A WILD CANTOR SET IN THE HILBERT CUBE

RAYMOND Y. T. WONG

Let E^n be the Euclidean *n*-space. A Cantor set *C* is a set homeomorphic with the Cantor middle-third set. Antoine and Blankinship have shown that there exists a "wild" Cantor set in any E^n for $n \ge 3$, where "wild" means that $E^n - C$ is not simply connected. However it is also known that no "wild" Cantor set (in fact, compact set) can exist in many infinite dimensional spaces, such as *s* (the countably infinite product of lines) or the Hilbert space l_2 . A result of this paper provides a positive answer for a generalization of Blankinship's result in the Hilbert cube.

If X is a space, we denote by X^n the space $\prod_{i=1}^n X_i$ and X^{∞} the space $\prod_{i=1}^{\infty} X_i$ with $X_i = X$. Let τ_n denote the projecting function of X^{∞} onto X^n and π_n the projecting function of X^{∞} onto X_n . Let J, \dot{J} denote intervals [-1, 1], (-1, 1) respectively. The Hilbert cube is the space J^{∞} under the metric $\rho(x, y) = \sum_{i \ge 1} (|x_i - y_i|)/2^i$. Hilbert space, l_2 , is the space of all square summable sequences of real numbers with metric $d((x_i), (y_i)) = \sqrt{\sum_{i=1}^{\infty} (x_i - y_i)^2}$. The space \dot{J}^{∞} is also denoted by s. Let $E^n = \prod_{i=1}^n E_i$ be the Euclidean *n*-space.

A Cantor set is a set homeomorphic with the Cantor middle-third set. The existence of a Cantor set C in E^n $(n \ge 3)$ such that E^n – C is not simply connected was first demonstrated by Antoine [4] in 1921 and constructed by W. A. Blankinship [5] in 1951. It is known that every Cantor set is s (or in l_2) must be tame, in the sense that its complement in s (or in l_2) is topologically as nics as the space itself. In fact it has been proved (by V. Klee in the case of l_2 [9] and by R. D. Anderson [1] in the case of s, using Klee's method) that if K is a compact set in X (for X = s or l_2), then $X - K \approx X$. The question as to whether a finite dimensional closed set can leave the Hilbert cube multiply connected (in particular, whether a Cantor set can have this property) was then raised in [5] by Blankinship and was also later mentioned in [7] by Klee. In this paper we shall give such a question a positive answer by constructing a Cantor set C in the Hilbert cube J^{∞} such that $J^{\infty} - C$ is not homotopically trivial. In fact, we shall apply the result of Blankinship [5] to show that $J^{\infty} - C$ has nontrivial 1st-Homotopy group. We remark that such a set C cannot be constructed as a subset of J^{∞} . Note that Anderson [1] (by using Klee's method) proved that any Cantor set C(in fact, any compact set) in \dot{J}^{∞} can be carried into an end-face, say $K_1 = \{x \in J^{\infty} \mid \pi_1(x) = 1\}$, by a homeomorphism on J^{∞} . It is quite clear that the complement of any Cantor subset (in fact, any compact subset)

of K_1 in J^{∞} is homotopically trivial, therefore, if the complement of C in J^{∞} is to be homotopically nontrivial, C must, in a sense, join various end-faces of J^{∞} .

2. Some notation and lemma. All homeomorphisms concerned are assumed to be geometric homeomorphisms, and when a homeomorphism has domain in E^n , it is assumed to be linear. Two subsets of E^n are similar if they are homeomorphic under some homeomorphism. Let Δ denote the boundary of the unit square in E^2 . A *-circle is a set homeomorphic to Δ . An *n*-tube, $n \geq 3$, is a set homeomorphic to the product of a circular 2-cell with (n-2) *-circles.

We shall choose a fixed set of positive real numbers r_1, r_2, \cdots with the properties that (1) $r_1 > 1$ and (2) $r_{n+1} > 2(\sum_{i=1}^n r_i)$. Let $L_i = [r_i = 1, r_i + 1] \subset E_i$ and $L^n = \prod_{i=1}^n L_i \times (r_{n+1}, r_{n+2}, \cdots)$. We shall regard E^n as a subset of E^{n+1} by considering E^n as $Ex^n 0$.

LEMMA 1. If X is a Hausdorff space and A_1, A_2, \cdots is a decreasing sequence of compact subsets of X such that each A_i is dense in itself, then $\bigcup_{i=1}^{\infty} A_i$ is dense in itself.

Proof. If x is an isolated point of $\bigcap_{i=1}^{\infty} A_i$, then for some i, x is an isolated point of A_i , contrary to the hypothesis.

3. Brief outline of the construction. The construction is an inductive modification of the construction by Antoine [4] and by Blankinship [5]. The Cantor set C will be the intersection of a decreasing sequence of compact subsets K_1, K_2, \cdots of the Hilbert cube $L^{\infty} = \prod_{i=1}^{\infty} L_i$. For each $n \geq 3$, K_n will be the product of a compact subset K'_n of L^n with $\prod_{i=n+1}^{\infty} L_i$. K'_3 is the intersection of a simple chain of linking 3-tubes of E^3 with L^3 . K'_4 will be contained in $K'_3 \times L_4$ and is the intersection of a simple chain of linking 4-tubes of E^4 with L^4 and so on.

4. Construction of K_{3} .

DEFINITION. Let r, s be positive integers and d_r an arbitrary real number. Let S be a compact subset of $E^{\infty}(=\prod_{i=1}^{\infty} E_i)$ such that $\pi_r(S) = d_r$. We say \widetilde{S} is the set generated by rotating S about the hyperplane $x_r = d_r$ and $x_s = 0$ if

$$\widetilde{S} = egin{cases} x \in E^\infty \colon \exists y \in S
i (x_r,\,x_s) \in \operatorname{Bd}([d_r - y_s,\,d_r + y_s] imes [-y_s,\,y_s]) \ ext{ and } x_i = y_i ext{ for } i
eq r,\,s \end{cases}$$

where $[d_r - y_s, d_r + y_s] \subset E_r, [-y_s, y_s] \subset E_s$.

The following Lemma is evident:

LEMMA 2. Suppose S is the set defined above and $\pi_s(S) > 0$, then \tilde{S} is homeomorphic to the product of S with a *-circle.

DEFINITION. Let

$$egin{aligned} T^2 &= \{x \in E^\infty : (x_1 - r_1)^2 + (x_2 - r_2)^2 \leq & \left(rac{1}{4}
ight)^2 ext{ and } x_i = r_i ext{ for } i \geq 3 \} \ \mathcal{A}_0 &= \{x \in E^\infty : (x_1 - r_1)^2 + (x_2 - r_2)^2 = \left(rac{1}{2}
ight)^2 ext{ and } x_i = r_i ext{ for } i \geq 3 \} \ . \end{aligned}$$

For $n \ge 3$, define T^n inductively to be the set generated by rotating T^{n-1} about the hyperplane $x_{n-1} = 0$, $x_n = r_n$.

LEMMA 3. For $n \ge 2$, min $\pi_n(T^n) \ge 1$.

Proof. It is clear for n = 2. For $n \ge 3$, it follows from the fact $\min \pi_n(T^n) = r_n - (1/4 + r_2 + \cdots + r_{n-1})$ and from the hypothesis of r_i .

LEMMA 4. For $n \ge 3$, T^n is an n-tube in E^n .

Proof. $\pi_2(T^2) > 0$ by Lemma 3. Then by Lemma 2, T^3 is a 3-tube. Inductively, T^n is an *n*-tube.

LEMMA 5. For $n \geq 3$, $T^n \cap L^n = \tau_2(T^2) \times \prod_{i=3}^n L_i \times (r_{n+1}, r_{n+2}, \cdots)$.

Proof. This is a consequence of Lemma 3.

Let $\{t_i^{i}\}_{i=1}^{l}$ be a chain of cylically linked disjoint 3-tubes contained in the interior of T^3 and looping once around the axis of T^3 . We assume (1) they are all similar to T^3 , (2) $l \equiv 0 \pmod{4}$ and l is large enough so that each t_i^3 can be regarded as the set generated by rotating a small circular 2-cell t_i^2 along a small *-circle Δ_i , (3) diam $(t_i^3) < 1/3(\text{diam } T^3)$ for all i, and (4) Only two members of $\{t_i^3\}_{i=1}^{l}$ intersect $\operatorname{Bd}(L^3)(\text{one in each side})$ and the intersection of each such t_i^3 with Bd (K^3) is exactly two disjoint 2-cells. Let $A_3 = \bigcup_{i=1}^{k} t_i^3, K_3' = A_3 \cap L^3$ and $K_3 = K_3' \times \prod_{i=4}^{\infty} L_i$.

5. Construction of K_4, K_5, \cdots . For the purpose of simplicity, we shall give only the construction of K_4 and assert that for $n \ge 5$, K_n can be inductively constructed.

Step 1. For each i, let h_i be a (linear) homeomorphism of T^3

RAYMOND Y. T. WONG

onto t_i^3 . Hence $\{t_{ij}^3 = h_i(t_j^3)\}_{j=1}^l$ is a similar chain of cyclically linked disjoint 3-tubes in t_i^3 . We require that each h_i is so chosen that (1) if t_i^3 is a member that intersects $\operatorname{Bd}(L^3)$, then only two members of $\{t_{ij}^3\}_{j=1}^l$ intersect $\operatorname{Bd}(L^3)$ and the intersection of each such member with $\operatorname{Bd}(L^3)$ is exactly two disjoint 2-cells and (2) $\operatorname{diam}(t_{ij}^3) < (1/3^2)\operatorname{diam}(T^3)$ for all ij.

Step 2. For each i, j, let t_{ij}^i be the 4-tube in T^4 generated by rotating t_{ij}^3 about planes $x_3 = 0, x_4 = r_4$. We now regard each t_{ij}^3 as the set generated by rotating a small 2-cell t_{ij}^2 along a small *-circle. We assume further that t_{ij}^2 is contained in L^3 whenever t_{ij}^3 intersects L^3 . Let \tilde{t}_{ij}^2 be the set generated by rotating t_{ij}^2 about planes $x_2 = 0, x_4 = r_4$. Then t_{ij}^4 can be regarded as the geometric product of \tilde{t}_{ij}^2 with Δ_{ij} . \tilde{t}_{ij}^2 is a 3-tube. Let h_{ij} be a linear homeomorphism of T^3 onto \tilde{t}_{ij}^2 . Let $t_{ijk}^3 = h_{ij}(t_k), k = 1, 2, \dots, l$. We require each h_{ij} is so chosen that (1) if $t_{ij}^2 \subset L^3$, then only two members of $\{t_{ijk}^3\}_{k=1}^k$ intersect $L^3 \times \operatorname{Bd}(L_4)$ (one in each side) and the intersection of each such member with $L^3 \times \operatorname{Bd}(L_4)$ is exactly two disjoint 2-cells and (2) diam $(t_{ijk}) < (1/3)(\operatorname{diam} T^3)$. Let $t_{ijk}^4 = A_4 \cap L^4$ and $K_4 = K'_4 \times \prod_{i=5}^{\infty} L_i$.

6. THEOREM 1. Let $C = \bigcap_{i=3}^{\infty} K_i$. Then C is a Cantor set in L^{∞} .

Proof. It follows from the construction that K_3, K_4, \cdots is a decreasing sequence of compact subset of L^{∞} and each K_i is dense in itself. Hence C is dense in itself by Lemma 1. Furthermore, each K_i is a finite union of disjoint compact subsets whose diameters are uniformly small and tend to zero as $i \to \infty$. We conclude then that C is a compact zero-dimensional space which is dense in itself, hence is a Cantor set.

THEOREM 2. If F is a mapping of $\varDelta_0 \times I$ into L^n $(n \ge 3)$ such that $F|_{\varDelta_0 \times 0} = identity$ on \varDelta_0 and $F(\varDelta_0 \times 1)$ is a point, then $F(\varDelta_0 \times I) \cap K'_n \neq \phi$.

Proof. The proof is due to [5]. Basically Blankinship had constructed a Cantor set C' in A_n such that C' links Δ_0 in E^n , hence A_n also links Δ_0 in E^n . As a consequence, $K'_n = A_n \cap L^n$ links Δ_0 in L^n .

THEOREM 3. $L^{\infty} - C$ has nontrivial lst-Homotopy group.

Proof. Let F be a mapping of $\mathcal{A}_0 \times I$ into L^{∞} such that $F|_{\mathcal{A}_0 \times 0} =$

identity on Δ_0 and $F(\Delta_0 \times 1)$ is a point. For each $n \geq 3$, $\tau_n(F)$ is a mapping of $\Delta_0 \times I$ into L^n satisfying $(\tau_n F)_{\Delta_0 \times 0} =$ identity on Δ_0 and $(\tau_n F)(\Delta_0 \times 1)$ is a point. Hence by Theorem 2, $(\tau_n F)(\Delta_0 \times I) \cap K'_n \neq \phi$. This implies $F(\Delta_0 \times I) \cap K_n \neq \phi$, hence $F(\Delta_0 \times I) \cap C \neq \phi$.

THEOREM 4. There exist two Cantor sets in the Hilbert cube such that no homeomorphism of one onto the other can be extended to a homeomorphism on the whole Hilbert cube.

Let $\dot{L}_i = \operatorname{Int}(L_i)$ and let $(\dot{L})^{\infty} = \prod_{i=1}^{\infty} \dot{L}_i$. Let $V'_n = K'_n \cap \operatorname{Int}(L^n)$ and $V_n = V'_n \times \prod_{i=n+1}^{\infty} \dot{L}_i$. Then each V_n is a closed subset of $(\dot{L})^{\infty}$ and hence $C_0 = \bigcap_{n=3}^{\infty} V_n$ is both zero-dimensional and closed in $(\dot{L})^{\infty}$. By similar reasoning C_0 links Δ_0 in $(\dot{L})^{\infty}$. Finally, using the fact $s \simeq (\dot{L})^{\infty}$ and $l_2 \cong s$ [2], we conclude:

THEOREM 5. s and l_2 contain zero-dimensional closed sets whose complements are not simply-connected.

References

1. R. D. Anderson, Topological properties of the Hilbert cube and the Infinite product of open intervals Trans. Amer. Math. Soc. **126** (1967), 200-216.

2. ____, Hilbert space is homeomorphic to the countable infinite product of lines, Bull. Amer. Math. Soc. 72 (1966), 515-519.

3. _____, (Abstract), On Extending Homeomorphisms on the Hilbert cube, Notice Amer. Math. Soc., Vol. 13, No. 3, April 1966, p. 375.

4. L. Antoine, Sur l'homeomorphie de deux figures et de leurs voisinages, J. Math. Pures, Appl. 86 (1921), 221-235.

5. W. A. Blankship, Generalization of a construction of Antoine, Ann. of Math. 53 (1951), 276-297.

6. V. Klee, Convex bodies and periodic homeomorphisms in Hilbert space, Trans. Amer. Math. Soc. **74** (1953), 36.

7. ____, Homogeneity of infinite-dimensional parallotopes, Ann. of Math. (2) 66 (1957), 454-460.

8. ____, Some topological properties of convex sets, Trans. Amer. Math. Soc. 78 (1955), 30-45.

9. _____, A note on topological properties of normed linear spaces, Proc. Amer. Math. Soc. 7 (1956), 673-674.

Received October 28, 1966, and in revised form May 1, 1967. This paper is a part of the author's doctoral thesis under the direction of Professor R. D. Anderson and revised into its present form while the author held a National Science Foundation Grant GP-5860, at UCLA 1966-1967.

LOUISIANA STATE UNIVERSITY, BATON ROUGE UNIVERSITY OF CALIFORNIA, LOS ANGELES