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MATRIX SUMMABILITY OVER CERTAIN CLASSES OF
SEQUENCES ORDERED WITH RESPECT TO
RATE OF CONVERGENCE

Davip F. DAwSON

Let C, denote the set of all complex null sequences, and
let S, denote the set of all sequences in C, which have at
most a finite number of zero terms. If a = {a,}€S, and
b=1{b,}€S,, we say that a converges faster than b,a < b,
provided lima,/b, =0. We say that o and b converge at
the same rate, a¢~0b, provided 0 < liminf|a,/b,| and
limsup|ay/b,| < co. If a€ S, let [a] ={xeS,; x~a}. Let
Ey={{x]:2€S,}. If [a],[b]c E,, then we say that [a] is less
than [b], [a] <’ [b], provided a < b. We note that E, is partially
ordered with respect to <’/. In this paper we study matrix
summability over subsets of S, and over elements of F,. Open
intervals in S, will be denoted by (a,bd), (a, —), and (—, d),
where (a, —)={xeSpra <z} and (—,d) ={xeS;: x < b}. Some
of our results characterize, for matrices, maximal summability
intervals in S,. Such intervals are of the form (—, b), never
of the form (—, b] = {x € S,: either x < b or x ~ b}.

Notational conveniences used are as follows. If A = (a,) is a
matrix and b is a sequence such that for each positive integer p,
the series >, a,0b, converges, then A(b) will denote the sequence
S aubtye,. We will use 4, to denote the matrix (a,,b,). If each of a
and b is a sequence, then ab will be used to denote the sequence {a,b,}.

Playing a basic role throughout the paper are the two classical
Silverman-Toeplitz (abbreviated S — T') conditions which are necessary
and sufficient for a matrix A to be convergence preserving over
(abbreviated c.p.o.) C,. These conditions are

(1) {a,};~ converges, ¢ =1,2,3,---,
and

(2) there exists K such that 3 |a,, | < K,p=1,2,3,---.
We note that the S — T conditions are necessary and sufficient for a
matrix A to be c.p.o. S,.

REMARK 1. A matrix sums every sequence in some interval (—, b)
if and only if it has convergent columns,

REMARK 2. If the matrix A is c.p.o. [b] and c¢ is a sequence such
that lim¢,/b, = 0, then A(c) is convergent.

REMARK 2'. If A is c.p.o. [b], then A is c.p.o. (—, b].
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REmARrRk 3. If A is e.p.o. (a, —), then A4 is c.p.o. C,.

LeEMMA. Suppose K and L are countable subsets of S, such that
if x€ K and ye L, then x <vy. Then there exists ze S, such that if
rxe K and ye L, then v < z < y.

Proof. Our proof will be for the case that both K and L are
infinite sets. Let K = {a®,a®,a®, ...} and L = {p?, d*,d?, ...},
Let {n,};, be an increasing sequence of positive integers such that if
1 > mn,, then

b

as?

>2p1 jyt:1’2"°°1p-

Define

Ci:bgl)’izl,zy...’%z,
c; = (I/p)min [| 8 [, |82, -+ -, |07 (],
ni’<?:§np+1yp:2,3,4, cee

Let » be a positive integer. If p > and ¢ is a positive integer
such that n, < ¢ < n,,,, then we have |b\”/c,| = p, and, since ¢, =
[0 |/p for some te{l,2,-.--,p}, we have |c,/a{”|>27/p. Thus
a™ < ¢ < b7, This completes the proof.

THEOREM 1. If A s c.p.o. [b], then there exists b’ € S, such that
b<b and A is c.p.o. [V].

Proof. Since A is c.p.o. [b], then by Remarks 1 and 2, A has
convergent columns. Let @, =lim, .a,. By Remark 2, A sums
every null sequence x such that lim«,/b, = 0. Thus A, sums every
null sequence. Therefore from (2) of the S — T conditions there
exists M such that if n is a positive integer, then >3 |a,,b,| < M.
Clearly >, |ab,| < M. Let C = (c,) be the matrix defined by
Cpe = Qb — ab,. Let D = (d,,) be the matrix defined by d,, = a.b,.
Then A, = C + D. We wish to show that the sequence

( * ) {Z | anpbp - apbp i}
p=1 n=1
converges to zero. We note that (*) is bounded. Suppose (*) has a

subsequence which converges to ¢ > 0. Note that each column of C
converges to zero. Let n, be a positive integer such that

| Siens | = 1] < 8.
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Let k, be a positive integer such that >3it, ¢, ,| > Ty/8. Let N, > n,
be an integer such that if ¢ > N,, then 3%, | ¢, | < /8. Let m, > N,
be an integer such that

Sl e | = 12| < 118 .

Let k, > k, be an integer such that >3z, |c,,| > 7¢/8. Let N,> n,
be an integer such that if ¢ > N,, then >, |¢, | < ¢#/8. Continue
the process to obtain increasing sequences {n,};., and {k,};-, of positive
integers. Define t,, = |¢,,|/c,, if ¢,y #0,¢,, =1 if ¢,, = 0. Define

Sp:]ﬂpzlyzy "'7k1y
Sp = ('—1)q+ltnqm kq—-l <p§ quq = 2y 3) 4: trt .

Suppose ¢ is a positive even integer. Then
| Senss — (-]

Kqg—1

Zcp3+ 2 Cnpsp+ chpszo"f'#
=1 p—hgogt1 pSigr1

p=

k

q
Z f C”qi"s]’ + # ’

p=lkg_1+

kg1 -

ggmm+z|m+

<t | = S el

p= kq__1+

<8+ pfh A+ plA

Similarly, if ¢ is a positive odd integer, then

Zjlcnqpsp — MK l < 5y/8 .

Thus C(s) is divergent. But A,(s) is convergent since A,(s) = A(bs)
and bse[b]. Clearly D(s) is convergent. Hence C(s) is convergent
since C(s) = A,(s) — D(s). Therefore we have a contradiction. Thus
(*) converges to zero since the assumption to the contrary leads to a
contradiction.

Let j, be a positive integer such that if ¢ > j,, then 37, /¢, | <
1/4. Let K be a number such that >, |c,,|< K,n=1,2,3,--
Let 4, be a positive integer such that X5, . |c,,| <1/4,n=1,2,---,
Ji. Let j, > j, be an integer such that if ¢ > j,, then >\7. | ¢, | < 1/4%
Let ¢, > 1, be an integer such that >3 ; . |¢,,| <1/, n=1,2,+--,7,.
Continue the process to obtain increasing sequences {j,};., and {i,};,
of positive integers. Define
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e, =1L,m=12--+,1.,
enzztyit<n§it+lvt:1v2v3’°" .

Consider the matrix C,. If ¢ is a positive integer, then

0o i1 o it41
S lewes| = Slene, |+ (3 Tenel)

t=1 \p=iz+1
oo Qg1
<K+3(2 5 fal)
t=1 p=it+1

< K+ 3 214
t=1
=K+1.

Let {r,} be an increasing sequence of positive integers such that

S lagh, | < 1/4".

Pt
Define

fH=1Lp=12 7,

=201, <p=7r.,9=123, -
Then

Slab sl =S labs + 3 (8 abr,)

g=1 \p=rq+

< M+ g (20- ﬁ; lab, :)

p=rq

< M+ 32040
g=1

Let g, = minle,, f,],» =1,2,3,---. Then g,— o as p— . Thus
b < bg. If nis a positive integer, then

25 10,bp0, | = 3 (€8, | + 2 [05D,0,
p=1 p=1 p=1
= S lewe, |+ S lab,f,)
<K+1+M+1.

Therefore the matrix A,, sums every null sequence. Thus if b<d’'<byg,
then A is c.p.o. [b']. The existence of a sequence b such that
b <V <bg follows from the lemma. This completes the proof of
the theorem,
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REMARK 4. We note that the matrix A, defined by a, =1 if
p #q,a, =2 if p = ¢, has a maximal interval (—,d) over which
it is convergence preserving. For example b = {1/277'}.

On the other hand, the matrix A, defined by a,, =0 if ¢ > p,
a,, =1 if p = ¢, has no such maximal interval. This is easily shown
by supposing that (—, b) is a maximal summability interval for A.
Then A, is c.p.o. C, and hence satisfies the S — T conditions. Thus
S b, | converges. It is easy to find c¢e S, such that b < ¢ and
S le,| converges. Thus A, satisfies the S — T conditions and
hence is c.p.o. C,. Therefore A is c.p.o. (—, ¢).

It is easy to show that if there exist numbers » and R such
that 0 <r <|a,| < R,p,q¢=1,2,8,---, then A = (a,,) has no maxi-
mal summability interval. The proof will be omitted.

REMARK 5. Let 4 be a chain in S, unbounded above. If ae€ 4,
let ¢ ={a,1/2,0,,1/4,0a,,1/8,---}. Let 4 ={a’:aec4d}. Then 4 is
a chain in S, which is unbounded above. Let A = (a,) be defined
by a,, =1/2" if ¢ =2n —1,a,, =1 if ¢ is an even integer. Clearly
if ¢’ e 4, then A is c.p.o. [¢']. But A is not c.p.o. C,.

THEOREM 2. If A s c.p.o. each of the sets [b™], [b?], [b®], - -,
then there exists de S, such that b» <d,p=1,2,8,---, and A 1s
c.p.o. [d].

Proof. By Theorem 1 we can find ¢ in S, such that t™ > ™
and A is e.p.o. [t"™],n=1,2,8,--.. If n is a positive integer, let
a™e[t™] such that 0 < al® <1,p=1,2,3,..-. If n is a positive
integer, let M, be a number which exceeds >, |, 2" |, p = 1,2,3,---.
If »n is a positive integer, let

B = a,” , p=1,2,3 ...
T M, + 1] ’
If p is a positive integer, let ¢, = >7., BY”. We wish to show that

ceS,. Let g >0, and let k& be a positive integer such that 2% < p/2.
Let R be a positive integer such that if ¢ > R, then B < p/2¢+,
p=12,+--- k. Then if n > R, we have

oo k oo
=28 =81+ > B p2+2F .
p=1 p=k+1

p=1

Thus ce S,. If ¢ is a positive integer, then, using the double sum
theorem, we have
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z_‘ Iaqpcpl = >, Iaqpl (2 18;)7”)
p=1 p=1 =1
=220 |8y | B
=1 n=1
=2 251, | B
=1 p=1
DS S e
Z‘l pz;l | Ges | 2" M, + 1]
— < 1 < (n)
= n,Z:l 2”[Mn + 1] FZ:‘AlIaqP|aP
< 2 2,

Thus A, sums every null sequence. Therefore A sums every sequence
x € S, such that < ¢. We note that if % is a positive integer, then
e,/Bm >1,p=1,2,3,.... Thus if n is a positive integer, then

¢, . BE .ty
m B H O]

_c_p_‘:

(n)
by

lim =

p—roo

Hence d™ <¢,n=1,2,3,.-.. By the lemma, there exists de S,
such that " <d<e,n=1,2,8,.--. A is c.p.o. [d] since d < ¢
and A sums every sequence x < .S, such that x < ¢. This completes
the proof of the theorem.

COROLLARY. Suppose M 1is a countable set of matrices and L s
a countable subset of E, such that 1f Ae M and [ble L, then A is
c.p.o. [b]. Then there exists [c]€ E, such that tf Ae M and [b]e L,
then [b] <'[c] and A s e.p.o. [c].

Proof. The proof will be for the case that both M and L are
infinite sets. Let M={A", A® A® ...} and L={[b"], [6®], [6®], ---}.
By Theorem 2, if p is a positive integer, there exists ¢® e S, such
that o™ <c¢?”,n=1,2,8,-.-, and A® is c.p.o. [¢®]. Let L' =
{[e™], [¢®], [¢®], «-+}. By the lemma, there exists ce S, such that if
b eL and ¢”eL’, then b < ¢ <c¢®. If j is a positive integer,
then by Remark 2, AY is c.p.o. [¢] since AY is c.p.o. [¢”] and
[e]c (—, ¢?]. This completes the proof.
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