefore
of the theorem.
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REMARKS. Examples show that the situation gets much more
complicated if one weakens any of the hypotheses of our main theorem.
On the other hand, the only place that the algebraic closure of K is
needed is in Lemma 3. That it is essential there is shown by the
real algebra of all 2 x 2 matrices of the form

*1

where z{ are complex and t is real.
A partial generalization in one direction may be obtained as follows:

Let A be finite-dimensional over an algebraically closed field K. In-
stead of assuming that A is hereditary assume the weaker condition
that gl. dim. A/N2 < oo. Stephen Chase [3] has shown that this is
equivalent to the existence of a complete set of mutually orthogonal
idempotents eu - -, en such that βiNeά = 0iίi^j. Now, if we assume
further that A has a finite ideal lattice, a slight extension of the
argument in the proof of Lemma 3 (above) shows that [e^e^R] ^ 1
for all ΐ, j . Thus, A has a basis tiό = eitifii such that

Ujtjk = φ(ί, j , k)tik

where φ(i, j , k) is some element (possibly zero) of K. However, even
if we assume that φ(i, j , k) Φ 0 (when defined) it is in general im-
possible to replace <p(i9 j , k) by 1 and get an isomorphic algebra (see
the example in [5]). It is, of course, quite possible that one might
be able to find reasonable necessary and sufficient conditions on the
graph G = {(i, j): e{Ae5 Φ 0} and the function φ in order that A have
global dimension ^ n.

We wish also to point out that Lemma 1 together with Lemma 2
yields a new and somewhat less complicated (modulo basic results on
the global dimension of Artinian rings) proof of our theorem in ]4]
that for a divisor ring K, K[S] is a Baer ring if S is a semigroup of
matrix units which surrounds no zeros.
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