SEQUENCES OF HOMEOMORPHISMS WHICH CONVERGE TO HOMEOMORPHISMS

Jerome L. Paul

A technique often used in topology involves the inductive modification of a given mapping in order to achieve a limit mapping having certain prescribed properties. The following definition will facilitate the discussion. Suppose X and Y are topological spaces, and $\left\{W_{i}\right\}, i=1,2, \cdots$, is a countable collection of subsets of X. Then a sequence $\left\{f_{i}\right\}, i \geqq 0$, of mappings from X into Y is called stable relative to $\left\{W_{i}\right\}$ if $f_{i}\left|\left(X-W_{i}\right)=f_{i-1}\right|\left(X-W_{i}\right), i,=1,2, \cdots$. Note, in the above definition, that if $\left\{W_{i}\right\}$ is a locally finite collection, then $\lim _{i \rightarrow \infty} f_{i}$ is necessarily a well defined mapping from X into Y, and is continuous if each f_{i} is continuous. In a typical smoothing theorem, a C^{r}-mapping $f: M \rightarrow N$ between C^{∞} differentiable manifolds M and N is approximated by a C^{∞}-mapping $g: M \rightarrow N$, where the mapping g is constructed as the limit of a suitable sequence $\left\{f_{i}\right\}\left(\right.$ with $\left.f_{0}=f\right)$ which is stable relative to a locally finite collection $\left\{C_{i}\right\}$ of compact subsets of M. On the other hand, instead of improving f, it is also of interest to approximate f by a mapping g which has bad behavior at, say, a dense set of points of M. In this paper, such a mapping g is constructed as the limit of a sequence $\left\{f_{i}\right\}$ (with $f_{0}=f$) which is stable relative to $\left\{C_{i}\right\}$, but where the C_{i} are more "clustered" than a locally finite collection. The case of interest here is where a sequence of homeomorphisms $\left\{H_{i}\right\}$, which is stable relative to $\left\{U_{i}\right\}$, necessarily converges to a homeomorphism. Theorem 1 of this paper gives a sufficient condition that the latter be satisfied for homeomorphisms of a metric space. In Theorem 1, the collection $\left\{U_{i}\right\}$ is not, in general, locally finite (in fact, the U_{i} satisfy a certain "nested" condition). Theorem 1 is used to establish a result concerning the distribution of homeomorphisms (of a differentiable manifold) which have a dense set of spiral points.

Let M be a metric space with metric d. We denote the (open) ball, of radius r, and centered at the point $x \in M$, by $B(x, r)=$ $\{y \in M \mid d(x, y)<r\}$. The diameter of a nonempty subset A of M is $\delta(A)=\sup \{d(x, y) \mid x \in A, y \in A\}$. When M is euclidean n-space E^{n}, we write the points of E^{n} as $x=\left(x^{1}, \cdots, x^{n}\right)$, and provide E^{n} with the usual euclidean norm and metric

$$
\|x\|=\left[\sum_{i=1}^{n}\left(x^{i}\right)^{2}\right]^{1 / 2}, \quad d(x, y)=\|x-y\|
$$

The boundary of $B(x, r)$ in E^{n} is the $(n-1)$-sphere $S(x, r)=$
$\left\{y \in E^{n} \mid d(x, y)=r\right\}$. If A is a subset of M, we denote the closure of A in M by \bar{A}. If \bar{A} is compact, we say that A is relatively compact. Let Z^{+}denote the set of positive integers. The identity mapping will be denoted by I, without regard to domain.

ThEOREM 1. Let $\left\{U_{i}\right\}, i \in Z^{+}$, be a sequence of nonempty relatively compact open subsets of M such that

$$
\begin{equation*}
U_{i} \cap U_{j} \neq \phi \Rightarrow U_{i} \supset \bar{U}_{j} \quad[i<j] \tag{1}
\end{equation*}
$$

Suppose $\left\{F_{i}\right\}, i \in Z^{+}$. is a sequence of homeomorphisms of M onto itself such that

$$
\begin{equation*}
F_{i} \mid\left(M-U_{i}\right)=I \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
d\left(F_{i}(x), F_{i}(y)\right) \geqq \zeta_{i} d(x, y) \quad[x, y \in M] \tag{3}
\end{equation*}
$$

for some constant $\zeta_{i}\left(\right.$ depending on $\left.F_{i}\right)$. Set

$$
\begin{equation*}
H_{i}=F_{i} F_{i-1} \cdots F_{1} \tag{4}
\end{equation*}
$$

(note that the sequence $\left\{H_{i}\right\}$ is stable relative to $\left\{U_{i}\right\}$). If, for $i \geqq 2$,

$$
\begin{equation*}
\delta\left(U_{i}\right)<\zeta_{i-1} \zeta_{i-2} \cdots \zeta_{1} / 2^{i} \tag{5}
\end{equation*}
$$

then $H=\lim _{i \rightarrow \infty} H_{i}$ is a homeomorphism of M on itself.
Proof. We note from (2) that $\zeta_{i} \leqq 1, i \in Z^{+}$. Therefore, we see from (2) and (5) that $d\left(F_{i}(x), x\right)<1 / 2^{i}$, and hence

$$
\begin{equation*}
d\left(H_{i}(x), H_{i-1}(x)\right)<1 / 2^{i} \quad\left[i \in Z^{+}, x \in M\right] . \tag{6}
\end{equation*}
$$

Given any fixed $x \in M$, we first show that $\lim _{i \rightarrow \infty} H_{i}(x)$ exists. We have two cases to consider.

Case 1. There exists an integer $j(x)$ such that $H_{k}(x)=H_{j(x)}(x)$ for all $k \geqq j(x)$. Then, of course, $\lim _{i \rightarrow \infty} H_{i}(x)=H_{j(x)}(x)$.

Case 2. There exists a sequence $l_{1}<l_{2}<\cdots$ such that $H_{l_{i}}(x) \neq$ $H_{l_{i+1}}(x), i \in Z^{+}$. Then from (4) and (2), we see that there exists a sequence $m_{1}<m_{2} \cdots$ such that $H_{m_{i}-1}(x) \in U_{m_{i}}$, and $\bar{U}_{m_{i+1}} \subset U_{m_{i}}, i \in Z^{+}$. Note that $\bigcap_{i=1}^{\infty} U_{m_{i}}=\bigcap_{i=1}^{\infty} \bar{U}_{m_{i}} \neq \phi$, the last inequality holding since $\left\{\bar{U}_{m_{i}}\right\}, i \in Z^{+}$, is a decreasing sequence of nonempty compact subsets of the compact set $\bar{U}_{m_{1}}$. Since $\delta\left(U_{m_{i}}\right) \rightarrow 0$ as $i \rightarrow \infty$, we see that there is a unique point $z=\bigcap_{i=1}^{\infty} U_{m_{i}}$. Hence $\lim _{i \rightarrow \infty} H_{m_{i}}(x)=z$. Then,
using (6), $\lim _{i \rightarrow \infty} H_{i}(x)=z$. This shows that H is a well defined mapping of M into itself. Moreover, using (6), H is the limit of a uniformly convergent sequence of continuous mappings, and hence is itself continuous.

We now show that H is one-to-one. Suppose, then, that x, y are two distinct points of M. We have three cases.

Case 1. There exist integers $j(x), k(y)$ such that $H_{l}(x)=H_{j(x)}(x)$ for $l \geqq j(x)$, and $H_{m}(y)=H_{k(y)}(y)$ for $m \geqq k(y)$. Then, setting $q=$ $\max \{j(x), k(y)\}$, we have $H(x)=H_{q}(x) \neq H_{q}(y)=H(y)$.

Case 2. Same as Case 2 above. Then, as above, there exists a sequence $m_{1}<m_{2}<\cdots$ such that $H_{m_{i}}(x) \in U_{m_{i}}, i \in Z^{+}$. Choose $m_{i}=p$ so large that $1 / 2^{p}<d(x, y)$. Then using (1) we have, in particular, $H_{p-1}(x) \cup H(x) \subset U_{p}$. Using (3) and (4),

$$
d\left(H_{p-1}(x), H_{p-1}(y)\right) \geqq \zeta_{p-1} \cdots \zeta_{1} \cdot d(x, y)
$$

On the other hand, using (5) and our choice of p, it follows that $\delta\left(U_{p}\right)<\zeta_{p-1} \cdots \zeta_{1} / 2^{p}<\zeta_{p-1} \cdots \zeta_{1} \cdot d(x, y)$. Hence $H_{p-1}(y) \notin U_{p}$, and, using (1), (2), and (4), $H(y) \notin U_{p}$. Therefore, $H(x) \neq H(y)$.

Case 3. There exists a sequence $n_{1}<n_{2}<\cdots$ such that $H_{n_{i}}(y) \neq$ $H_{n_{i+1}}(y)$. The proof that $H(x) \neq H(y)$ in this case is entirely analogous to Case 2. This completes the proof that H is one-to-one.

We now show that H maps M onto itself. Let y be an arbitrary point of M. If there exists an integer $j(y)$ such that $z=H_{k}^{-1}(y)=H_{j(y)}^{-1}(y)$ for all $k \geqq j(y)$, then $H(z)=y$. Suppose, then, that there exists a sequence $k_{1}<k_{2}<\cdots$ such that $H_{k_{i}}^{-1}(y) \neq H_{k_{i+1}}^{-1}(y)$. Then, using (1), (2), and (4), there exists a sequence $l_{1}<l_{2}<\cdots$ such that $H_{l_{i}}^{-1}(y) \in U_{l_{i}}$ and $U_{l_{i}} \supset \bar{U}_{l_{i+1}}, i \in Z^{+}$. Letting z be the unique point $z=\bigcap_{i=1}^{\infty} U_{l_{i}}$, we see that $\lim _{i \rightarrow \infty} H_{l_{i}}^{-1}(y)=z$. But then $H(z)=\lim _{i \rightarrow \infty} H_{l_{i}}\left(H_{l_{i}}^{-1}(y)\right)=y$, where the first equality follows from the fact that a uniformly convergent sequence of functions is continuously convergent. Hence, H is an onto mapping.

To show that H is a homeomorphism of M on itself, it remains to verify the continuity of H^{-1} (note that when M is an open subset of E^{n}, Brouwer's theorem on invariance of domain implies that H^{-1} is continuous). We do this by showing that the limit set of H is empty, i.e., given any $y \in M$, and any sequence $\left\{x_{n}\right\}$ of points of M having no convergent subsequence, we shall show that the sequence $\left\{H\left(x_{n}\right)\right\}$ does not converge to y. Since H is onto, let $z \in M$ be such that $H(z)=y$. We have two cases to consider.

Case 1. There exists an integer $j(z)$ such that $H_{k}(z)=H_{j(z)}(z)=y$
for all $k \geqq j(z)$. Now since $\left\{x_{n}\right\}$ contains no convergent subsequence, we may assume $d\left(x_{n}, z\right) \geqq \xi>0$ for some fixed ξ and all $n \in Z^{+}$. Let $p>0$ be a fixed integer so large that $1 / 2^{p}<\xi / 2$. Now for an arbitrary $n \in Z^{+}$, we have, from (3) and (4), $d\left(H_{p-1}\left(x_{n}\right), y\right) \geqq \zeta_{p-1} \cdots \zeta_{1} \cdot \xi$, whereas, from (5), $\delta\left(U_{p}\right)<\zeta_{p-1} \cdots \zeta_{1} / 2^{p}<\zeta_{p-1} \cdots \zeta_{1} \cdot \xi / 2$. Hence the points $H_{p-1}\left(x_{n}\right)$ and y are not both contained in \bar{U}_{p}. A similar analysis shows that
(α) the points $H_{k-1}\left(x_{n}\right)$ and y are not both contained in \bar{U}_{k}, for all $k \geqq p$, and all $n \in Z^{+}$.

Now given any $k \geqq p$, let N_{k} denote those points x_{j} of the sequence $\left\{x_{n}\right\}$ such that $H_{k-1}\left(x_{j}\right) \in U_{k}$. If $N_{k} \neq \phi$, then from (α) above we see that $y \notin \bar{U}_{k}$. Setting $W_{k}=M-\bar{U}_{k}$ if $N_{k} \neq \dot{\phi}$, and $W_{k}=M$ if $N_{k}=\dot{\phi}$, we see that W_{k} is a neighborhood of y such that

$$
\begin{equation*}
H\left(N_{k}\right) \cap W_{k}=\dot{\varphi} . \tag{7}
\end{equation*}
$$

Setting $\eta=\zeta_{p} \cdots \zeta_{1} \cdot \xi$, we see from (3) and (4) that $d\left(H_{p}\left(x_{n}\right), y\right) \geqq \eta$ for all $n \in Z^{+}$. Now choose an integer $q>p$ so large that $\sum_{i=q}^{\infty} 1 / 2^{i}<\eta / 2$. Then for any $x_{l} \notin\left\{N_{p} \cup N_{p+1} \cup \cdots \cup N_{q}\right\}$, we have $H_{q-1}\left(x_{l}\right)=H_{q-2}\left(x_{l}\right)=\cdots=H_{p}\left(x_{l}\right)$. Then $d\left(H\left(x_{l}\right), H_{p}\left(x_{l}\right)\right) \leqq \sum_{i=q}^{\infty} 1 / 2^{q}<\eta / 2$, whereas $d\left(H\left(x_{l}\right), y\right) \geqq d\left(H\left(x_{l}\right), y\right)-d\left(H_{p}\left(x_{l}\right), H\left(x_{l}\right)\right) \geqq \eta-\eta / 2=\eta / 2$. Hence we see that

$$
\begin{equation*}
H\left(x_{l}\right) \notin B(y, \eta / 4) \quad\left[x_{l} \notin\left\{N_{p} \cup N_{p+1} \cup \cdots \cup N_{q}\right\}\right] . \tag{8}
\end{equation*}
$$

Setting $\quad V=B(y, \eta / 4) \cap W_{p} \cap W_{p+1} \cap \cdots \cap W_{q}$, we see from (7) and (8) that V is a neighborhood of y in M such that $H\left(x_{n}\right) \notin V$ for all $n \in Z^{+}$. Hence the sequence $H\left(x_{n}\right)$ does not converge to y.

Case 2. There exists a sequence $m_{1}<m_{2}<\cdots$ such that $H_{m_{i}}(z) \neq$ $H_{m_{i+1}}(z), i \in Z^{+}$. Then, as seen before, there exists a sequence $k_{1}<k_{2}<\cdots$ such that $y=H(z)=\bigcap_{i=1}^{\infty} U_{k_{i}}$. As before, letting $\xi>0$ be such that $d\left(x_{n}, y\right) \geqq \xi$ for all $n \in Z^{+}$, we take $p=k_{j}$ so large that $1 / 2^{p}<\xi$. Then, using (3), (4), and (5), we see that $y \in U_{p}$, whereas $H_{p-1}\left(x_{n}\right) \notin U_{p}$ for all $n \in Z^{+}$. Then by (4) and (2), $H\left(x_{n}\right) \notin U_{p}$ for all $n \in Z^{+}$. Since U_{p} is a neighborhood of y in M, it follows that $\left\{H\left(x_{n}\right)\right\}$ does not converge to y. This completes the proof that H^{-1} is continuous, and hence Theorem 1 is completely proven.

Remarks and Examples. One verifies that the biuniqueness of the limit mapping H is still valid if condition (5) is weakened to requiring only that $\delta\left(U_{i}\right)<\zeta_{i-1} \cdots \zeta_{1} / \alpha_{i}$, where the positive constants a_{i} are subject to the condition $\lim _{i \rightarrow \infty} a_{i}=+\infty$. The necessity for this latter condition is illustrated by the following example. Let $M=E^{n}$, and for any $i \in Z^{+}$, set $U_{i}=B\left(0,1 / 2^{i+1}\right)$. Let F_{i} be a
diffeomorphism of E^{n} on itself defined by $F_{i}(x)=\alpha_{i}(\|x\|) x$, where α_{i} is a smooth monotonic real-valued function of the real variable t such that $\alpha_{i}(t)=1 / 2$ for $t \leqq 1 / 2^{i+2}$, and $\alpha_{i}(t)=1$ for $t \geqq 1 / 2^{i+1}$. Then $d\left(F_{i}(x), F_{i}(y)\right) \geqq(1 / 2) d(x, y)$ for all $x, y \in E^{n}$ and $i \in Z^{+}$. Hence, setting $\zeta_{i}=1 / 2, i \in Z^{+}$, we see that conditions (1), (2), and (3) of Theorem 1 are satisfied by U_{i} and F_{i}. Condition (5) is violated, but we have, nevertheless,

$$
\delta\left(U_{i}\right)=2\left(1 / 2^{i+1}\right)=1 / 2^{i}<1 / 2^{i-1}=\zeta_{i-1} \cdots \zeta_{1} .
$$

It is easily seen that the mapping $H=\lim _{i \rightarrow \infty} F_{i} F_{i-1} \cdots F_{1}$ is a continuous mapping of E^{n} on itself, but H is not one-to-one since $H(B(0,1 / 8))=0$.

The diffeomorphisms F_{i} in the above example are members of an important class of homeomorphisms of E^{n} which satisfy a condition such as (3): namely, the class of diffeomorphisms of E^{n} which are the identity outside some compact subset of E^{n}. Condition (3) is not, in general, satisfied for homeomorphisms of E^{n} which are the identity outside some compact subset of E^{n}, even for those which are, in addition, diffeomorphisms on the complement of a single point. For consider the following example. Let F be a C_{0}^{∞}-diffeomorphism of E^{2} on itself (i.e., F is a homeomorphism of E^{2} on itself such that $F \mid\left(E^{2}-0\right)$ is a C^{∞}-diffeomorphism) such that F is the identity on the subset $\left\{E^{2}-B(0,1)\right\} \cap\left\{\bigcup_{n=1}^{\infty} S(0,1 / n)\right\} \cup\{0\}$, and such that the spheres $S\left(0,1 / n-10^{-n}\right), n \in Z^{+}$, are rotated by F through 180 degrees. Such a homeomorphism is readily constructed. One verifies that

$$
\begin{aligned}
& d\left(F((0,1 / n)), F\left(\left(0,-1 / n+10^{-n}\right)\right)\right. \\
& \quad=\left(10^{n} \cdot 2 / n-1\right)^{-1} \cdot d\left((0,1 / n),\left(0,-1 / n+10^{-n}\right)\right)
\end{aligned}
$$

and hence there can not exist a number ζ such that $d(F(x), F(y)) \geqq$ $\zeta d(x, y)$ for all $x, y \in E^{2}$.

We now use Theorem 1 to establish a result concerning spiral points of homeomorphisms of nonbounded differentiable manifolds. The reader is referred to [1] for the relevant definitions and results. We recall that if $f: U \rightarrow E^{n}, n \geqq 2$, is a homeomorphism, where U is an open set in E^{n}, then a point $x \in U$ is a spiral point of f if, and only if, the following is satisfied: given any C^{p}-imbedding $(p>0) \sigma:[0,1] \rightarrow U$ such that $\sigma(1)=x$, any diffeomorphism H of E^{n} on itself, and any ($n-1$)-hyperplane P in E^{n} through $H f(x)$, then there exists a sequence of points $t_{i} \in[0,1]$ converging to 1 and such that $H f \sigma\left(t_{i}\right) \in P$. The notion is extended to differentiable manifolds in the natural way. It is readily verified (cf. Proposition 2 of [1]) that if $f: M^{n} \rightarrow N^{n}$ is a homeomorphism, where M^{n}, N^{n} are nonbounded differentiable n-manifolds, then the set of nonspiral points of f is
(uncountably) dense in M^{n}. Nevertheless, there always exist (Theorem 1 of [1]) homeomorphisms of M^{n} on itself (or into N^{n}) having a dense set of spiral points. We generalize this result result and show that the homeomorphisms of M^{n} into N^{n} which have a dense set of spiral points form a dense subset, in the fine C^{0} topology, of the set $H\left(M^{n}, N^{n}\right)$ of homeomorphisms of M^{n} into N^{n}.

Theorem 2. Let $f: U \rightarrow E^{n}, n \geqq 2$, be a homeomorphism, where U is an open subset of E^{n}, and let $\varepsilon: U \rightarrow E^{1}$ be a real-valued positive continuous function. Then there exists a homeomorphism $g: U \rightarrow E^{n}$ such that g has a dense set (in U) of spiral points, and $d(f(x), g(x))<\varepsilon(x),[x \in U]$.

Remarks. It can be seen from the constructions in §8 of [1] that Theorem 2 above is valid for diffeomorphisms f. Indeed, using the techniques in $\S 8$ of [1], one can construct a homeomorphism h of U on itself having a dense set of spiral points, and, moreover, such that $d(f h(x), f(x))<\varepsilon(x)$, for all $x \in U$. Then $g=f h$ satisfies the requirements of Theorem 2 relative to f. The difficulty that arises when f is not a diffeomorphism is that a point $x \in U$ can be a spiral point of the homeomorphism g, and the point $g(x)$ can be a piercing point (cf. Definition 1 of [1]) of the homeomorphism f, and yet x can be a piercing point of $f g$ (and hence, in particular, x is not a spiral point of $f g$). However, the generality afforded by condition 3 of Theorem 1 (i.e., the constants ζ_{i} vary with F_{i}), as opposed to the uniform constant δ appearing in property (β) of [1], will allow us to overcome the above difficulty.

Proof of Theorem 2. Let X be a countable dense subset in U of distinct points $x_{i}, i \in Z^{+}$. We will construct a sequence of homeomorphisms H_{i} of U on itself, of the type described in Theorem 1 above, and such that if $H=\lim _{i \rightarrow \infty} H_{i}$, then X consists entirely of spiral points of $f H$, and $d(f H(x), f(x))<\varepsilon(x)$ for all $x \in U$. This latter condition will be satisfied if $d(H(x), x)<\tau(x)$, provided $\tau: U \rightarrow E^{1}$ is a suitably chosen real-valued positive continuous function. We assume below that a fixed choice for such a function τ has been made. Note from (2) and (4) that if $\delta\left(U_{i}\right)<\min \left\{\tau(x) \mid x \in U_{i}\right\}$, for all $i \in Z^{+}$, then the above approximation conditions are necessarily satisfied.

Before defining the homeomorphisms H_{i}, we need some definitions. For $\quad c=\left(c^{1}, c^{2}, \cdots, c^{n}\right), \quad x=\left(x^{1}, x^{2}, \cdots, x^{n}\right), \quad 0<r<d\left(c, E^{n}-U\right)$, $i \in\{1,2, \cdots, n-1\}, i<j \leqq n$, and $m \in Z^{+}$, we define the homeomorphism $F_{c, r, i, i, m}$ of U on itself as follows:

$$
\begin{equation*}
F_{c, r, i, j, m}(x)=x \quad[x \in\{U-B(c, r)\} \cup \bar{B}(c, r / 2)] \tag{9}
\end{equation*}
$$

while for $x \in \bar{B}(c, r)-B(c, r / 2)$, the components of $F_{c, r, i, j, m}$ are:
$(9)^{\prime} \quad F_{c, r, i, j, m}^{k}(x)=x^{k}, k \neq i, j$,
$(9)^{\prime \prime} \quad F_{c, r, i, j, m}^{i}(x)=\left(x^{i}-c^{i}\right) \cos \alpha_{m}(x)-\left(x^{j}-c^{j}\right) \sin \alpha_{m}(x)+c^{i}$,
$(9)^{\prime \prime \prime} \quad F_{c, r, i, j, m}^{j}(x)=\left(x^{i}-c^{i}\right) \sin \alpha_{m}(x)+\left(x^{j}-c^{j}\right) \cos \alpha_{m}(x)+c^{j}$,
where $\alpha_{m}(x)=4 m \pi((r-\|x-c\|) / r)$. We then define the homeomorphism $F_{c, r, m}$ of U on itself by setting

$$
F_{c, r, m}=F_{c, r, 1,2, m} F_{c, r, 1, \Omega, m} \cdots F_{c, r, n-1, n, m} .
$$

It is readily seen that there exists a positive constant $\zeta(m)$ such that $d\left(F_{c, r, m}(x), F_{c, r, m}(y)\right) \geqq \zeta(m) d(x, y),[x, y \in U]$.

A homeomorphic image Ω of E^{n-1} in E^{n} will be called a sufficiently planar topological ($n-1$)-hyperplane relative to $y \in E^{n}$ if the following conditions are satisfied: (i) $y \in \Omega$, (ii) $E^{n}-\Omega$ is not connected, and (iii) there exists a (true) $(n-1)$-hyperplane P in E^{n} through y such that for all $x \in \Omega$, the secant line joining x to y makes an angle of less than one degree with P. Given a homeomorphism $g: U \rightarrow E^{n}$, we will say that $F_{c, r, m}$ is of spiral type relative to g if the following condition holds: if σ is any arc joining a point of $S(c, r / 2)$ to a point of $S(c, r)$, and such that σ lies in one component of $E^{n}-P^{*}$, where P^{*} is some $(n-1)$-hyperplane in E^{n} through c, and if Ω is any sufficiently planar topological ($n-1$)-hyperplane relative to $g(c)$, then $g F_{c, r, m}(\sigma) \cap \Omega \neq \dot{\phi}$.

We now can construct, inductively, the required homeomorphisms H_{i}. The inductive description is most conveniently carried out by stages, i.e., setting $\sigma(k)=1+2+\cdots+k-1=k(k-1) / 2$, at stage k, the homeomorphisms $H_{\sigma(k)+1}, H_{\sigma(k)+2}, \cdots, H_{\sigma(k+1)}$ are constructed. To further orient our discussion, we remark that the point $H_{\sigma(k)}\left(x_{k}\right)$ is added to our discussion at stage k, and relative to the constants $r_{j s}, m_{j s}$ chosen below, the subscript j refers to x_{j}, while the subscript s denotes stage $s, j \leqq s$.

Stage 1. Select a positive constant r_{11} such that

$$
r_{11}<\min \left\{1 / 2,1 / 2 \min \left\{\tau(x) \mid x \in B\left(x_{1}, r_{11}\right)\right\}, d\left(x_{1}, E^{n}-U\right)\right\}
$$

and $S\left(x_{1}, r_{11}\right) \cap X=\phi$. Then choose the positive integer m_{11} so large that the homeomorphism $F_{x_{1}, r_{11}, m_{11}}$ is of spiral type relative to f. We set $H_{1}=F_{1}=F_{x_{1}, r_{11}, m_{11}} \zeta\left(m_{11}\right)=\zeta_{1}$, and $U_{1}=B\left(x_{1}, r_{11}\right)$.

Stage 2. Select a positive constant r_{12} such that

$$
\begin{equation*}
r_{12}<\min \left\{r_{11} / 2, \zeta_{1} / 2^{2}\right\} \tag{10}
\end{equation*}
$$

$$
\begin{align*}
& S\left(H_{1}\left(x_{1}\right), r_{12}\right) \cap H_{1}(X)=\phi, \tag{11}\\
& H_{1}\left(x_{2}\right) \notin \bar{B}\left(H_{1}\left(x_{1}\right), r_{12}\right) . \tag{12}
\end{align*}
$$

In each step, a condition such as (11) is crucial in the construction of the U_{i} satisfying (1), and can be achieved since X is countable. Then choose the positive integer m_{12} so large that $F_{I H_{1}\left(x_{1}\right), r_{12}, m_{12}}$ is of spiral type relative to $f H_{1}$. We set $F_{2}=F_{H_{1}\left(x_{1}\right), r_{12}, m_{12}}, \zeta\left(m_{12}\right)=\zeta_{2}, U_{2}=$ $B\left(H_{1}\left(x_{1}\right), r_{12}\right)$, and $H_{2}=F_{2} F_{1}$. Now consider the point $H_{2}\left(x_{2}\right)$. Using (9), (12), and our choice of r_{11}, we have

$$
H_{2}\left(x_{2}\right)=H_{1}\left(x_{2}\right) \notin S\left(x_{1}, r_{11}\right) \cup S\left(H_{1}\left(x_{1}\right), r_{12}\right) .
$$

We then have two cases to consider.
Case 1. $H_{2}\left(x_{2}\right) \in B\left(x_{1}, r_{11}\right)$. Then select r_{22} such that

$$
\begin{align*}
& r_{22}<\zeta_{2} \zeta_{1} / 2^{3}, \tag{13}\\
& S\left(H_{2}\left(x_{2}\right), r_{22}\right) \cap H_{2}(X)=\dot{\phi}, \tag{14}\\
& \bar{B}\left(H_{2}\left(x_{2}\right), r_{22}\right) \cap \bar{B}\left(H_{1}\left(x_{1}\right), r_{12}\right)=\dot{\rho}, \tag{15}\\
& \bar{B}\left(H_{2}\left(x_{2}\right), r_{22}\right) \subset B\left(x_{1}, r_{11}\right) . \tag{16}
\end{align*}
$$

Then choose m_{22} so large that $F_{I I_{2}\left(x_{2}\right), r_{22}, m_{22}}$ is of spiral type relative to $f H_{2}$. Set $F_{3}=F_{H_{2}\left(x_{2}\right), r_{22}, m_{22}}, \zeta\left(m_{22}\right)=\zeta_{3}, \quad U_{3}=B\left(H_{2}\left(x_{2}\right), r_{22}\right)$, and $H_{3}=F_{3} F_{2} F_{1}$.

Case 2. $H_{2}\left(x_{2}\right) \in U-\bar{B}\left(x_{1}, r_{11}\right)$. Then select r_{22} such that

$$
r_{22}<\min \left\{1 / 2 \min \left\{\tau(x) \mid x \in B\left(H_{2}\left(x_{2}\right), r_{22}\right)\right\}, d\left(H_{2}\left(x_{2}\right), E^{n}-U\right)\right\},
$$

and, moreover, relations (13), (14), and (15) are satisfied, together with the following relation analogous to (16):

$$
\begin{equation*}
\bar{B}\left(H_{2}\left(x_{2}\right), r_{22}\right) \subset U-\bar{B}\left(x_{1}, r_{11}\right) \tag{17}
\end{equation*}
$$

Then let F_{3}, ζ_{3}, U_{3}, and H_{3} be determined as in Case 1. One verifies that F_{i} and U_{i} satisfy all the conditions of Theorem 1 . It also is readily verified, in particular, that

$$
\begin{equation*}
H_{3}(X) \cap\left\{S\left(x_{1}, r_{11}\right) \cup S\left(H_{1}\left(x_{1}\right), r_{12}\right) \cup S\left(H_{2}\left(x_{2}\right), r_{22}\right)\right\}=\dot{\phi} . \tag{18}
\end{equation*}
$$

Suppose, inductively, that stages 1 through $k-1$ have been constructed, i.e., that positive constants $r_{j s}$, and positive integers $m_{j s}, j=1,2, \cdots, k-1, j \leqq s \leqq k-1$, have been chosen, together with homeomorphisms $H_{0}=I, H_{1}, \cdots, H_{\sigma(k)}$ of U on itself such that the following conditions are satisfied. First, for $1 \leqq m \leqq \sigma(k), H_{m}=$ $F_{m} F_{m-1} \cdots F_{1}$, where $F_{\sigma(s)+j}=F_{H_{\sigma(s)+j-1}\left(x_{j}\right), r_{j s}, m_{j s},}$, and $m_{j s}$ is so large
that $F_{\sigma(s)+j}$ is of spiral type relative to $f H_{\sigma(s)+j-1}$. Before stating further conditions, we simplify our notation by setting $F_{j s}=F_{\sigma(s)+j}$, $U_{j s}=U_{\sigma(s)+j}, \zeta_{j s}=\zeta_{\sigma(s)+j-1}=\zeta\left(m_{j_{s}}\right), H_{j_{s}}=H_{\sigma(s)+j-1}, B_{j s}=B\left(H_{j s}\left(x_{j}\right), r_{j s}\right)$, and $S_{j s}=S\left(H_{j}\left(x_{j}\right), r_{j s}\right)$. Continuing, now, the enumeration of the conditions satisfied in stages 1 through $k-1$, we have:

$$
\begin{equation*}
r_{j_{s}}<r_{j_{s-1}} / 2<\cdots<r_{j j} / 2, \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
r_{j_{s}}<\min \left\{\zeta_{j_{s}} \cdots \zeta_{1} / 2^{\sigma(s)+j}, d\left(H_{j_{s}}\left(x_{j}\right), E^{n}-U\right), 1 / 2 \min \left\{\tau(x) \mid x \in B_{j s}\right\}\right\} \tag{20}
\end{equation*}
$$

$$
\begin{align*}
& S_{j s} \cap H_{j s}(X)=\dot{\phi} \tag{21}\\
& \bar{B}_{j s} \cap \bar{B}_{l s}=\phi \quad[j \neq l, s \text { fixed }] \tag{22}\\
& H_{j s}\left(æ_{j}\right) \in B_{l t}=\bar{B}_{j s} \subset B_{l t} \quad\lfloor t<s] \tag{23}\\
& H_{j s}\left(x_{j}\right) \in U-\bar{B}_{l t} \Rightarrow \bar{B}_{j s} \subset U-\bar{B}_{l t} \quad[t<s] \tag{24}
\end{align*}
$$

It is readily verified, using (9), (21), and (22), that

$$
\begin{equation*}
\left\{\bigcup_{t \leqq s, l<j} S_{l t}\right\} \cap H_{j+1 \mathrm{~s}}(X)=\dot{\phi} \tag{25}
\end{equation*}
$$

and that (23) and (24) cover the possible locations of $H_{j_{s}}\left(x_{j}\right)$. Setting $U_{j s}=B_{j s}$, one verifies, using (19)-(24), that F_{m} and $U_{m}, 1 \leqq m \leqq \sigma(k)$, satisfy the conditions of Theorem 1 , as well as the condition $\delta\left(U_{m}\right)<\min \left\{\tau(x) \mid x \in U_{m}\right\}$. Clearly, we may choose positive constants $r_{j k}, m_{j k}, j=1, \cdots, k$, and define $U_{k 1}, \cdots, U_{k k}, F_{k 1}, \cdots, F_{k k}$ as above so that relations (19)-(24) remain valid for $j=1, \cdots, k, j \leqq s \leqq k$, and $H_{m}=F_{m} F_{m-1} \cdots F_{1}, 1 \leqq m \leqq \sigma(k+1)$, and, moreover, $F_{j s}$ is of spiral type relative to $f H_{j s}$. This completes the induction, and we set $H=\lim _{i \rightarrow \infty} H_{i}$. Using Theorem 1, H is a homeomorphism of U on itself, and from (9) and (20), $d(H(x), x)<\tau(x)$, for all $x \in U$. It is readily seen (compare with $\S 8$ of [1]) that X consists entirely of spiral points of $f H$. Since, by our choice of $\tau, d(f(x), f H(x))<\varepsilon(x)$ for all $x \in U$, the proof of Theorem 2 is complete.

Corollary 1. In Theorem 2, the homeomorphism $g=f H$ can be taken as $g=f K_{1}$, where $K_{t}, t \in[0,1]$, is a continuous family of homeomorphisms of U on itself such that $K_{0}=I$.

Proof. In the proof and notation of Theorem 2, we replace $H_{k}=$ $F_{k} \cdots F_{1}$ by $\left(H_{k}\right)_{t}=\left(F_{k}\right)_{t} \cdots\left(F_{1}\right)_{t}$, where if $F_{k}=F_{c, r, m}$, then $\left(F_{k}\right)_{t}$ is defined as follows. First, $\left(F_{k}\right)_{t}(x)=F_{k}(x)$ for $x \in U-B(c, r)$. Now for $x \in \bar{B}(c, r)-B(c, r / 2)$, the formulas for the components of $\left(F_{k}\right)_{t}$ are obtained from the corresponding formulas (cf. (9)-(9)'"') for the components of F_{k} by replacing $\alpha_{m}(x)$ by $t \alpha_{m}(x)$. Finally, we set

$$
\left(F_{k}\right)_{t}(x)=\frac{2\|x-c\|}{r}\left[\left(F_{k}\right)_{t}\left(\frac{r(x-c)}{2\|x-c\|}+c\right)-c\right]+c
$$

for $x \in \bar{B}(c, r / 2)-0$, and set $\left(F_{k}\right)_{t}(0)=0$. These are overdefinitions, but are consistant, and define a homeomorphism of U on itself, for each $t \in[0,1]$. Note that $\left(H_{k}\right)_{0}=I$, and $\left(H_{k}\right)_{1}=H_{k}$, for each $k \geqq 1$. It is clear that $d\left(\left(F_{k}\right)_{t}(x),\left(F_{k}\right)_{t}(y)\right) \geqq \zeta(m) d(x, y),[x, y \in U]$, where $\zeta(m)$ is the constant verifying the corresponding inequality for F_{k}. Hence, setting $K_{t}=\lim _{k \rightarrow \infty}\left(H_{k}\right)_{t}$, we see by Theorem 1 that K_{t} is a homeomorphism of U on itself, for each $t \in[0,1]$. Note also that $K_{0}=I$ and $K_{1}=H$. To complete the proof, one verifies that K_{t} is a continuous family by noting that

$$
d\left(K_{t}(x), H_{k}(x)\right) \leqq \sum_{i=k}^{\infty} 1 / 2^{i},\left[x \in U, t \in[0,1], k \in Z^{+}\right]
$$

and

$$
d\left(\left(H_{k}\right)_{s}(x),\left(H_{k}\right)_{t}(y)\right) \leqq d(x, y)+1 / 2^{k-1},\left[x, y \in U, s, t \in[0,1], k \in Z^{+}\right]
$$

Corollary 2. Let $f: M^{n} \rightarrow N^{n}$ be a homeomorphism of M^{n} into N^{n}, where M^{n} and N^{n} are nonbounded differentiable n-manifolds. Suppose $\varepsilon: M^{n} \rightarrow E^{1}$ is an arbitrary real-valued positive continuous function. Then there exists a continuous family $K_{t}, t \in[0,1]$, of homeomorphisms of M^{n} on itself such that $K_{0}=I$, and the homeomorphism $g=f K_{1}$ has a dense set (in M^{n}) of spiral points, and $d(f(x), g(x))<\varepsilon(x)$, for all $x \in M^{n}$.

Proof. With the aid of Corollary 1, a proof of Corollary 2 can be patterned after the proof of Theorem 1 of [1].

Reference

1. J. Paul, Piercing points of homeomorphisms of differentiable manifolds, Trans. Amer. Math. Soc. 124 (1966), 518-532.

Received December 28, 1966. This work was partially supported by the National Science Foundation under grant GP-6599.

Purdue University
Lafayette, Indiana

