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A WILD CANTOR SET IN THE HILBERT CUBE

RaymonD Y. T. WoNG

Let E» be the Euclidean n-space. A Cantor set C is a set
homeomorphic with the Cantor middle-third set. Antoine and
Blankinship have shown that there exists a ‘“‘wild’’ Cantor set
in any E» for n = 3, where ‘““‘wild”’ means that E» — C is not
simply connected. However it is also known that no ‘“‘wild”’
Cantor set (in fact, compact set) can exist in many infinite
dimensional spaces, such as s (the countably infinite product of
lines) or the Hilbert space l;, A result of this paper provides
a positive answer for a generalization of Blankinship’s result
in the Hilbert cube.

If X is a space, we denote by X" the space [, X; and X~ the
space Iz, X; with X; = X. Let 7, denote the projecting function
of X*= onto X" and =, the projecting function of X onto X,. Let
J, J denote intervals [— 1, 1], (— 1, 1) respectively. The Hilbert cube
is the space J= under the metric o(z, ¥) = S.s.(l 2 — w:()/2°. Hilbert
space, [,, is the space of all square summable sequences of real
numbers with metric d((z;), (:)) = 1/ [S(x; — 9:)2]. The space J= is
also denoted by s. Let E" = [[, K, be the Euclidean n-space.

A Cantor set is a set homeomorphic with the Cantor middle-third
set. The existence of a Cantor set C in E™ (n = 3) such that E" —
C is not simply connected was first demonstrated by Antoine [4] in
1921 and constructed by W. A. Blankinship [5]in 1951. It is known
that every Cantor set is s (or in [,) must be tame, in the sense that
its complement in s (or in l,) is topologically as nics as the space
itself. In fact it has been proved (by V. Klee in the case of I, [9]
and by R. D. Anderson [1] in the case of s, using Klee’s method)
that if K is a compact set in X (for X = s or [,), then X — K~ X,
The question as to whether a finite dimensional closed set can leave
the Hilbert cube multiply connected (in particular, whether a Cantor
set can have this property) was then raised in [5] by Blankinship
and was also later mentioned in [7] by Klee. In this paper we shall
give such a question a positive answer by constructing a Cantor set
C in the Hilbert cube J= such that J~ — C is not homotopically
trivial. In fact, we shall apply the result of Blankinship [5] to show
that J~ — C has nontrivial 1st-Homotopy group. We remark that
such a set C cannot be constructed as a subset of J=. Note that
Anderson [1] (by using Klee’s method) proved that any Cantor set C
(in fact, any compact set) in J= can be carried into an end-face, say
K, = {redJ~|m(x) = 1}, by a homeomorphism on J*~. It is quite clear
that the complement of any Cantor subset (in fact, any compact subset)
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of K, in J= is homotopically trivial, therefore, if the complement of
C in J= is to be homotopically nontrivial, C must, in a sense, join
various end-faces of J=.

2. Some notation and lemma. All homeomorphisms concerned
are assumed to be geometric homeomorphisms, and when a home-
omorphism has domain in E*, it is assumed to be linear. Two subsets
of E* are similar if they are homeomorphic under some homeomorphism,
Let 4 denote the boundary of the unit square in E?. A *-circle is a
set homeomorphic to 4. An n-tube, » = 3, is a set homeomorphic to
the product of a circular 2-cell with (n — 2) *-circles.

We shall choose a fixed set of positive real numbers 7, 7, -+ -
with the properties that (1) », > 1 and (2) 7,,, > 237, r;). Let L, =
[r;=1,7; + 1]C E; and L" =TI, L; X ("si1y Tuszy *++). We shall
regard E™ as a subset of E"*' by considering E" as Ex"0.

LEMMA 1. If X 4s a Housdorff space and A,, A,, + -+ is a decreas-
ing sequence of compact subsets of X such that each A; is dense in
itself, then Ui, A; is dense in itself.

Proof. If x is an isolated point of M, 4;, then for some 1, x is
an isolated point of A;, contrary to the hypothesis.

3. Brief outline of the construction. The construction is an
inductive modification of the construction by Antoine [4] and by
Blankinship [5]. The Cantor set C will be the intersection of a
decreasing sequence of compact subsets K,, K,, - -- of the Hilbert cube
L= =TI~ L;. For each n = 3, K, will be the product of a compact
subset K, of L™ with Tz, L;. K] is the intersection of a simple
chain of linking 3-tubes of E® with L®. K, will be contained in K, x
L, and is the intersection of a simple chain of linking 4-tubes of E*
with L* and so on.

4. Construction of K.

DEFINITION. Let #,s be positive integers and d, an arbitrary
real number. Let S be a compact subset of E~(= [, E;) such that
7.(S) = d,. We say S is the set generated by rotating S about the
hyperplane =, = d, and x, = 0 if

g [ve E~:3yeS>(x,, x,)eBd(d, — v,, d, + ¥,] X [— Y. ys])}
and «; =y, for © = 7, s

where [d, — ¥,, d, + ¥,|C E,, [~ ¥,, ¥.| C E..
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The following Lemma is evident:

LEMMA 2. Suppose S ts the set defined above and w(S) > 0,
then S is homeomorphic to the product of S with a *-circle.

DEFINITION. Let

TP ={xecE~:(x,— 1)+ (X — 1) §<%>2 and x; = r; for ¢ = 3}

dy ={xc E=:(x, — r)" + (2, — 1) = <%>2and x; =r; for 1 = 3}.

For n = 3, define T" inductively to be the set generated by rotating
T"* about the hyperplane =, , = 0, z, = »,.

LeEMMA 3. For n = 2, min z,(T") = 1.

Proof. It is clear for n = 2. For n =3, it follows from the
fact min 7, (T") = », — /4 + 7, + -+ + 7,-,) and from the hypothesis
of Tie

LEMMA 4. For m =3, T" is an n-tube in E".

Proof. mw,(T? >0 by Lemma 3. Then by Lemma 2, T° is a 3-
tube. Inductively, T™ is an m-tube.

LEMMA 5. Formn =3, T" N L" = 7(T%) X T1s Li X (Tpi1y Tsay **)e
Proof. This is a consequence of Lemma 3.

Let {}!_, be a chain of cylically linked disjoint 3-tubes contained
in the interior of 7° and looping once around the axis of 7% We
assume (1) they are all similar to 7%, (2) I = 0 (mod 4) and [ is large
enough so that each ¢} can be regarded as the set generated by ro-
tating a small circular 2-cell ¢ along a small *-circle 4;, (3) diam(&) <
1/3(diam 7%) for all 4, and (4) Only two members of {ti}!_, intersect
Bd(L®)(one in each side) and the intersection of each such ¢ with Bd
(K?) is exactly two disjoint 2-cells. Let A, = |t ¢, K; = A, N L? and
Ks = Ka’ X H?=4 Li-

5. Construction of K,, K;, ---. For the purpose of simplicity,
we shall give only the construction of K, and assert that for n = 5,
K, can be inductively constructed.

Step 1. For each 4, let h; be a (linear) homeomorphism of 7T°
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onto t{. Hence {t}; = h,(t3)}\_, is a similar chain of cyclically linked
disjoint 3-tubes in #}. We require that each h; is so chosen that (1)
if ¢! is a member that intersects Bd(L®), then only two members of
{t3;},=, intersect Bd(L®) and the intersection of each such member with
Bd(L?®) is exactly two disjoint 2-cells and (2) diam(t:;) < (1/3%)diam(T®)
for all 17,

Step 2. For each 1,7, let t!; be the 4-tube in T* generated by
rotating 1!, about planes z, = 0,2, = »,, We now regard each ¢; as
the set generated by rotating a small 2-cell ¢, along a small *-circle.
We assume further that ¢, is contained in L? whenever t; intersects
I2. Let %% be the set generated by rotating tI; about planes x, = 0,
x, = r,. Then t!; can be regarded as the geometric product of 2
with 4;;. %2, is a 3-tube. Let h;; be a linear homeomorphism of T°
onto %;. Let ¢, = h;i(t,), k=1,2, ---,1. We require each h;; is so
chosen that (1) if ¢}, C L? then only two members of {¢};.)i-, intersect
L? x Bd(L,) (one in each side) and the intersection of each such
member with L® x Bd(L,) is exactly two disjoint 2-cells and (2) diam
(t:sr) < (1/3)(diam T®). Let ¢!, denote the geometric product of ¢,
with 4;;. Let A, = UL p=1t4r, K = A,N L* and K, = K| x 11, L;.

6. THEOREM 1. Let C = N, K;. Then C is a Cantor set in
L~

Proof. It follows from the construction that K, K,, ---is a
decreasing sequence of compact subset of L= and each K, is dense in
itself. Hence C is dense in itself by Lemma 1. Furthermore, each
K, is a finite union of disjoint compact subsets whose diameters are
uniformly small and tend to zero as 72— . We conclude then that
C is a compact zero-dimensional space which is dense in itself, hence
is a Cantor set.

THEOREM 2. If F is a mapping of 4, x I into L™ (n = 3) such
that F'| 4« = tdentity on 4, and F(4, X 1) 1s a point, then F(4, x I)N
K.+ ¢.

Proof. The proof is due to [5]. Basically Blankinship had
constructed a Cantor set C’ in A, such that C’ links 4, in E", hence
A, also links 4, in E*. As a consequence, K, = A, N L" links 4, in
L~

THEOREM 3. L= — C has nontrivial lst-Homotopy group.

Proof. Let I' be a mapping of 4, x I into L= such that F'| ,,, =
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identity on 4, and F(4, x 1) is a point. For each n =3, z,(F) is a
mapping of 4, x I into L* satisfying (,F),x, = identity on 4, and
(z.F')(4, x 1) is a point. Hence by Theorem 2, (z,F)(4, x I) N K, +
#. This implies F(4, x I) N K, + ¢, hence F(4, x I) N C # ¢.

THEOREM 4. There exist two Cantor sets in the Hilbert cube
such that mo homeomorphism of one onto the other cam be extended
to a homeomorphism on the whole Hilbert cube.

Let L; = Int(L;) and let (L)* = [[2, L;. Let V.= K/ Int(L")
and V, = V! X [z Li. Then each V, is a closed subset of (L)~
and hence C, = N, V, is both zero-dimensional and closed in (L)~.
By similar reasoning C, links 4, in (L)~. Finally, using the fact s ~
(L)* and 1, = s [2], we conclude:

THEOREM 5. s and [, contain zero-dimensional closed sets whose
complements are not simply-connected.
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