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A WILD CANTOR SET IN THE HILBERT CUBE

RAYMOND Y. T. WONG

Let En be the Euclidean w-space. A Cantor set C is a set
homeomorphic with the Cantor middle-third set. Antoine and
Blankinship have shown that there exists a "wild" Cantor set
in any En for n ^ 3, where "wild" means that En - C is not
simply connected. However it is also known that no "wild"
Cantor set (in fact, compact set) can exist in many infinite
dimensional spaces, such as s (the countably infinite product of
lines) or the Hubert space l2. A result of this paper provides
a positive answer for a generalization of Blankinship's result
in the Hubert cube.

If X is a space, we denote by Xn the space Π?=3 X% and X°° the
space ΠΓ=i X% with X{ = X Let τn denote the projecting function
of X°° onto Xn and πn the projecting function of X°° onto Xn. Let
J, J denote intervals [— 1,1], (— 1,1) respectively. The Hubert cube
is the space J°° under the metric p(x, y) = Σ;>i(l χι ~ Vi I)/2*- Hubert
space, l2, is the space of all square summable sequences of real
numbers with metric d((Xi), (#<)) = τ/[ΣΓ=i(^ - Vi)2]- The space JΓ°° is
also denoted by s. Let E% = ΠΓ=i Ei be the Euclidean π-space.

A Cantor set is a set homeomorphic with the Cantor middle-third
set. The existence of a Cantor set C in E* (n 5> 3) such that En -
C is not simply connected was first demonstrated by Antoine [4] in
1921 and constructed by W. A. Blankinship [5] in 1951. It is known
that every Cantor set is s (or in l2) must be tame, in the sense that
its complement in s (or in l2) is topologically as nics as the space
itself. In fact it has been proved (by V. Klee in the case of l2 [9]
and by R. D. Anderson [1] in the case of s, using Klee's method)
that if if is a compact set in X (for X — s or ϊ2), then X — K ^ X.
The question as to whether a finite dimensional closed set can leave
the Hubert cube multiply connected (in particular, whether a Cantor
set can have this property) was then raised in [5] by Blankinship
and was also later mentioned in [7] by Klee. In this paper we shall
give such a question a positive answer by constructing a Cantor set
C in the Hubert cube J°° such that J°° — C is not homotopically
trivial. In fact, we shall apply the result of Blankinship [5] to show
that J°° — C has nontrivial lst-Homotopy group. We remark that
such a set C cannot be constructed as a subset of j°°. Note that
Anderson [1] (by using Klee's method) proved that any Cantor set C
(in fact, any compact set) in j 0 0 can be carried into an end-face, say
Kγ — {x e J°° I πx(x) = 1}, by a homeomorphism on J°°. It is quite clear
that the complement of any Cantor subset (in fact, any compact subset)
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of Ki in J°° is homotopically trivial, therefore, if the complement of
C in J°° is to be homotopically nontrivial, C must, in a sense, join
various end-faces of J°°.

2* Some notation and lemma* All homeomorphisms concerned
are assumed to be geometric homeomorphisms, and when a home-
omorphism has domain in En, it is assumed to be linear. Two subsets
of En are similar if they are homeomorphic under some homeomorphism.
Let Δ denote the boundary of the unit square in E2. A *-circle is a
set homeomorphic to A. An %-tube, n ^ 3, is a set homeomorphic to
the product of a circular 2-cell with (n — 2) *-circles.

We shall choose a fixed set of positive real numbers ru r2,
with the properties that (1) n > 1 and (2) rn+1 > 2(ΣLin). Let L{ =
[r, = 1, r, + 1] c Et and 2/ = Π?=i U x K + i , rΛ+2> •)• We shall
regard £7" as a subset of £ f w + 1 by considering En as £ ^ 0 .

LEMMA 1. If X is a Hausdorff space and Au A2, is a decreas-
ing sequence of compact subsets of X such that each Aι is dense in
itself, then UΓ=î » ^s dense in itself.

Proof. If x is an isolated point of ΠΓ=i^i, then for some i, x is
an isolated point of Aif contrary to the hypothesis.

3* Brief outline of the construction* The construction is an
inductive modification of the construction by Antoine [4] and by
Blankinship [5]. The Cantor set C will be the intersection of a
decreasing sequence of compact subsets Ku K2, of the Hubert cube
L°° = ΠΓ=i£; For each n ^ 3, Kn will be the product of a compact
subset K'n of Ln with ΠΓ=»+i Li- Kl is the intersection of a simple
chain of linking 3-tubes of E5 with ZΛ K{ will be contained in Kζ x
L4 and is the intersection of a simple chain of linking 4-tubes of E4

with L4 and so on.

4* Construction of if3*

DEFINITION. Let r, s be positive integers and dr an arbitrary
real number. Let S be a compact subset of £roo(= Π" ι ̂ ) such that
πr(S) = dr. We say S is the set generated by rotating S about the
hyperplane xr = dr and xs = 0 if

« _ (a; G # - : 3?/ G S 3 (xr, x8) e Bd([dr - y8, dr + ys] x [ - y8, ys])

( and Xi = yi for i Φ r, s

where [dr - yt, dr + ?/sl c Er,[- y8, ys] c E8.
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The following Lemma is evident:

LEMMA 2. Suppose S is the set defined above and πs(S) > 0,
then S is homeomorphίc to the product of S with a *-circle.

DEFINITION. Let

T2 = {x e E~ : (x, - n) 2 + (x2 - r2)
2 ^ ( — Y and xt = r< for i ^ 3}

Λ = {x e E- : (x, - n) 2 + (x* ~ r2)
2 = (~γj and x{ = r< for i ^ 3} .

For n ^ 3, define T% inductively to be the set generated by rotating
Tn~ι about the hyperplane ajΛ_1 = 0, a;n = rn.

LEMMA 3. For n :> 2, min τr%(Γ%) ^ 1.

Proof. It is clear for % = 2. For n Ξ> 3, it follows from the
fact min πn(Tn) = rn — (1/4 + r2 + + rw_!) and from the hypothesis
of r{.

LEMMA 4. For n ^ 3, Tw is αw n-tube in En.

Proof. τr2(T2) > 0 by Lemma 3. Then by Lemma 2, Γ is a 3-
tube. Inductively, Tn is an n-tuhe.

LEMMA 5. For n^3,TnΠLn = τ2(T2) x Π?=s U x (rn+1, rn+2f . . . ) .

Proof. This is a consequence of Lemma 3.

Let {ίj}|=i be a chain of cylically linked disjoint 3-tubes contained
in the interior of Γ3 and looping once around the axis of T3. We
assume (1) they are all similar to T3, (2) I = 0 (mod 4) and I is large
enough so that each t\ can be regarded as the set generated by ro-
tating a small circular 2-cell t\ along a small *-circle 4i9 (3) diam(^) <
l/3(diam T3) for all i, and (4) Only two members of {£3}Li intersect
Bd(L3)(one in each side) and the intersection of each such t\ with Bd
(KB) is exactly two disjoint 2-cells. Let A3 = U<=i *<, Ki = 4 3 ίl L

3 and

κ3 = Kζ x πr= 4 Lim

5. Construction of K4, K6, ••• . For the purpose of simplicity,
we shall give only the construction of iΓ4 and assert that for n ^ 5,
Kn can be inductively constructed.

Step 1. For each ί, let hi be a (linear) homeomorphism of T3
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onto t\. Hence {ί?y = /^(ίj)}^ is a similar chain of cyclically linked
disjoint 3-tubes in t\. We require that each hi is so chosen that (1)
if t\ is a member that intersects Bd(L3), then only two members of
{tlj}ι

j==1 intersect Bd(L3) and the intersection of each such member with
Bd(L3) is exactly two disjoint 2-cells and (2) d i a m ^ ) < (l/32)diam(T3)
for all ij.

Step 2. For each i,j, let t\5 be the 4-tube in T4 generated by
rotating i\ά about planes x3 = 0, x4 = r4. We now regard each t\ό as
the set generated by rotating a small 2-cell t\5 along a small *-circle.
We assume further that t\5 is contained in L3 whenever ί̂  intersects
ZΛ Let ??,- be the set generated by rotating t\ά about planes x2 = 0,
£* = n . Then ί̂  can be regarded as the geometric product of t\ά

with Ai5. tlj is a 3-tube. Let hi5 be a linear homeomorphism of T3

onto ??i# Let t\jk = hi5(tk), k = 1, 2, , I. We require each hi5 is so
chosen that (1) if t2

iS c L3, then only two members of {fijk)
ι

k=1 intersect
U x Bd(L4) (one in each side) and the intersection of each such
member with U x Bd(L4) is exactly two disjoint 2-cells and (2) diam
(Ujk) < (l/3)(diam T3). Let t\jk denote the geometric product of fijk

with Ai5. Let A, = U! ,;,*=i %», Kl = A Π L4 and K4 = K{ x ΠΓ=B i * .

6. THEOREM 1. Lβ£ C = ΠΓ=s^ T^e^ C is a Cantor set in

Proof. It follows from the construction that K3, iΓ4, is a
decreasing sequence of compact subset of Lr and each K{ is dense in
itself. Hence C is dense in itself by Lemma 1. Furthermore, each
Ki is a finite union of disjoint compact subsets whose diameters are
uniformly small and tend to zero as i —• 00. We conclude then that
C is a compact zero-dimensional space which is dense in itself, hence
is a Cantor set.

THEOREM 2. If F is a mapping of AQ x I into Ln (n >̂ 3) such
that F I ΛOXO = identity on z/0 and F(AQ x 1) is a point, then F(AQ x I)f]

Proof. The proof is due to [5]. Basically Blankinship had
constructed a Cantor set C in AΛ such that C? links z/0 in En, hence
An also links AQ in 2£Λ. As a consequence, JSΓή = i Λ ίl I M links Ao in

THEOREM 3. L°° — C has nontrίvial Ist-Homotopy group.

Proof. Let F be a mapping of Jo x / into L°° such that î 71 JQX0 =
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identity on ΔQ and F(Δ0 x 1) is a point. For each n :> 3, τn(F) is a
mapping of Δo x I into Ln satisfying (τnF)jQXQ = identity on J o and
(τnF)(Δ0 x 1) is a point. Hence by Theorem 2, (τnF)(Δ0 x I) Γ) K'n Φ
φ. This implies F(Δ0 x I) Π Kn Φ φ, hence F(J0 x /) Π C ^ ^.

THEOREM 4. There exist two Cantor sets in the Hίlbert cube
such that no homeomorphism of one onto the other can be extended
to a homeomorphism on the whole Hubert cube.

Let Li = Int(L,) and let (L)~ = IL~=iA. Let VL = K'n n Int(I/)
and Vn = Fή x ΠΓU+i-£; Then each F w is a closed subset of (L)°°
and hence Co = ΠΓ=3 Vn is both zero-dimensional and closed in (L)°°.
By similar reasoning CQ links J o in (L)°°. Finally, using the fact s ~
(L)°° and I2~s [2], we conclude:

THEOREM 5. s and l2 contain zero-dimensional closed sets whose
complements are not simply-connected.
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