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SCHWARZ NORMS FOR OPERATORS

JAMES P. WILLIAMS

Let H be a complex Hubert space and let Jzf(H) be the
algebra of bounded linear operators from H into itself. A
norm | | on ^f(H) which is equivalent to the usual norm
will be called a Schwarz norm if the following version of the
Schwarz lemma is valid for | |:

SCHWARZ LEMMA If / is analytic and bounded by 1 in
\z I < 1, and if /(0) = 0, then |/(T) g | T\ for each operator
T with \T\ < 1.

It is an immediate consequence of the classical lemma that
equality holds for some T if and only if f(z) = ΊZ for some constant 7.

Von Neumann [5] proved that the usual norm, which we will
call I |2, is a Schwarz norm, and recently, Berger and Stampfli [1]
proved that the numerical radius norm

I T\x = I W(T) I = sup {|< Tx, x > |: || x || = 1}

is also a Schwarz norm. It is our purpose here to point out that a
slight modification of the Berger-Stampfli argument produces a family
I |c (c Ξ> 1) of distinct Schwarz norms on J5?(H). We will also men-
tion some negative results concerning Schwarz norms in j*f(X) when
X is a Banach space.

l It is a simple matter to check that the preceding version of
the Schwarz lemma may be equivalently stated in the following form:

SCHWARZ LEMMA If \ T\ ^ 1, then \f(T) | ^ | | / | | for each fe R{D)
such that /(0) = 0.

Here R{D) is the (sup-norm) algebra of rational functions with
no poles in the closed unit disk D and f(T) is defined by the usual
Cauchy integral around a circle slightly larger than the unit circle.

An elementary computation shows that for | a \ < 1 the conformal
map φa{z) = (z — α)(l — azY1 takes contractions into contractions [5].
This implies that the second version of the Schwarz lemma for | |2
is actually valid without the condition /(0) = 0. On the other hand,
this condition cannot be omitted for the numerical radius norm as the
following result shows:

T H E O R E M 1 . | <pa(T) \, ^ 1 for all | a \ < 1 if and only if\T\2^l.
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Proof. Since | \t ̂  | |2, one half of the implication is clear. To
get the other half, note that the hypothesis implies that

I < (T - a)x, (1 - aT)x > | ^ || (1 - aT)x ||2

for all xeH and all \a\ < 1. Expanding this one concludes that

λ(|| x ||2 + || Tx ||2) + (λ2 + 1) | < Tx, x > \

^ | | £ | | 2 + 2 λ | < Tx,x>\ + λ 2 | | T x | | 2

for x e H and 0 ̂  λ < 1. Hence

0 ^ (λ - l)[λ(|| Tx ||2 - | < Tx, x > I) - (|| x ||2 - | < Tx, x > |)]
and since the expression in the bracket is therefore nonpositive for
0 < λ < 1, it follows that | T\2 = || T\\ ̂  1.

2 It is well-known that if the spectrum of T lies in D, then
Re (1 + zT)(l - zT)~ι ^ 0 all | z \ < 1 and Re (1 - zT)"1 ̂  0 all | z \ < 1
are respectively equivalent to || T| | ^ 1, | W(T) \ ̂  1. Here the rele-
vent analytic functions have series expansions of the form 1 + c^^znTn

(with c = 2 and c — 1) and so we are led to introduce the following
class of operators:

DEFINITION. For c > 0 let Sc be the class of operators T with
σ(T) c D1 for which Re (1 + cΣΓ^Ϊ7") ^ 0 in | z \ < 1. Thus T e S2

(TeSJ if and only if | T\2 = \\ T\\ ̂  1(| T\, = \ W(T) | ^ 1) so that the
following theorem includes the results of Von Neumann and Berger-
Stampfli:

THEOREM 2. // TeSc(e>0) then f(T)eSc for each feR(D)
satisfying /(0) = 0 and \\f\\D^l.

Proof. The proof is essentially the Berger-Stampfli argument: (For
a slightly different proof see [4].) If T e Sc1 then by a theorem of
Herglotz, there is a positive measure μx on |0, 2π] such that

|| x ||2 + c±z* < Tnx, x > = t ] + Z6l dμx{θ)
i J l — ze

for all \z\ < 1. Expanding the integrand and equating coefficients
we get

( * ) c < Tnx, x > = 2\einθdμx{θ) (n ̂  1).

1 T h i s c o n d i t i o n i n s u r e s t h a t t h e s e r i e s c o n v e r g e s i n \z\ < 1.
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If now f(z) — ̂ akz
k is a polynomial, then Eq. (*) implies

c < f(T)x, x > = 2\f(eiθ)dμx(θ).

Applying this fact to /" we obtain

c < f(TYx, x > = 2^p(ei<>)dμx(θ) (n ^ 1).

It follows that if | | / | | ^ 1, then H/(T)n | | is bounded so that for
\z\ < 1,

The integrand has positive real part in | z | < 1 and therefore f(T)e Se.
To complete the proof, note that each feR(D) can be uniformly ap-
proximated by polynomials on a disk of radius 1 + ε.

REMARK. It is easy to proceed from Eq. (*) via polarization and
Naimark's theorem on the dilation of an operator measure to obtain
a "2/c-unitary dilation" of T e Sc, i.e., to obtain a unitary operator U
on a larger Hubert space K such that

Tn = 2/cPUn \H (n^l)

where P is the orthogonal projection of K onto H. This is the ap-
proach of Nagy-Foias in [4]. The class £c is their class ^2!c.

3* The next proposition gives some information about the class Se.

THEOREM 3. Let c > 0. Then
( i ) S c * - S c .
(ii) ψΦ S , £ S C if c <c'.
(iii) Sc is convex if and only if c ^ 1.
(iv) Te Sc (c ^ 1) if and only if

(c - 1) || Tx ||2 + I 2 - c I i < Tx, x > ^ || x \\2

all xeH.

Proof. By definition, we have T e Sc if and only if σ{T)dD and
Re < (1 - zTY'x, x> ^(1- c-1) || x ||2 for all x e H and all | z \ < 1. The
first assertion and the inclusion in (ii) follow immediately from this.
Next, observe that if c ^> 1, then the condition T e Sc is equivalently
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written

Re < y, (1 - zT)y > ^ -£-=^L || (1 - zT)y \\2

G

for all y e H and all | z \ < 1, and (iv) now follows by a simple calculation.
Using (iv), it is easy to see that, for c ^ 1, Sc is weakly closed,

bounded, circled and a (norm) neighborhood of 0. Also by the parallel-
ogram law,

and this implies that £Sβ + iSc c Sc. Since any closed midpoint-convex
set is convex, it follows that Sc is convex for c ^ 1.

It remains to see that the classes Sc are nonempty, strictly
decreasing, and if c < 1, not convex. To prove these facts, let A be
the two-dimensional operator with matrix2 ( I Q ) . If s > 0, then sA
has spectrum {0} and is nilpotent of index 2; hence if c > 0 then
sA2 e Sc if and only if

^ Re (l + c^znsnAn\ = Re (1 + ezsA) .0

For all | z \ < 1. Since the spectrum of Re (1 + czsA) consists of the
points 1 ±i\czs\, we conclude that sA e Sc if and only if cs ^ 2.

It follows that if c > 0, then (2/c)A e Sc. Also, if cf > c, then
(2/c)A?Se/, hence Sβ/ ^ £c and this completes the proof of (iv).
Finally, if c > 0 and Sc is convex, then Sc must contain

But (2/c)Re A has spectrum { — 1/c, 1/c} and therefore 1/c <Ξ 1, which
completes the proof of (iii).

From the properties of Sc just mentioned it follows that for c ;> 1,
the gauge of Sc, i.e., the functional

| Γ | , = in f {λ>0:ΓeλS,} ,

is a norm equivalent to the usual norm || || = , |2 Moreover Theorem
2 shows that each of these norms is a Schwarz norm.

THEOREM 4. Let c ^ 1.

( i ) |T* | # = m for all T.
(ii) I 1^1 |c, if c^c\
(iii) If c < 2, then 11 |c = 1, but | |c is not an algebra norm in

2 The same example is used in [4] to prove (ii). We include it here because of
its use in (iii).
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(iv) 2 I L ̂  2 I |β ^ (c + I 2 - c) I |2 and for 1 ^ c ^ 2 these
bounds are sharp.

(v) If \φa(T)\. ^ 1 for all | a \ < 1, then | Γ | 2 ^ 1.
(vi) If I T\c ^ 1 and | ϊ7" 1 |c ^ 1, then T is unitary.

Proof. The first two assertions are clear from Theorem 3. A
computation shows that if c :> 1, then 11 |c — (c + | 2 — c |)/2 (and hence
l e S c if and only if 1 <̂  c ^ 2). To prove (iii) we appeal to the
minimality of the norm in a B* algebra to see that if | |c rg | |2 and
if {J*?(H), I | J is a normed algebra then | |c = | |2, hence e = 2.

To get the bound on the quotient | |2/| |β, note that if | T\c — 1,
then (1 + l/n)T0 Se, and hence by Theorem 3 there exists a sequence
of unit vectors xn such that

(c - 1)(1 + 1/nY || Γαn ||
2 + | 2 - c | (1 + 1/τι) || Γsn ||

^ (c - 1)(1 + 1/n) || Txn ||
2 + | 2 - c | (1 + 1/n) \ < Txn, xn

This implies that | T\2 = \\ T\\ ̂  2/(c + | 2 - c |).
Assertions (v) and (vi) clearly follow from the case c = 1, and if

e = 1 then (v) is true by Theorem 1 and (vi) is a theorem of Stampfli [6].

REMARKS. (1) For each c ^ 1 the unit ball of the norm | \c is
weakly compact and this implies that | \c is the dual of an equivalent
norm on the pre-dual of j5f{H). However, | |c is either not multi-
plicative (for c < 2) or does not assign the value 1 to the identity operator
(for c > 2) and hence none of these norms is induced by an equivalent
norm on H.

(2) It seems quite likely that the norms | |c do not include all
Schwarz norms on Jϊf(H), but I am unable to find another one.

4* In this concluding paragraph we will comment on the validity
of the preceding results when the underlying space H is replaced by
a Banach space.

To being with, recall [3] that one may introduce a semi-inner-
product on any Banach space X by choosing a map η: X—+X* satisfying

- || x ||2, || rj(x) \\ = \\x\\ (x e X) .

and then defining

[x, y] = < x, η{y) > (x, y e X) .

The definition of Sc is meaningful relative to this semi-inner-
product and it is easy to check that Theorem 2 remains valid in this
general setting. Indeed, the proof uses only linearity of the inner
product with respect to its first argument, and the fact that the
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norm of an operator is dominated by a multiple of its numerical radius;
this latter fact is shown in [3].

It is reasonable to ask whether the natural norm or the numeri-
cal radius norm is a Schwarz norm for j?f(X). Before answering
these questions (negatively), the following remarks are offered as af-
firmative evidence:

(1) For the usual norm | |2 it is known that the condition
/(0) = 0 cannot be omitted. Thus if each φa carries contractions to
contractions, then the norm in X satisfies the parallelogram law [2].
So the question really is concerned with the Schwarz Lemma.

(2) Theorem 2 gives an affirmative for the norm | \t provided
that Re A ;> 0 implies Re A~x ^ 0 for invertible operators A e <£f(X).
This seems plausible at first sight, but Example 1 below shows that
the implication fails even when X is a smooth Banach space (i.e.,
when X has a unique semi-inner-product.)

EXAMPLE 1. Let X be the two-dimentional complex Banach space
with norm || (xly x2) \\ = (| x1 \

p + | x2 \
pflp where p > 1. Then there are

invertible operators T on X such that Re T ^ 0 and Re T~γ ̂  0.
Note first that X is smooth and the mapping rj from X into its

dual is given by

y(Xί, α 2 ) = (» i I ®i \p~\ %z I %* \p~2)

when || (a?!, aj2)|| = 1. The condition Re T Ξ> 0 means of course that
Re < Tx, 7](x) > ^ 0 f or all xeX.

PROPOSITION. Let T = (°£\ Then Re T ^ 0 if and only if

( i ) Re a ^ 0, Re b ^ 0
( i i ) \c\ ^ (pRea)llp (qReb)1/q

where (1/p) + (1/q) = 1.

It follows that if Re T ^ 0, then Re T"1 ^ 0 if and only if

I c/ab I ^ (p Re l/a)ίlp(q Re

or, if and only if

I c I rg I a I1-21* I b \ι~2ί«{p Re a)ίlp(q Re bflq .

It is therefore clear that Re T ^ 0 and Re T"1 ^ 0 are not equivalent.
The proof of the Proposition is straightforward but somewhat

complicated and will therefore be omitted. The case p = 2 and the
limiting case p — 1 (| c \ ̂  Re a) however are easy to check.

EXAMPLE 2. Let X be the two-dimensional Banach space with
norm || (xl9 x2) \\ = [ α?x | + |a?a|. The natural norm in ^f(X) is not a
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αθ
a Schwarz norm.

The norm of the operator f aY) on X is easily found to be

max{| α| + I c I, I δ|} .

Consequently, if 0 < a < 1, then T = (* ^ 1 ) is a contraction on X.

To prove the assertion it will suffice to show that there is a complex
number a of modulus less than 1 such that \\ψa(T)\\ > 1 where
ψa(z) = z(z + ά)(l + ctz)"\

The condition \\ψa(T)\\ ^ 1 is equivalent to

1 + a + α(l + a)a -\- a

oca
+ (1 - a)

(1 + άα)(l + a)
< 1

which, for real a simplifies to

a I a + a | + (1 — α)(l + a) <£ 11 + aa \ .

This fails for α = -l/2(α + 1).

EXAMPLE 3. Let Xbe the Banach space of Example 2, and define
Ύj\ X—>X* on unit vectors as follows:

u x2) =

x19 sgn x2)

(1, sgnx2)

((sgn x19 1)

i f iCjL̂ a Φ 0

if ^ = 0

if α;2 — 0 .

Then (X,)?) is a semi-inner-product space for which the numerical
radius norm

- 1 }

is not a Schwarz norm.

It is clear that [x, y] = ζx, rj(y)y defines a semi-inner-product on
X, and it is easy to check that if T = (a? j has numerical radius
^ 1, then I 6 I ̂  1, | a \ + | c \ ̂  1, and therefore \\T\\ ̂  1. This im-
plies that the numerical radius and operator norms agree for each
triangular matrix, and hence, by Example 2, the numerical radius
norm is not a Schwarz norm in
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