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THE SPECTRAL RADIUS OF AVERAGING OPERATORS

Davip W. Boyp

This paper is concerned with the properties of certain
operators which act on rearrangement invariant spaces of
functions, The spectral radius of such an operator is deter-
mined precisely in terms of the spectral radius of the trans-
lation operator E;. A new inequality is obtained for the
norm of the iterates of the averaging operator P in terms of
the norm of FE..

We consider further properties of the operators P, and @, which
were exploited in [2] (with a slightly different notation).

If f is a measurable function defined on R* = [0, ), then P,f
and Q,f are given by the following:

(1) P.f(t) = Sls~ Flst)ds = 1| 's7e(s)ds

(2) Quft) = | s (stds = 1=+ s ponds

whenever the defining integrals exist a.e.
We define the translation operator E, by

(3) E, f(t) = f(st), 0<s< e, teR*.

Thus, in some sense which need not be made precise here,

(4) P, = S‘s—aEsds, and @, = S”sa—lEsds.
0

1

Now, suppose that X is a rearrangement invariant Banach space
as defined in [1]. It was shown in [2] that it is important to know
whether or not the operators P, and @, define continuous mappings of
X into itself. In terms of the norm of F, which we write as
h(s) = || E,||, a sufficient condition in order that || P,|| < o is that

(5) [5hisds < =,

and a bound for the norm is given by

(6) 1P = [ s ns)as

A similar expression holds for ||@,||. This is a consequence of Theorem

3.1 of [1]. Here, we will always adopt the convention that if P, is
not a bounded operator from all of X into itself then || P,|| = oo.
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For the special case @ = 0, it was shown in [1], that (5) is a
necessary condition for || P,|| < <, and in fact

(7) 1P = [ hoyds =2 Z | Rl

Our first object here is to show that (5) is a necessary condition for
[| P,|| < e for all real @. This is Theorem 1. Notice we need only
congider P, for 0 < a < 1, since if a =1 P, is not defined for all of
X, since X contains characteristic functions of intervals, and so in
order that || P,]| < « for any such X, we must have

gls““ds < oo,

0

Another question we consider is the determination of conditions
under which equality holds in (6), since a classical result of Hardy,
Littlewood and Polya shows that when X = L? equality does hold
(I3], p. 227). We show in Theorem 2 that if we consider the spectral
radius of the operators involved, rather than the norm, then we do
have

(8) r(P) = |serBas,

where #»(T) denotes the spectral radius of an operator 7. As a
corollary of (8) we obtain conditions under which equality holds in (6)
which includes the case X = L*.

A final result, which may be useful when equality does not hold
in (6), is given in Theorem 3. This improves the estimate in (7) and
gives a similar estimate for the iterates of P,.

Although the results will be stated only for the operators P,,
analogous results hold for @,. For, if X’ is the associate of X, then
it can be shown that the norm of P, as an operator in X is equal
to the norm of @, as an operator in X’. This is because @, is the
“‘transpose’” of P,. Combining this with the fact that if A/(s) is the
norm of E, in X’, then A’(s) = s~'h(s™), we can obtain results for Q,
by change of variable from those for P,.

2. Preliminary lemmas. Recall that the spectral radius of an
operator T is the smallest number » such that the disc {\: M| =}
contains the spectrum of 7. It is easily shown that if || T'|| is the
norm of T as a mapping from a space to itself, and »(7T) is the spectral
radius of T, then

nT)= [Tl .
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It is important to notice that since we will be considering the same
operator applied to many spaces that the spectrum, spectral radius
and norm of the operator all depend on the space in which it acts.
However, to avoid the constant repetition of hypotheses, it should be
understood that whenever the norm or spectral radius of an operator
appears, the operator is considered as a mapping from a given rear-
rangement invariant Banach space X to itself. That is, all the norms
appearing in any given theorem refer to the same space but the
theorems apply to all rearrangement invariant spaces.

LeEMMA 1. Let E, be defined as in (3); let X be a rearrangement
invariant space; let h(s) denote the nmorm of K, and »(E,) denote
the spectral radius of E, as a mapping from X into vtself. Then

(1) h(st) = h(s)h(?)

(ii) h(s) is monincreasing in s, and

sh(s) is mondecreasing in s;
(iii) min (s7, 1) < k(s) < max (s, 1), 0<s< oo,
(iv) Let 6(s) denote the ratio [— log h(s)/log s]

If a = inf,, 6(s) and B = sup,s, 8(s), then

a = lim, . 6(s) and B =lim,_.0(s), and 0 < B <a <l
(v) »(E,) = max (s~ s7?). where a and B are as in (iv).

Proof. Parts (i) to (iv) are proved in [1].
For part (v), we use Gelfand’s formula for the spectral radius.
Namely

r(T) = lim || T [[V»
where T" is the wth iterate of 7. (See [4], p. 263.) Thus,
(9) r(E,) = lim || B ||
= lim h(s")'"

n—rco

(s 0<s =1
s7Pif 1<s< oo,

For by (iv), given ¢ > 0, 3d(¢) > 0 such that for 0 < s < d@) <1 we
have

sT*Z h(s) £ s70F
But, if s <1, s < i(e) for n sufficiently large so that
s g h(sn)l/n é S—-a—-e

and this proves (9) for 0 < s < 1. If s> 1, a similar argument ap-
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plies. If s =1, E, is the identity so A(1l) = 1.

LeEmMMA 2. Let P, be defined as in (1), and suppose X 1is a
rearrangement tnvariont space for which || P,|| < <. Then, for all
feX, of Pr denotes the nth iterate of P,,

" . 1 e 1 1 n—1
(10) Prit) = Sos m(log ?> f(st)ds

Also, if ) is complex with [N| < »(P,)™, and [ is the identity
operator, then (I — AP, exists and is a bounded operator from X

into itself.
The following formula holds for real N, with |\ | < »(P,)™

(11> Pa,+2 = Pa,(I - >\‘Pa>—1 .

Proof. Let T denote the operator defined by the right member
of (10), and suppose || T'|| < . Then

(12) P,TF(t) = S ‘“duS: ﬁ(log%)"”lﬂm)@w

go - 1)v <1°g l>n_1f (ts)%s"

K
S s l)yf(st)dsg <log > _1%
|

s~ <log )f(st) s, almost all te R*

I

Il

where the second line follows by the change of variable s = wv, and
the interchange of order of integration follows from Fubini’s theorem

for almost all te R*.
The fact that T = P now follows easily by induction from (12)

since it is true for n = 1.
The statement that I — AP, has a bounded inverse in X for

I < »(P) is standard, and in fact
(13) (I—\P)™ = S\\P2

where the series converges in operator norm. (See [4], p. 262.)
Thus, if fe X,
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(14) PAI = \P)7f()
= S\ V(PrA(L)
=3 N”S:s‘“i—!oog %)nf(st)ds

_ S:s“° f(st){ pofecs <log %)"}ds ,

n!

for almost all te R,

= | smetptstyds = Poaf(t) .
0
Here equation (10) has been used in the second line and the inter-

change of order of summation and integration follows by Fubini’s
theorem.

LemMMA 3. Let K be a measurable nonnegative function on R*,
and let T be defined by the following expression for every f for
which the integral exists a.e.

Tf(t) = g:K(s) F(st)ds .

If X is a rearrangement invariant space, and if || T| < oo,
considered as a mapping from X to itself, then

max <h(s) S:K(t)dt, sh(s)rK(t)"i_t> <17 .

Proof. The fact that
h(s)S’K(t)dt <7

was proved in [1]. To establish the other inequality notice that if
T’ is the transpose of 7' then

ity — 1K (L) s s
o = (e
And, if R'(s) is the norm of E, in X', then A'(s) = s'h(s™). Thus,
pn P/ 1N\ dt )
W) K() G S 1T e

But using the fact that || T’||y, = || Ty and changing variables
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proves that

sh<s>§:°K<t>—df— <|T.

3. Main results.
THEOREM 1. Suppose that P,, E, are defined by (1). Then

| P, || < oo if and only if Sls““h(s)ds < oo,
0

Proof. We need only consider 0 <a <1, and ||P,|| < «. Let

e > 0 satisfy e < »(P,)* and ¢ <1 — a. Then, from Lemma 2,
Pa+e:Pa(I_ePa)—l and HPa+5||< o .
Applying Lemma 3 to T = P,..,
W) todt < || Pavel

and thus
(15) h(s) = es™i7ere,

where ¢c = (1 — a — €) || Py || < oo.
Hence, we have

glh(s)s‘“ds = cglsﬁ“lds < oo,
0 0
The converse follows from the inequality (6) stated earlier. To prove

the next theorem we need a result which would be obvious if the
entities involved were positive numbers rather than positive operators.

LEMMA 4. Let P, be defined by (1), and let x> 0 be a positive
number. Then,

| Passll < =0 if and only if 3,3 | P2l < e .

Proof. If || P,.;]|| < oo, then || P,y ..|] < o for some &> 0 (and
we may assume that ¢ + N + € < 1 as in Theorem 1). This follows
from Lemma 2. Thus, from Lemma 3,

h(s)| s ds < || Proa |
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0
h(s) < cstratire, where ¢ < o,

Thus, by the expression (10) for P?, and the standard inequality
contained in Theorem 3.1 of [1], i.e.

| K@Es| < | K 1 B]lds,

we have
n 1 e 1 1 n—1
(16) | Prl = Soh(s)s m(l()g?> ds
1 1 1 n—1 C
< CS —l424e__ =~ 1 el ds = — 2 .
- oS (’n—l)'<og8> s N + &)
Thus

DA P < oo
n=0
since it is majorized by a convergent geometric series.

THEOREM 2. Let P,, E, be defined as in (1), (3) and let r(P,),
r(H,) denote the spectral radii of these operators as mappings from
o rearrangement invariant space X into itself, then

#P,) = S:S““T(Es)ds .

Proof. By (J4], p. 262—Theorem 5.2-C),
an [P = sup {ve €3 3 17| P2 < oo}
- sup{x > 0: S| P < oo}.
n=0
But, by Lemma 4,
(18) sup {x > 0 fz;om || Prt ] < oo}

=sup{h > 0:|| Py |] < oo} =N, say.
However, by Theorem 1, || P, ;|| < o, if and only if

Sls—“‘lh(s)ds < oo,

0

Thus since »(E,) < h(s), and by Lemma 1, »(E,) = s if 0 <s <1,
we have
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1 1
19 — S —a—2 oo,
(19) [ —— s r(E,)ds <

provided || P,,, || < oo.
Conversely, if

S sTeids < oo
0
then a + )N + @ < 1, and so there is an ¢ > 0 such that
SS——a—Z—a—st < o,
0
But this implies

st*““"h(s)ds < oo

by using part (iv) of Lemma 1.
Hence || P,.;|| < = if and only if (1 — a — a — \)™"' < . Hence,

(20) M=supMml—-—a—a—-—N)"'<w}=l—a—-a.
Putting together (17), (18) and (20), we obtain finally that

(21) rP)=—=— = = \s°ds

COROLLARY. If h(s) =s™ for 0 < s <1, then

(22) Pl = | shGs)ds

Proof. By (6),
P, < S‘s—ws)ds .

But, by assumption k(s) = s~ = r(H&,) for 0 < s < 1. Thus, from the
theorem,

(23) HP,) = Sls““““ds - Sls—“h(s)ds
and, since »(P,) < || P, ||, we have

24) S‘sﬂh(s)ds = 7(P) £ | ]| = | sh()ds
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which proves (22).
The final result involves the operator P, and its iterates. We

shall now write P = P,

THEOREM 3. Let K, be defined by,

(25) Pty = | Kufistids .
we have
1 2’)’&
@ 1P s (Ko = (21071 p

where the norms of the operators imvolved are as mappings from a
rearrangement invariant space X into itself.

Proof. By Lemma 2,

_ 1 1\
@7 Ko(e) = omyplog ) )

Thus, we have

o dt o1 1\"ds
28 SK,,t-——:S——-—-l 1\ds
( ) Ss ()t 83(%—1)!<0g8> S
s 1\"
- n!<log ?>
Thus, if || P"|| < ==, then by Lemma 3, we have
1\" S
(29) s(log =) "h(s) = || P* | m!
s
For convenience, denote C, = || P*||. So, if C, < =, we have C,, <
Cl < oo,

Thus, applying (29) for # and 2%, and part (iii) of Lemma 1, we
obtain

1 n! C, @2n)! C,,

(30) h(s) = min [—, T T e
s
s<10g-—8—> s(log?>
Thus, if ¢,, and ¢, are such that
) 1y eEnlC,y
(31) <log t1> =n!C,, and (log t2> =

then
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(32) S:Kﬂ(s)h(s)ds

= Stz(n — 1l < ) (Zn)' Cis

+ S:(T_—l—-l—)l—oog > n! Cn—(i—s

1 (log L) ds
— = (1 el Bhadedl
+St1(n—1)! Ogs> s

2
:cn+cn1og< n)&ﬁ_—{_cn
n ) C?

n

2n
< Cn(Z + log( )) ,
n

where we have integrated and used the definitions (31). This proves
(26) since the left hand inequality is Theorem 3.1 of [1].
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