PACIFIC JOURNAL OF MATHEMATICS
Vol. 23, No. 3, 1967

GENERALIZED FRATTINI SUBGROUPS OF
FINITE GROUPS
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The purpose of this paper is to generalize some of the
fundamental properties of the Frattini subgroup of a finite
group. For this purpose we call a proper normal subgroup H
of G a generalized Frattini subgroup if and only if G = N, (P)
for each normal subgroup L of G and each Sylow p-subgroup
P, p is a prime, of L such that G = HNy(P). Here Nq(P)is
the normalizer of P in G. Among the generalized Frattini
subgroups of a finite nonnilpotent group G are the center, the
Frattini subgroup, and the intersection L(G) of all self-
normalizing maximal subgroups of G. The product of two
generalized Frattini subgroups of a group G need not be a
generalized Frattini subgroup, hence G may not have a unique
maximal generalized Frattini subgroup.

Let H be a generalized Frattini subgroup of G and let K
be normal in G. If K/H is nilpotent, then K is nilpotent.
Similarly, if the hypercommutator of K is contained in H,
then K is nilpotent. We consider the Fitting subgroup F(G)
of a nonnilpotent group G, and prove F'(G) is a generalized
Frattini subgroup of G if and only if every solvable normal
subgroup of G is nilpotent.

Now let H be a maximal generalized Frattini subgroup
of a finite nonnilpotent group G. Following Bechtell we
introduce the concept of an H-series for G and prove that if
G possesses an H-series, then H = L(G).

2. Notation The only groups considered here are finite.

If H is a subgroup of a group G, then H’ is the commutator

(derived) subgroup of H,

H®(k > 1) is the k-th commutator subgroup of H,

H* = x'Hx for each xz €@,

Z(H) is the center of H,

Z*(H) is the hypercenter of H(i.e. the terminal member of the
upper central series of H), D(H) is the hypercommutator of H(i.e. the
terminal member of the lower central series of H),

#(H) is the Frattini subgroup of H,

F(H) is the Fitting subgroup of H(i.e. the largest nilpotent normal
subgroup of H),

N, (H) is the normalizer of H in G.

If H is a subset of a group G, then denote by {H ) the subgroup
of G generated by H.
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In a group G, L(G) is the intersection of the self-normalizing
maximal subgroups of G and R(G) is the intersection of the normal
maximal subgroups of G; in each case one sets L(G) or R(G) = G if the
respective maximal subgroups do not exist properly (see [1]).

3. Generalized Frattini subgroups. This section will be given
to defining a generalized Frattini subgroup of a group and to the
development of some properties of this type of subgroup.

DEFINITION 3.1. A proper normal subgroup H of a group G is
called a generalized Frattint subgroup of G if and only if G = N,(P)
for each normal subgroup L of G and each Sylow p-subgroup P, p is
a prime, of L such that G = HNy(P).

We note that every proper normal subgroup of a nilpotent group
G is a generalized Frattini subgroup of G. This is not the case if G
is only supersolvable. For example, if S; is the symmetric group of
three symbols, then the alternating subgroup A, is not a generalized
Frattini subgroup.

THEOREM 3.1. Let H be a generalized Frattint subgroup of a
group G.

Then

(a) H 1is nilpotent,

(b) A normal subgroup of G contained in H 1s a generalized
Frattint subgroup of G,

(¢) H¢(G) is a generalized Frattini subgroup of G,

(d) HZ(G) is a generalized Frattini subgroup of G, whenever
it is a proper subgroup.

Proof. (a) Let P be a Sylow p-subgroup of H where p is a fixed
prime. Because of Theorem 6.2.4 of [4], G = HN4(P), hence G = N (P).
Since all the Sylow subgroups of H are normal, H is nilpotent.

(b) Let K be a normal subgroup of G contained in H, L a normal
subgroup of G, and P a Sylow p-subgroup, » is a prime, of L such
that G = KN4(P). Then G = HNy(P), hence G = Ny(P).

(¢) This is an immediate consequence of Theorem 7.3.8 of [4].

(d) Since Z(G) is contained in the normalizer of every subgroup
of G, HZ(G) is a generalized Frattini subgroup of G.

We now note that the intersection of generalized Frattini subgroups
of a group G is a generalized Frattini subgroup of G. However, this
is not true in general when we consider products of subgroups (see
Example 3.3).

As a consequence of Theorem 3.1 we have the following.

COROLLARY 3.1.1 The Frattint subgroup of G is a generalized
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Frattini subgroup of G. Moreover, if G is nonabelian, then Z(G) is
a generalized Frattini subgroup of G.

The following result is a generalization of Theorem 7.4.8 of [4].

THEOREM 3.2. Let H be a generalized Frattint subgroup of G.
If K is a mormal subgroup of G and K/H is nilpotent, then K is
nilpotent.

Proof. Let K be a normal subgroup of G such that K/H is
nilpotent. Let P be a Sylow p-subgroup of K for a fixed prime p.
Then HP/H is a Sylow p-subgroup of K/H, hence HP/H is a charac-
teristic subgroup of K/H. Therefore, HP/H is normal in G/H, and
so HP is normal in G. Since P is a Sylow p-subgroup of HP, G =
(HP)Ny4(P) because of Theorem 6.2.4 of [4]. Hence G = HN,P),
which implies G = N4 P). Since all the Sylow subgroups of K are
normal, K is nilpotent.

Let H be a generalized Frattini subgroup of G. Then by Theorem
3.1 F(G) contains H. From Theorem 3.2 F(G/H) = F(G)/H, hence we
obtain the following corollaries.

COROLLARY 3.2.1. If H s a generalized Frattini subgroup of G,
then F(G/H) = F(G)/H.

COROLLARY 3.2.2. Let H be a generalized Frattini subgroup of
G. Then G is nilpotent +f and only tf G/H is nilpotent

COROLLARY 3.2.3. A group G 1is nilpotent tf and only if its
commutator subgroup G’ is a generalized Frattini subgroup of G.

The next result is similar to Theorem 2.3 of [1], however it gener-
alizes Bechtell’s result.

THEOREM 3.3. Let H be a generalized Frattini subgroup of G.
If K is a normal subgroup of G whose hypercommutator D(K) is
contained in H, then D(K) =1 and K 1is nilpotent.

Proof. From Theorem 3.1 it follows that D(K) is a generalized
Frattini subgroup of G. Since K/D(K) is nilpotent, K is nilpotent
by Theorem 3.2, hence D(K) = 1.

COROLLARY 3.3.1. A proper normal subgroup K of a group G is
nilpotent if and only if its commutator subgroup K' is a generalized
Frattint subgroup of G.
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Proof. By Theorem 7.3.17 of [4], ¢(K) S 4(G). Hence the corol-
lary follows from Theorem 7.3.5 of [4], Corollary 3.1.1 and Theorem
3.3.

Our next objective of this section is to show that L(G) is a
generalized Frattini subgroup of G whenever G is nonnilpotent. We
begin with the following theorem.

THEOREM 3.4. Let H be a generalized Frattini subgroup of G
and let K be a proper normal subgroup of G containing H. Then
K/H is a generalized Frattint subgroup of G/H if and only if K is
a generalized Frattini subgroup of G.

Proof. Assume that K is a generalized Frattini subgroup of G.
Let L/H be a normal subgroup of G/H and let P be a Sylow p-subgroup,
p is a prime, of L such that G/H = (K/H)N;,,(HP/H). Then G =
KN ,HP). Let g = kx, where k€ K and « € N;,(HP). Then P*< HP.
Since L is a normal subgroup of G, P® and P are Sylow p-subgroups
of L N HP. Therefore, there is an element y of L N HP such that
P*? = P, hence 2y is an element of Ng(P). Therefore gy = k(xy) is
contained in KN,(P). Since KN.(P) contains HP, it follows that y
is an element of KN,(P), and therefore g € KN ,(P). This shows that
G = KN4(P), and hence G = Ng(P) since K is a generalized Frattini
subgroup of G. From this we conclude that HP/H is normal in G/H,
and so K/H is a generalized Frattini subgroup of G/H.

Conversely, assume that K/H is a generalized Frattini subgroup
of G/H. Let L be a normal subgroup of G and let P be a Sylow
p-subgroup, p is a prime, of L such that G = KN, P). Then G/H =
(K/H)N;;,(HP/H), hence N;,(HP/H) = G/H since HP/H is a Sylow
p-subgroup of HL/H and HL/H is normal in G/H. Therefore, HP is
a normal subgroup of G. Let P, be a Sylow p-subgroup of HP which
contains P. By Theorem 6.2.4 of [4]|, G = (HP)Ny(P,) = HNP),
hence G = N,(P,) since H is a generalized Frattini subgroup of G.
From this it follows that the Fitting subgroup F(G) of G contains P,
hence KP is a nilpotent subgroup because of Theorems 3.1 and 3.2.
Since G = KN, (P), it follows that KP is a normal nilpotent subgroup
of G.

We now show N,(P) contains KP. For let P, be a Sylow »-
subgroup of KP. Then P, is normal in G, hence P< P,. Let P, be
a Sylow p-subgroup of G containing P,. Since L is normal in G,
LN P,=P and NP, S Ny P). From this it follows that P, N,(P).
Hence KP< N (P), since KP is nilpotent. This shows G = Ng(P),
and therefore K is a generalized Frattini subgroup of G.

Because of Corollary 3.1.1, Theorem 2.2 of [1] and Theorem 3.4,
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we obtain the following theorem.

THEOREM 3.5. If L(G) is a proper subgroup of G, then L(G) is
a generalized Frattini subgroup of G.

We now give several examples that will help illustrate the theory
of this section.

ExampLE 3.1. Let Q =<a, bla* =1, a* =0, ba =a'by and let
G be the direct product of @ and S,, the symmetric group on three
symbols. Then ¢(G) = Z(G) =<a*>, L(G) =@ and F(G)=Q X A,.
F(G) is not a generalized Frattini subgroup of G. We note that L(G)
properly contains ¢(G).

ExaMpPLE 3.2. Let H = <h)> be a cyclic group of order 49 and
let G be the direct product of H and S,, where S, is the symmetric
group on five symbols. Then ¢(G) = <h">and F(G) = L(G) = Z(G) = H.
Hence F(G) is a generalized Frattini subgroup of G which properly
contains ¢(G).

Our examples indicate that the Fitting subgroup of a group G
need not be a generalized Frattini subgroup of G. However, the next
two theorems provide a necessary and sufficient condition for F(G) to
be a generalized Frattini subgroup of G.

THEOREM 3.6. If the Fitting subgroup F(G) of G is a generalized
Frattini subgroup of G, then every solvable normal subgroup of G is
nilpotent.

Proof. Let H be a solvable normal subgroup of G and let & be
the smallest positive integer such that H** = 1, Then F(G) contains
H™ hence by Theorem 3.1 H* is a generalized Frattini subgroup.
Since H*V/H™ ig abelian, H*™ is nilpotent by Theorem 3.2. Hence
F(G) contains H*", Proceeding in this way we can prove H' & F(G),
hence H' is a generalized Frattini subgroup of G by Theorem 3.1.
By applying Theorem 3.2, we see that H is nilpotent.

As a consequence of Theorem 3.6 we have the following.

COROLLARY 3.6.1. If F(G) is a generalized Frattini subgroup of
@G, then G can not be solvable.

DerFINITION 3.2, For a group G denote by S(G) the radical of G
(i.e. the unique maximal solvable normal subgroup of G).

THEOREM 3.7. Let G be a nonnilpotent group. If S(G) = F(G),
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then F(G) is a generalized Frattini subgroup of G.

Proof. Let H be a normal subgroup of G and let P be a Sylow
p-subgroup of H, p is a fixed prime, such that G = F(G)Ng(P). Then
F(G)P/F(G) is a solvable normal subgroup of G/F(G), hence F(G)P,
is a solvable normal subgroup of G. Since F(G) is the radical of G,
F(G) containg P. Hence P is a Sylow p-subgroup of H N F(G). Since
H N F(G) is a nilpotent normal subgroup, P is normal in G. Therefore,
F(@) is a generalized Frattini subgroup of G.

From Theorems 3.6 and 3.7 we have the following.

THEOREM 3.8. Let G be a monnilpotent group. The Fitting
subgroup of G is a generalized Frattini subgroup of G if and only
if it s the radical of G.

From Theorem 3.8 and the fact that a solvable subnormal subgroup
of a group G is contained in the radical of G we obtain the following
result.

THEOREM 3.9. If the Fitting subgroup of a group G is a gener-
alized Frattini subgroup of G, then every solvable subnormal subgroup
of G 1is milpotent,

A generalized Frattini subgroup of a group G is called maximal
if it is not properly contained in any other generalized Frattini
subgroup of G. We now consider maximal generalized Frattini subgroups
of a group G.

Let H be a maximal generalized Frattini subgroup of G. Then
H contains ¢(G) by Theorem 3.1. Now suppose that L(G) is a proper
subgroup (i.e. G is nonnilpotent). By Theorem 2.2 of [1] L(G)/¢(G) =
Z(G/4(@)), hence H contains L(G) by Theorems 3.1 and 3.4. We have
proved the following,

THEOREM 3.10. A maximal generalized Frattint subgroup of a
nonnilpotent group G contains L(G).

COROLLARY 3.10.1 A maximal generalized Frattini subgroup of
a nonwnilpotent group G contains the hypercenter of G.

Proof. It is sufficient to apply Theorem 2.2 of [1] and Theorem
3.10.

We conclude this section with an example which illustrates several
properties of generalized Frattini subgroups.
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ExampPLE 3.3. Let G be a group of order 84 with the following
properties:

(a) G has 28 Sylow 3-subgroups,

(b) G has a normal Sylow 7-subgroup H,

(¢) G has a normal Sylow 2-subgroup K which is isomorphic to
the Klein four-group.

We note that such a group exists (see 9.2.14 of [4]).

Then H and K are generalized Frattini subgroups of G, however
F(G) = HK is not a generalized Frattini subgroup. We also note that
both H and K are maximal generalized Frattini subgroups of G. Hence
a maximal generalized Frattini subgroup need not be unique. Finally,
L(G) = ¢(G) = Z(G) = 1, and therefore a maximal generalized Frattini
subgroup may contain the intersection of the self-normalizing maximal
subgroups properly.

4. Small subgroups. This section is devoted to the study of
generalized Frattini subgroups which are small in a group G.

DEFINITION 4.1 A proper normal subgroup H of a group G is said
to be small in G if and only if G = K for each other normal subgroup
K of G such that G = HK (see [2]).

Let H be a small subgroup of G which is contained in L(G).
Suppose R(G) does not contain H. Then there exists a normal maximal
subgroup B such that G = HB, which implies G = B. Hence R(G)
contains H, and therefore ¢(G) must contain H. We have established
the following two results.

THEOREM 4.1. Let H be a proper normal subgroup of G which is
contained in I(G). If H is small in G, then é(G) contains H.

THEOREM 4.2. If L(G) is small in G, then L(G) = ¢(G).

We note that Example 3.1 shows that the assumption that L(G)
is small in Theorem 4.2 is needed.

Since the center of a group G is contained in L(G), we obtain the
following result from Theorem 4.1.

THEOREM 4.3. If the center Z(G) is small in G, then Z(G) s
contained in ¢(G).

Let H be a generalized Frattini subgroup of G. Suppose that H
is small in G and every proper normal subgroup of G/H is nilpotent.
Let K be a proper normal subgroup of G. Then HK is also a proper
normal subgroup of G. Hence HK/H is nilpotent, and so HK is
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nilpotent by Theorem 3.2, Therefore K is nilpotent. We have proved
the theorem which follows.

THEOREM 4.4, Let H be a generalized Frattini subgroup of G
which 1s small in G. If every proper normal subgroup of G/H is
nilpotent, then every proper normal subgroup of G is nilpotent.

Since an extention of a solvable group by a solvable group is
solvable, we obtain the following result from Theorem 4.4 and Corollary

3.6.1.

COROLLARY 4.4.1. Let G' be a proper subgroup of G and let H
be a generalized Frattini subgroup of G. If H is small in G and
every proper normal subgroup of G/H is nilpotent, then G is solvable
and F(G) is not a generalized Frattini subgroup of G.

We note that in Corollary 4.4.1 it is necessary to assume G’ is a
proper subgroup of G. For we need only to consider the alternating
group on five symbols.

5. H-series. Let H be a (fixed) maximal generalized Frattini
subgroup of G. In this section we define an H-series for G and develop
some of its elementary properties. We note that part of this section
is closely related to Bechtell’s results on L-series in |1].

DerFINITION 5.1. Let H be a maximal generalized Frattini subgroup.

Then
(a) an H-sertes for (G is a series

H:BOQB12B22 e QBJQ e

such that B;is normal in G and B;/B;,, € Z(G/B,,) fori = 0,1, 2, ...,
(b) the upper H-series is a series

H=H2H=2---2H;,2:-.

in which [H; ,,G] = H;, for 1 =1,2,..., and
(¢) the lower H-series is a series

1:Z0gzlg RS Z]g cee

in which Z,/Z, , = Z(G/Z,.,), for j =1,2, ..., (i.e. the lower H-series
for G is the upper central series in the sense of Scott [4]).

REMARK 5.1. If one replaces H by L(G) in the above definition,
then we obtain the concepts of L-series, upper L-series and lower L-
series given by Betchell [1]. However, we mention that L(G) need
not be a maximal generalized Frattini subgroup.
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Let H be a maximal generalized Frattini subgroup of G. Then
we say that G possesses an H-series if there exists an H-series for
G which terminates with the identity subgroup.

REMARK 5.2. A group G is said to possess an L-series if it has
an L-series which terminates with the identity subgroup (see [1]).

From Theorem 6.4.1 of [4] we have the following.

THEOREM 5.1. Let H be a maximal generalized Frattini subgroup
of G. If G possesses an H-series H= B,2B, 2 -+ 2B, =1, then
B,2H;, for j=0,12,..., k, and H, ;&SB,_;SZ;, for j=
0,1,2, .+, k.

Now let H be a maximal generalized Frattini subgroup of non-
nilpotent group G. By Theorem 3.10 and Theorem 2.2 of [1], it follows
that H2 L(G) 2 Z*(G). Hence, if G possesses an H-series, then H =
L(G) = Z*(G) by Theorem 5.1. We have established the following.

THEOREM 5.2. Let H be a maximal generalized Frattini subgroup
of a nonnilpotent group G. If G possesses an H-series, then H =
L(G) = Z*(@).

The fact that G possesses an H-series in Theorem 5.2 cannot be
omitted.

ExamPLE 5.1. Let G be the group of order 84 presented in
Example 3.3 and let N be a cyclic group of order 5. Let M be the
direct product of G and N. Then ¢(M) =1 and therefore L(M) =
Z(M) = N. We also note that H and K generalized Frattini subgroups
of M, however HZ(M) and KZ(M) are maximal generalized Frattini
subgroups of M which properly contain L(M) = Z(M). Now let W =
HZ(M). Then M does not possess a W-series and W =+ L(M). How-
ever, since L(M) = Z(M), G possesses an L-series by Corollary 3.1.1
of [1].

The converse of Theorem 5.2 is not true in general.

EXAMPLE 5.2. Let G ={a,bla’=b*=baba=1). Then F(G)={a),
L(G) = ¢(G) = <a*>, and Z*(G) = Z(G) =1. However, L(G) is a maximal
generalized Frattini subgroup of G.

We conclude this section with two corollaries to Theorem 5.2,

COROLLARY 5.2.1. Let F(G) be a generalized Frattint subgroup
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of G. If G possesses an F(G)-series, then F(G) = L(G) = Z*(G).

Proof. Inthiscase F(G)is a maximal generalized Frattini subgroup,
hence the corollary follows from Theorem 5.2.
From Corollary 5.2.1 and Theorem 4.2 we have the following.

COROLLARY 5.2.2, Let F(G) be a generalized Frattini subgroup
of G. If F(G) is small in G and G possesses an F(G)-series, then
F(G) = ¢(G).

6. Remarks. In [3] Huppert proved the following theorem: A
finite group G is supersolvable if and only if F/¢(G) is supersolvable.
Hence one might raise the following question: If H is a generalized
Frattini subgroup of G and G/H is supersolvable, then is G super-
solvable? The answer to this question is no in general. For let G
be the group of order 84 given in Example 3.3 and let H be the Sylow
2-subgroup of G. Then H is a generalized Frattini subgroup and
G/H is supersolvable. However, G is not supersolvable.

We mention that one can prove the following using results of
Huppert [3]. If L(G) is a proper subgroup of G and G/L(G) is super-
solvable, then G is supersolvable.

In a later paper the authors will study those groups for which
Huppert’s result is true whenever generalized Frattini subgroups are
considered instead of the Frattini subgroup.
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