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SEQUENCES OF HOMEOMORPHISMS WHICH
CONVERGE TO HOMEOMORPHISMS

JEROME L. PAUL

A technique often used in topology involves the inductive
modification of a given mapping in order to achieve a limit
mapping having certain prescribed properties. The following
definition will facilitate the discussion. Suppose X and Y are
topological spaces, and {Wi}, ΐ = 1, 2, , is a countable
collection of subsets of X. Then a sequence {/*}, i ^ 0, of
mappings from X into Y is called stable relative to {Wi} if
fi\(X- Wi) = /*-! I(X - Wi),i, = 1, 2, . Note, in the above
definition, that if {Wi} is a locally finite collection, then
liπii-oo/ΐ is necessarily a well defined mapping from X into
Y, and is continuous if each /; is continuous. In a typical
smoothing theorem, a Cr-mapping f:M-*N between C°° differ-
entiable manifolds M and N is approximated by a C°°-mapping
g:M-*N, where the mapping g is constructed as the limit
of a suitable sequence {/J(with f0 = / ) which is stable relative
to a locally finite collection {d} of compact subsets of M. On
the other hand, instead of improving /, it is also of interest
to approximate / by a mapping g which has bad behavior at,
say, a dense set of points of M. In this paper, such a mapping
g is constructed as the limit of a sequence {/*} (with f0 = / )
which is stable relative to {d}, but where the d are more
"clustered" than a locally finite collection. The case of interest
here is where a sequence of homeomorphisms {Hi}9 which is
stable relative to {Dί}, necessarily converges to a homeomor-
phism. Theorem 1 of this paper gives a sufficient condition
that the latter be satisfied for homeomorphisms of a metric
space. In Theorem 1, the collection {£/*} is not, in general,
locally finite (in fact, the ϋi satisfy a certain "nested"
condition). Theorem 1 is used to establish a result concerning
the distribution of homeomorphisms (of a differentiable
manifold) which have a dense set of spiral points.

Let ¥ be a metric space with metric d. We denote the (open)
ball, of radius r, and centered at the point xeM, by B(x,r) =
{y e M\d(x, y) < r}. The diameter of a nonempty subset A of M is
δ(A) = sup {d(x, y)\xe A,y e A}. When M is euclidean ^-space E*,

we write t h e points of En as x — (x\ •• ,x w ) , and provide En wi th

the usual euclidean norm and metric

[ n Πl/2

i=l J

= \\x-y\

The boundary of B(x, r) in En is the (n — l)-sphere S(x, r) =

143



144 JEROME L. PAUL

{y e En I d(x, y) = r}. If A is a subset of M, we denote the closure
of A in ikf by A. If A is compact, we say that A is relatively
compact. Let Z+ denote the set of positive integers. The identity
mapping will be denoted by /, without regard to domain.

THEOREM 1. Let {Ui}, i e Z+, be a sequence of nonempty relatively
compact open subsets of M such that

Suppose {Ft}, i e Z+. is a sequence of homeomorphisms of M onto
itself such that

(2) Fi\(M-Ui) = I,

and

( 3 ) diFtix), F^y)) ̂  &d(x, y) [x, veM],

for some constant ^{depending on F{). Set

( 4 ) H, = F.F^ ί\ ,

(note that the sequence {Hi} is stable relative to {Ui}). If, for i ^ 2,

(5) δ(Z7<)<ζ<-1ζί-« Ci/2ί ,

then H = lim^*, Hi is a homeomorphism of M on itself.

Proof. We note from (2) that ζ< ̂  1, ieZ+. Therefore, we see
from (2) and (5) that d(Fi(x), x) < 1/2% and hence

( 6 ) d(Hi(x), Hi^x)) < 1/2* [i eZ+,xeM].

Given any fixed xe M, we first show that lim^^ Hi(x) exists. We
have two cases to consider.

Case 1. There exists an integer j(x) such that Hk(x) = Hό{x)(x)
for all k ^ j(x). Then, of course, lim^oo Hi(x) = Hj{x)(x).

Case 2. There exists a sequence k < l2 < such that Hh(x) Φ.
Hii+1(x), i e Z+

β Then from (4) and (2), we see that there exists a
sequence m1 < m2 - such that Hm.__γ(x) e Um., and Um.+1 c Um., i e Z+.
Note that Γ\Z=i Um. = C\T=i Um. Φ ψ, the last inequality holding since
{Um.}, ieZ+, is a decreasing sequence of nonempty compact subsets
of the compact set Όmχ. Since δ(Um.) —*0 as w o o 5 we see that
there is a unique point z = ΠΓ=i Umi. Hence lim^^ Hm.{x) — z. Then,
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using (6), lim^oo Hi(x) = z. This shows that H is a well defined
mapping of M into itself. Moreover, using (6), H is the limit of a
uniformly convergent sequence of continuous mappings, and hence is
itself continuous.

We now show that H is one-to-one. Suppose, then, that x, y
are two distinct points of M. We have three cases.

Case 1. There exist integers j(x), k(y) such that Ht(x) = Hj{x](x)
for I ^ j(x), and Hm(y) = Hk{y)(y) for m ^ k(y). Then, setting q =

we have #(&) = Hq(x) Φ Hq(y) = H(y).

Case 2. Same as Case 2 above. Then, as above, there exists a
sequence mι < m2 < such that Hm.(x) e i7Wi, ie Z+. Choose m* = p
so large that 1/2* < ώ(£, #). Then using (1) we have, in particular,

U H(x) c £7,. Using (3) and (4),

d(Hp^(x)9 HP^(V)) ^ Cp-i Ci d(s, l/)

On the other hand, using (5) and our choice of p, it follows that
δ(Up) < ζp-! ζJ2* < ζP_, ζrd(x, y). Hence Hp^{y) e Up, and,
using (1), (2), and (4), H(y) g Up. Therefore, H(x) Φ H(y).

Case 3. There exists a sequence nt < n2 < such that Hn.(y) Φ
Hni+I(y) The proof that H(x) Φ H(y) in this case is entirely analogous
to Case 2. This completes the proof that H is one-to-one.

We now show that H maps Monto itself. Let y be an arbitrary point
of M. If there exists an integer j(y) such that z = H^\y) = Hjil^y)
for all & ̂  j(y)t then iί(^) = 2/. Suppose, then, that there exists a
sequence kλ < k2 < such that Hjr}(y) Φ H^+i(y). Then, using (1),
(2), and (4), there exists a sequence k < l2 < such that H^iy) e Uh

and Uh Z) ̂ ί + 1 , i e Z+. Letting z be the unique point z — ΠΓ=i Ut.,
we see that lim^^ Hf.^y) — z. But then H(z) = lim^^ Hh(H{:1{y)) = y,
where the first equality follows from the fact that a uniformly
convergent sequence of functions is continuously convergent. Hence,
H is an onto mapping.

To show that H is a homeomorphism of M on itself, it remains
to verify the continuity of H"1 (note that when M is an open subset
of En, Brouwer's theorem on invariance of domain implies that H"1

is continuous). We do this by showing that the limit set of H is
empty, i.e., given any y e M, and any sequence {xn} of points of M
having no convergent subsequence, we shall show that the sequence
{H(xn)} does not converge to y. Since H is onto, let ze M be such
that H{z) = y. We have two cases to consider.

Case 1. There exists an integer j(z) such that Hk(z) = Hjiz)(z) — y
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for all k ^ j(z). Now since {xn} contains no convergent subsequence,
we may assume d(xn, z) ^ ξ > 0 for some fixed ξ and all neZ+. Let
p > 0 be a fixed integer so large that 1/2P < ξ/2. Now for an arbitrary
n G Z+, we have, from (3) and (4), d(Hp^(xn)9 y) ^ ζ p - 1 d f, whereas,
from (5), 5(Z7P) < ζ ^ d/2* < ζ ^ - ζ, ί/2. Hence the points
Hp^iXn) and 7/ are not both contained in Up. A similar analysis shows
that

(a) the points iϊA._1(^?ι) and y are not δoί/̂  contained in Uk, for
all k ^ p, and all τ& e Z + .

Now given any k Ξ> p, let A/̂  denote those points xd of the
sequence {xn} such that Hk^(xό) eUk\ lί Nk Φ φ, then from (α) above
we see that y £ Uk. Setting Wk = M — Uk if Nk Φ φ, and Wk = M
if Nk = φ, we see that Wk is a neighborhood of ?/ such that

( 7 ) H(Nk) ΠWk = φ.

Setting 37 = ζj, d f, we see from (3) and (4) that d(Hv{xn), y)^η
for all ^ G ^ + . Now choose an integer q>p so large that
ΣΓ=< 1/2' < 5?/2. Then for any xt £ {Np U iVp+1 U U Nq}, we have
Hq^(Xι) = Hq^(xι) = = JEΓp(a;O. Then ώ(iί(^,), Hfa)) ^ ΣΓ=ff l/2?<)?/2,
whereas d(/ί(^z), y) ^ d(^(^0,2/) - (HH^), H(xι)) ^ η - V/2 = V/2.
Hence we see that

( 8 ) H(xt) £ B(y, φ) [xι £ {Np U NP+1 U U Nq}] .

Setting V = B(y, η/4) f]Wpf] Wp+1 Π Π Wq, we see from (7) and
(8) that V is a neighborhood of ?/ in M such that £Γ(a;n) g V for all
^ G ^ + . Hence the sequence H(xn) does ^oί converge to y.

Case 2. There exists a sequence m1 < m2 < such that Hm.{z)φ
Hm.+1(z), i G ^ + . Then, as seen before, there exists a sequence
k,< k2< such that y = H(z) = flΓ=ι ^ As before, letting ξ > 0
be such that d(a?Λ, y) ^ ξ for all ne Z+, we take ^ = Λ5 so large that
1/2P < ξ. Then, using (3), (4), and (5), we see that ye Up, whereas
Hp^(xn)$ Up for all neZ+. Then by (4) and (2), H(xn)$ Up for all
neZ+. Since Up is a neighborhood of y in M, it follows that {H(xn)}
does not converge to y. This completes the proof that H~ι is
continuous, and hence Theorem 1 is completely proven.

REMARKS AND EXAMPLES. One verifies that the biuniqueness of
the limit mapping H is still valid if condition (5) is weakened to
requiring only that δ(Ui) < ζ ^ ••• d/α*, where the positive constants
a{ are subject to the condition lim^*, at = + °°. The necessity for
this latter condition is illustrated by the following example. Let
M = En, and for any i e Z+, set U{ = 5(0, l/2 ί+1). Let Ft be a
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diffeomorphism of En on itself defined by F{(x) = ai(\\x\\)x, where ai

is a smooth monotonic real-valued function of the real variable t
such that cti(t) - 1/2 for t g l/2*+2, and αf(ί) = 1 for t ^ l/2*+1. Then
d(Fi(x), Fi(y)) ^ (l/2)d(x, #) for all x, y e i£Λ and i e ^ + . Hence, setting
ζi = 1/2, i e #+, we see that conditions (1), (2), and (3) of Theorem 1
are satisfied by U{ and fV Condition (5) is violated, but we have,
nevertheless,

δiUi) - 2(l/2ί+1) - 1/2* < 1/2*-1 - ζ,_L ς .

It is easily seen that the mapping if = l i m ^ FiF^ Fλ is a con-
tinuous mapping of En on itself, but H is not one-to-one since
H(B(0, 1/8)) - 0.

The diffeomorphisms Fζ in the above example are members of an
important class of homeomorphisms of En which satisfy a condition
such as (3): namely, the class of diffeomorphisms of En which are the
identity outside some compact subset of En. Condition (3) is not, in
general, satisfied for homeomorphisms of En which are the identity out-
side some compact subset of En, even for those which are, in addition,
diffeomorphisms on the complement of a single point. For consider
the following example. Let F be a CΓ-diffeomorphism of E2 on itself
(i.e., F is a homeomorphism of E2 on itself such that F\(E2 — 0) is
a C°°-diffeomorphism) such that F is the identity on the subset
{E2 - 5(0,1)} Π {\Jn=i 3(0, 1/ri)} U {0}, and such that the spheres
S(0,1/n - 10-w), ne Z+, are rotated by F through 180 degrees. Such
a homeomorphism is readily constructed. One verifies that

d(F{(0,1/n)), F((0, -l/n + 10-))

, l/n), (0, -l/n + 10-)) ,

and hence there can not exist a number ζ such that d(F(x), F(y)) Ξ>
ζd(x, y) f o r a l l x,ye Ez.

We now use Theorem 1 to establish a result concerning spiral
points of homeomorphisms of nonbounded differentiate manifolds. The
reader is referred to [1] for the relevant definitions and results. We
recall that if /: U ~• En, n^2, is a homeomorphism, where U is an
open set in En, then a point x e U is a spiral point of f if, and
only if, the following is satisfied: given any Cp-imbedding
(p > 0)σ: [0,1] —> C7 such that σ(l) = x, any diffeomorphism H of En

on itself, and any (n — l)-hyperplane P in En through Hf(x), then
there exists a sequence of points f* e [0,1] converging to 1 and such
that Hfσ(ti) e P. The notion is extended to differentiable manifolds
in the natural way. It is readily verified (cf. Proposition 2 of [1])
that if /: Mn —+ Nn is a homeomorphism, where ikP, Nn are nonbounded
differentiable π-manifolds, then the set of nonspiral points of / is
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(uncountably) dense in Mn. Nevertheless, there always exist (Theorem
1 of [1]) homeomorphisms of Mn on itself (or into Nn) having a dense
set of spiral points. We generalize this result result and show that
the homeomorphisms of Mn into Nn which have a dense set of spiral
points form a dense subset, in the fine C° topology, of the set
H(Mn, Nn) of homeomorphisms of Mn into Nn.

THEOREM 2. Let f:U—> En, n ;> 2, be a homeomorphism, where
U is an open subset of En, and let ε: U —> Eι be a real-valued positive
continuous function. Then there exists a homeomorphism g: U —> En

such that g has a dense set (in U) of spiral points, and
d(f(x),g(x))<e(x),[xeU].

REMARKS. It can be seen from the constructions in § 8 of [1]
that Theorem 2 above is valid for diffeomorphisms f. Indeed, using
the techniques in § 8 of [l], one can construct a homeomorphism h
of U on itself having a dense set of spiral points, and, moreover,
such that d(fh(x), f(x)) < e(x), for all xeU. Then g = fh satisfies
the requirements of Theorem 2 relative to / . The difficulty that
arises when / is not a diffeomorphism is that a point xe U can be a
spiral point of the homeomorphism g, and the point g(x) can be a
piercing point (cf. Definition 1 of [1]) of the homeomorphism /, and
yet x can be a piercing point of fg (and hence, in particular, x is
not a spiral point of fg). However, the generality afforded by
condition 3 of Theorem 1 (i.e., the constants ζ; vary with Fζ), as
opposed to the uniform constant δ appearing in property (β) of [1],
will allow us to overcome the above difficulty.

Proof of Theorem 2. Let X be a countable dense subset in U
of distinct points xif ieZ+. We will construct a sequence of homeo-
morphisms Hi of U on itself, of the type described in Theorem 1
above, and such that if H — lim^*, H^ then X consists entirely of
spiral points of fH, and d(fH(x),f{x))<ε(x) for all xeU. This
latter condition will be satisfied if d(H(x), x) < τ(x), provided τ: U—^E1

is a suitably chosen real-valued positive continuous function. We
assume below that a fixed choice for such a function τ has been made.
Note from (2) and (4) that if δ(Ui) < mm{τ(x)\xe Z7<}, for all ieZ+,
then the above approximation conditions are necessarily satisfied.

Before defining the homeomorphisms Hiy we need some definitions»
For c = (c\ c\ , cn), x = (x\ x\ , xn), 0 < r < d(c, En - U),
i e {1, 2, , n — 1}, i < j g n, and m e Z+, we define the homeomor-
phism Fc,r,iyj,m of U on itself as follows:

( 9 ) Fetr,itJ,m(x) = x [xe{U - B(c, r ) } U B(c, r /2) ] ,
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while for x e B(c, r) — B(c, r/2), the components of Fc>r>i,jtm are:

( 9 )' Fϊtrtit5,Jx) = x\kΦ i, j ,

< 9 )" Fi9rtitί,m(x) = (xι - cι) cos am(x) - (&>" - cj) sin am(x) + cι ,

( 9 )'" Flrtilί,m(x) = (x* - cι) sin am(x) + (a> - cj) cos αw(a?) + C" ,

where am{x) = 4mπ((r — | |x — e||)/r). We then define the homeomor-
phism F β , r , w of U on itself by setting

τp jp τp τp
•*- c,r,m *- c,r,l>2,m-Γ c » r , l . , 3 , m * * * -F c,r,n—l,n,m

It is readily seen that there exists a positive constant ζ(m) such
that d{Fc,r,m{x), Fetrtm(y)) ^ ζ(m)d(x, y), [x, y e U].

A homeomorphic image Ω of En~ι in En will be called a suffici-
ently planar topologίcal (n — l)-hyperplane relative to y e En if the
following conditions are satisfied: (i) y e Ω, (ii) En — Ω is not
connected, and (iii) there exists a (true)(w — l)-hyperplane P in 2£w

through y such that for all x e Ω, the secant line joining x to y makes
an angle of less than one degree with P. Given a homeomorphism
g: U—>En, we will say that Fc,r,m is of spiral type relative to g if
the following condition holds: if σ is any arc joining a point of
S(c, r/2) to a point of S(c, r), and such that σ lies in one component
of En — P*, where P * is some (w — l)-hyperplane in En through c,
and if Ω is any sufficiently planar topological (n — l)-hyperplane
relative to g(c), then gFc,r,m(σ) f] Ω Φ ψ.

We now can construct, inductively, the required homeomorphisms
Hi. The inductive description is most conveniently carried out by
stages, i.e., setting σ(k) = 1 + 2 + ••• + k — 1 = k(k — l)/2, at stage
k, the homeomorphisms Hσ{k)iί, Hσ{k)+2, •• ,H<nk+ι) are constructed. To
further orient our discussion, we remark that the point Hσ{k)(xk) is
added to our discussion at stage k, and relative to the constants
rj8, mjs chosen below, the subscript j refers to xjf while the subscript
s denotes stage s, j ^ s.

Stage 1. Select a positive constant rn such that

rn < min {1/2, 1/2 min {τ(x) \ x e B(xly rn)}, d(x19 E
n - U)} ,

and S(x19 rn) i l l = φ. Then choose the positive integer mn so large
that the homeomorphism FXi,rn,mil is of spiral type relative to / . We
set ft = ί\ = FXvril,mnζ(mn) = Ci, and U, - B(x19 r n ) .

Stage 2. Select a positive constant r12 such that

(10) r12 < min {rn/2, ζ
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(11) SiHfa), r12) Π HX{X) = φ ,

(12)

In each step, a condition such as (11) is crucial in the construction
of the Ui satisfying (1), and can be achieved since X is countable.
Then choose the positive integer m12 so large that FHl{Xl),rvt,mi2 is of
spiral type relative to fHlm We set F2 = FHliXι),ri2,mi2, ζ(m12) - ζ2, U2 =
BiH^Xj), r12), and H2 = F2Fl9 Now consider the point H2{%2). Using
(9), (12), and our choice of r u , we have

H2(x2) = H^x,) £ S(x19 ru) U SiHfa), r12) .

We then have two cases to consider.

Case 1. H2(x2) e B(xly r n ) . Then select r22 such that

(13) r22 < ζ2ζx/23 ,

(14) S(H2(x2), r22) n H2{X) = p ,

(15) B(H2(x2), r22) Π S ί ^ ί ^ ) , r12) - ό ,

(16)

Then choose m22 so large that FIl2{X2),r22,m22 is of spiral type relative
to fH2. Set F, = FH2iX2),r22,m22, ζ(m22) = ζ3, J73 = B(H2(x2)} r22), and

Case 2. iί2(#2) e U — B(xu τn). Then select ?*22 such that

r22 < min {1/2 min {τ(α) | a? e B(H2(xz), r22)}, d(H2(x2), En - J7)} ,

and, moreover, relations (13), (14), and (15) are satisfied, together
with the following relation analogous to (16):

(17) B(H2(x2), r22) c U - Bfo, r n ) .

Then let Fs, ζ3, C/3, and i?3 be determined as in Case 1. One verifies
that Fi and Ui satisfy all the conditions of Theorem 1. It also is
readily verified, in particular, that

(18) H3(X) Π {S(xly rn) U SiHM r12) U S(fl"2(α;2), r22)} = φ .

Suppose, inductively, that stages 1 through k — 1 have been
constructed, i.e., that positive constants rj8, and positive integers
mjs, j — 1, 2, , k — 1, j <̂  s ^ k — 1, have been chosen, together
with homeomorphisms Ho = /, Hl9 - -, Ha{k) of ί7 on itself such that
the following conditions are satisfied. First, for 1 <£ m ^ o-(A ), i ϊ m =
•̂ m^m-i Fu where F σ ( s ) + : 7 = FHσ{8)+._l{x.)tr.8,m.8, and m i s is so large
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that Fa{s)+j is of spiral type relative to /iί,(,>+J _i. Before stating
further conditions, we simplify our notation by setting Fjt — FσM+j,
Ujs — Uσ{s)+i, ζjS = ζa(S)+j-ι = ζ,(fn>j,)i Hjs — Hσ(s)+,-_u Bjs = B(HjS(Xj), rjs),

and Sjs = S(H3-(Xj), rjs). Continuing, now, the enumeration of the
conditions satisfied in stages 1 through k — 1, we have:

(19) rjs < rjsj2 < • . < rjά/2 ,

(20)

r}.}. < min {ζ,s ζJ2°^^, diH^Xj), E" - U), 1/2 min {τ(x) \ x e Bjs}} ,

(21) Sjs Π HS.(X) = φ ,

(22) Bjs f]Bls = φ [j Φ I, s fixed] ,

(23) Hjt{x,) e Bιt =- Bu c Bιt [t < s] ,

(24) Hj.iXj) eU -Blt=> Bjs <zU - Blt [t < s] .

It is readily verified, using (9), (21), and (22), that

(25) { U S,\nH}+u(X) = φ,

and that (23) and (24) cover the possible locations of Hjs(Xj). Setting
Ujs — BjsJ one verifies, using (19)-(24), that Fm and Um, 1 ^ m ̂  σ(k),
satisfy the conditions of Theorem 1, as well as the condition
δ(Um) < min {τ(x) \ x e Um}. Clearly, we may choose positive constants
rίk, % , 3 = 1, , k, and define Uku , Ukk, Fku , Fkk as above
so that relations (19)-(24) remain valid for j = 1, , k, j <£ s g k,
and Hm = FmFm^ Fl9 1 ^ m ^ σ(k + 1), and, moreover, Fjs is of
spiral type relative to fHjβ. This completes the induction, and we
set H = lim^oo H^ Using Theorem 1, H is a homeomorphism of U
on itself, and from (9) and (20), d(H(x),x) < τ(x), for all xeU. It
is readily seen (compare with § 8 of [1]) that X consists entirely of
spiral points of fH. Since, by our choice of τ, d(f(x), fH(x)) < e(x)
for all x e U, the proof of Theorem 2 is complete.

COROLLARY 1. In Theorem 2, the homeomorphism g = fH can
be taken as g = fKu where Kt11 e [0,1], is a continuous family of
homeomorphisms of U on itself such that Ko = I.

Proof. In the proof and notation of Theorem 2, we replace Hk —
Fk . . Fx by (Hk)t = (Fk)t {Fx)t, where if Fk - Fc,r,m, then (Fk)t is
defined as follows. First, (Fk)t(x) — Fk(x) for xe U — B(c, r). Now
for xeB(cy r) — B(c, r/2), the formulas for the components of (Fk)t

are obtained from the corresponding formulas (cf. (9)-(9)'") for the
components of Fk by replacing am(x) by tan(x). Finally, we set
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{ F k W ) = 2 | | g " C "Γ(J'>)/ 9 y- 0 ) , , + c) - c] + c
r L \2\\x — c\\ J J

for a? e B(c, r/2) — 0, and set (Fk)t(0) = 0. These are overdeίinitions,
but are consistant, and define a homeomorphism of U on itself, for
each t e [0,1]. Note that (Hk\ = /, and {Hk\ = Hk, for each k^l.
It is clear that d((Fk)t(x), (Fk)t(y)) ^ ζ(m)d(x, y), [x,ye U], where ζ(m)
is the constant verifying the corresponding inequality for Fk. Hence,
setting Kt = lim^oo (Hk)u we see by Theorem 1 that Kt is a homeo-
morphism of U on itself, for each t e [0,1]. Note also that KQ = I
and K± = £Γ. To complete the proof, one verifies that Kt is a con-
tinuous family by noting that

d(Kt(x), Hk{x)) ^ Σ 1/2% [xeU,te [ 0 , 1 ] , fc e Z+]
i = k

and

d{{Hk)s(x), (Hk)M) S d(x, y) + 1/2*-1, [x, yeU,s,te [0,1], Λ e Z+] .

COROLLARY 2. Let f:Mn—>Nn be a homeomorphism of Mn into
Nn, where Mn and Nn are nonbounded differentiate n-manifolds.
Suppose e: Mn —* E1 is an arbitrary real-valued positive continuous
function. Then there exists a continuous family Kt,te [0,1], of
homeomorphisms of Mn on itself such that Ko = /, and the homeo-
morphism g = fKx has a dense set {in Mn) of spiral points, and
d(f(x), g(x)) < e(x), for all xeM\

Proof. With the aid of Corollary 1, a proof of Corollary 2 can
be patterned after the proof of Theorem 1 of [1],
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