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FUNCTIONS WITH REAL POLES AND ZEROS

R. REDHEFFER

Throughout this paper {1,} is a real sequence with 2,+#0
and 2, < Ap41, —© < 1 < oo, The counting function A4,(u) is
the number of 2, between 0 and u, counted negatively for
negative u. Similarly ., is a real sequence with x,+0 and
with counting function 4x(u). In this summary (which corre-
sponds to the case » =1 of the paper) we define

_ 17 A — 2/2, )%/ n
F@ =T e

by taking all factors for which 2, and 4, lie on the interval
(—R, R) and then letting R — o, Our objective is to obtain
conditions on the growth of F'(z) from conditions on the
function A(u) = 4,(w) — Ax(w).

Denoting the even part of A(u) by A.(u), we can state our
first result as follows: Suppose A(u) = O(u) and

o (Awr)  Alrfuw)\
lim <—ur —_r/u > 0

r—r00

for each u = 0. Then

log | F(re®) | = nA(r) | sin 6| —24.(r)0 sin 6 + r cos gr -‘/%;Qdu
apart from an error term 77 log | 2 ¢sc 6 |, where 5 — 0 uniformly
in 0< |f]| <7 as r— oo, This improves theorems of Pfluger,
Kahane and Rubel, Cartwright, and others, in that we do not
assume existence of lim 4(u)/u, we do not assume that F is
entire or even, and the error term has a convergent integral
with respect to 4. Similar theorems for functions with
negative poles and zeros, given later in the paper, gener-
alize other familiar results, Here the error term involves
log (2 sec 30).

Another kind of result is briefly described as follows:
Let R = R(x) and S = S(x) be positive functions such that the
ratios x/R, R/x, =[S, S/x are bounded as |x|— co. Then for
many purposes the function

log F(z)——zgmI Lg)du
—lz] W

can be replaced by the function

A R, S) = S”Sﬂdu.
z—R 8—U

This remark is given content by detailed estimates of the
error and of A*, (For simplicity of statement the text takes
R = S but the form mentioned here is sometimes more con-
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346 R. REDHEFFER

venient, and is allowed by the proofs.) The development
leads to a simple, systematic method of proving variety of
growth theorems., Formulation of such a method is a principal
goal of this paper, and our specific examples are intended
only for illustration.

1. Some preliminary matters. We begin by giving a precise
description of the class of functions being considered, and we also
introduce some notation. With A, and p, as described above, our
objective is to estimate the magnitude of the expression

1 Fz) = [] =="222nr

where W denotes the Weierstrass primary factor,

(2) Wz, \) = (1 - %) exp [%Jr%(—%)z—l- R -;—(%)1’] .

The product is interpreted by taking all factors for which x, and p,
lie on the interval (—R, R) and then letting R — . Thus, if 4=
4, — 4,, we have

(3) log F(z) = Ileim S: log W (z, w)dA(w) ,

when the limit exists. A suitable branch of the logarithm is easily
determined in the upper half plane or in the lower half plane, and
the relation between these branches is established by requiring that
integrals of form

Si’ K(u, 2) A(w)du

be always even or odd, according as K is even or odd. To keep track
of these matters, we never introduce angles larger than . Thus

z=x+ 1y =re®, where >0 and -7 <0 7m.

The letters z, x,y, r, 0 are used in this sense, whereas the letters
C,D*,D-, D, p,a B,v denote constants.

The decomposition of a function into even and odd parts is ex-
pressed by use of subscripts ¢ and o. Thus, for any function ¢ we
define ¢ = ¢, + ¢, where ¢, is even, ¢, is odd, and 4,(0) = 0. We also
set

" é(i)_du,
r U ’

(4) A=1d — 4y, AWw) =u-Aw), A@) =§

where p =0,1,2, -+ and —oco <% < o0, but 0 < r < . The letter
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F is reserved for functions which satisfy the hypothesis, and hence
the conclusion, of the following elementary lemma. (The designation
as “ Theorem 1” does not describe the status of the assertion, but
serves to facilitate cross reference. A similar convention is used for
lemmas and corollaries throughout this paper.)

THEOREM 1 (lemma). Let A,(u) = o(u), A,(w) = o(u?), and suppose
that

ru—ZAe(u)du and ru‘3Ao(u)du
0 0

exist. Then the limit defining F(2) exists for z+ p,, and tf also
ZF Ny,

log F'(z) = 2z* S”[uAe(u) + zA.,(u)]Ldu
0 w(@ — u’)
For proof, integrate by parts in (3). The integrated terms have
the form

and disappear as R— «. We have, therefore,

(5) log F(2) = 2” lim SR Aw)—F_ du

R )R u(z — u)
provided the latter limit exists. Replacing # by —u gives another
form for the integral (5), and still a third form is obtained by taking
half the sum of these two. In terms of A, and A, the third form is

ﬁSR Ae(u)( 1 1 )du
2J-r U 2— U 2+ u

e e

(6)

Inasmuch as (2* — 4?)™' = u~* + O(u*) the integrals in (6) converge as
R — o, and this gives Theorem 1.

Formulas similar to (5) are well known in the theory of entire
functions. But since 4 = A, — 4,, and since the factor #? has been
divided out in the definition of A, the present assumptions are weaker
than the customary ones. For example when p = 1 the even part of
4 is required to satisfy only

A,(u) = o(u?) , Smu"‘*/le(u)du exists .
0
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Regardless of the value of p, both {\,} and {¢,} can belong to products
of infinite genus without invalidating the conclusion.

2. An asymptotic formula. By analogy with familiar properties
of entire functions one can surmise that regular behavior of F' follows
from existence of the two limits
(7) lim A(w) = D—, lim A(w) = D+,

U—r—00 U—~r00

We shall see that this is the case and in fact, that the weaker condition

(8) lim [A(ru) — A(r/w)] =0, (u=#0), A(u)=0Q1)

introduced by the author [11] is sufficient. Evidently (7) implies (8)
but the converse is false even if \, and p, are integers.

THEOREM 2. Suppose A(u) ts bounded and A(ur) — A(r/uw) — 0 as
r — oo, for each fixed w = 0. Then

r=? log | F'(re*) |
= [wA(r) sgn 6 — 2A4,(r)0] sin pd + A(r) cos pd + nlog|2csc |

where 7 — 0 uniformly in 0 <|0| <m as r— oo,

We have to write log |2 csc | rather than log|esc 6| because of
the accident that the latter function vanishes at 6 = #/2. The as-
sertion of uniformity is relevant only near 0 and .

Upon taking » = us we find that the first condition (8) is equivalent
to the two conditions
(9) Im[A,@t) — A(r)] =0, lim[A,(rt) — A,(r)]=0, t>0.

r—oo

By Theorem 1 log | F'(z)| = Re[2°(I, + I,)] where

ay L= A, =T AW g,
— 22— Y —e W(2* — u?)

An easy contour integration gives
oo P .
(11) S_mmdu = —Tmisgny

and hence, I, can be estimated as in [5]. That is, multiply (11) by
A,(r), subtract from (10), and let v = ¢t». The result is

= Ae(/r‘t) _ Ae(/r)

. P 2rdt — mwi A,(r)sgny .

L:zS

The integral is now analyzed by breaking the range at & and 1/9,
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where § is a small positive constant. In this decomposition the first
and third integrals are uniformly O(d) by inspection, since | A(u)| is
bounded. The second does not exceed

1)8 ,’,2
B Izz _ ,rztzl

(12) 7(r) S

where 7, is a bound for | A,(rt) — A,(r)| on the interval ¢ <t < 1/o.
Since the limits (9) are known to be automatically uniform [6] on any
fixed interval (d,1/0) we have 7,(r) — 0 as r — co.

The integral multiplying »,(r) in (12) does not exceed the value
it would have for ¢ = 0 4+, namely,

S”_l”_—_ du — r at — K(cos )
o |22 — u?| o (L — 2t* cos 20 + t*)!*

where K denotes the complete elliptic integral of the first kind. By
an elementary calculation

K(cos §) ~ log |cse @ | (@ —0 or m)

and hence, the desired estimate is obtained if we choose o first, then ».
Estimation of I, depends on the observation that

A ey

I, = Zl(?) -+ 281_‘.‘_11@)_,,-215(115 + 2S
1 (2 — tPr?)

0 28— t3?
In order to replace A,(tr) by A, (tr) — A,(r), consider the sum

. Lotdt S“ o dt .
W)=\ " _+ | —T, w = ¢
J@) Soa)—tz CHw — )

which arises when A,(¢r) is replaced by 1. Setting ¢ = 1/s in the
second integral produces an integral much like the first, so that

J(w) = i(ﬁ — l;— sgn 0)

by a short calculation. We now write

! Ao(t/r) — Ao(r) 72t dt
0 2 — thr*

= A (tr) — A r) 22 dt

1 (7 — ) )

I, = A(r) + 2j(@)A(r) + 28

+2S

The range of integration is divided at ¢ and 1/6 in the first and second
integrals, respectively. Of the resulting four integrals the first is
O(9) and the last is O(6?, by inspection. The two others together
are dominated by



350 R. REDHEFFER

SUS Ao(t'r) _ Ao(’r) ,,.2 dt .
8 2 —

Since this has the same form as the expression leading to (12), the
desired estimate is obtained by choosing é first, then 7.
The result of this analysis is

log F'(z) = —miA,(r) sgn 02" + A(r)z? + i(20 — 7 sgn 0)A,(r)z?

apart from a term 2z?log|2csc@|, where 7 is uniformly small as
r — oo, Upon taking real parts and dividing by r* we get Theorem 2.

3. Discussion and illustrations. If the main assumption on A
is replaced by

lim S”s | A(rt) — A7) | dt =0,
(13) T

lim | | Al(rt) = Ar) dt = 0

for each é > 0, then the same conclusion holds in Theorem 2, except
that the term log|2cscd| must be replaced by the larger term
|esc@|. (The condition that A be bounded can also be weakened,
as is evident.) To prove the sufficiency of (13) we need only observe

that
(14) ' 2r sin 6 _

2 — ri? =1

1| e —1
_2— PR

The advantage of the term log |2 csc @ | is that it has a convergent
integral with respect to 6. More generally, let F' be a function sat-
isfying the conclusion of Theorem 2, with the error term 7 log | 2 csc @ |
replaced by any function 7(r, 8) such that

lim S 7, 6)d6 = 0 .

rco
By Jensen’s theorem

(15) Ar) = % S_ log | F(re®) | df

and hence substitution of the expression of Theorem 2, with such an
error term, gives

e | wa@du = 4011~ (=] + AL + (=] + o(1)

for p = 1. From this it follows that
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S‘ [A,(rt) — A(r)]dt—0  or S [A(rt) — A (r)]dE — 0
0 0

as r — oo, for p even or p odd, respectively. In short, conditions of
the type (13) are close to being necessary as well as sufficient.

We now consider some special cases., When F is even then
F(\) = 0 if and only if F((—X\) = 0, and the same applies to 1/F. Hence
4 is odd, and we conclude

Aw) = A, (w) (podd), A(u)= A,(u) (peven).

The corresponding simplified form of Theorem 2 can be read off by
inspection. In particular, the case p = 1, F even, gives

log | Fi(re*)| = mwA(r) |sin | + o(r) log |2 cscd| .

If we specialize further by making 4, = 0 (so that F is entire) then
this is a result of Kahane and Rubel [5], supplemented by the ad-
ditional information concerning uniformity of the error.

To introduce the next example define

h6) = lim sup r—* log | F(re*®) |

as is customary, and also

a = limsup [| A(r)| + | A(r)|], & = limsup A(r) .

For 0 < |pf| < m/2 Theorem 2 gives
& cos pf — wa |sin pf | < h(f) < @ cos pd + wa|sinpd| .

Because of the poles of F(z) we cannot get any estimate for ¢ = 0.
But if 4, =0 then F is an entire function of order p, under the
hypothesis of Theorem 2, and continuity of the Phragmén-Lindelof
function gives:

THEOREM 3 (corollary). Let F be an entire function satisfying
the hypothesis of Theorem 2. Then

lim sup —lgg—l——lj’w—‘— = lim sup Sz —Mdu
%

Z—ro0 —2 up-l—l

Z—o00

1f the latter limit is positive, and otherwise the left side is < 0.

There is a similar theorem for ¥ — — c which distinguishes the
cases: p even, p odd. If F is even and p is odd, the integral in
Theorem 3 vanishes identically, and the conclusion is log | F(z)| < o(x?).
The special case p = 1 is in [11], though the proof here follows [5].

To show the connection of our results with the classical theory
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of entire functions, introduce the sum

Str) = ;1[2 L % Py #1 (p=1)
(16) ) " B

_ (7 _A(w)
S(r) = S_T " du (p=0).

By partial integration
(17) S(r) = 2pAy(r) + Al(r) , p=1,

giving an alternative form of Theorem 2. As a special case, if
lim A(u) = D for |u|— <o, then

r~?log | F(re®®) | — wD sgn 0 sin pf — S(r) cos pf = nlog|2csc b |

where 7 — 0 uniformly in 0 < |6| < 7 as r — . For proof note that
(8) holds and lim A,(r) =0, lim A,(r) = D. Thus the result follows
by substitution in Theorem 2, The choice 4, = 0, p = 1 gives a theorem
of Pfluger [2], supplemented by the uniformity of the error term.
If we specialize further by taking D = 0 the result is a theorem of

Cartwright [2], also supplemented.

4. Evaluation of the error. Besides the function A introduced
in §1 we require

(18) A*(z, B) = S“R_Aﬂdu ., R>0.

R 2 — U
The result of applying the operator * to any function is here called
an 1ncomplete Hilbert transform of that function, because it becomes
a Hilbert transform when R = «. Both A and A* are, as a rule,
principal terms in our estimates. The former is important if the
growth of A is moderately fast, while the latter is important near

the real axis.
By contrast, the expressions

(19) A™r) = ST<%>M———' A;u)' du + Sm<f—>m—| AW | g, , m > 0

0 T\ U u

are in the nature of error terms. We take the view that the ~ in
A, the * in A*, and the superscript in A™ denote operations to be
performed on any function to which they are applied. Thus, A? is
obtained from (19) with m = 2 and with A, replacing A.

THEOREM 4. For 0 < |6| < m we have

|27 log F(z) — A(r) | < 2|csc 0| [AXr) + AXr)]



FUNCTIONS WITH REAL POLES AND ZEROS 353

and for 2x* = 1%, || = R we have

|z log F(z) — A(|x|) — A*(2, R)| < 4 '—R—[Al(l x|) + Az ])] .
To prove the first assertion set
k= 22z2 T kz:—rziz‘?-
22— 2 — U

The integral multiplying 2? in Theorem 1 can be written

A+ e+ A Y (e A

Since | k; sin 6| <2, this gives the desired estimate.
To get the second estimate define

b — b b — 22 +u )
4w You(z 4 w)

When 2 > 0 the conclusion of Theorem 1 gives

z?log F(z) — A(z) — A*(z, R)

(20) _ S”"R<i ud, );c du - S A=Ay,
0 2 z z—R V4
(21) |7 (P o Yedu + [ Aekdu + " A du
z+R A wU z VA z

If 2R< 2 and 0 < u < 2 — R, it is possible to show that

22 4
—u* 3R

[k | =

IA

?

and evidently |%k,| < 1 for v > 0. Hence (20) admits an estimate some-
what sharper than

do (°( 1A, | ul4,]
22 S
(22) 3R o< r + re )du

Similarly, if v =« + R and 2R < x, then

2u? < 9

u? — a2 = BR

and for © < u < (3/2)x it is possible to show that |k,| < 187%/(5u?).
For 2R < x the expression (21) is therefore dominated by

) 5RS<|141&|T+ |A|”' )du

’

Ve | =
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Addition of (22) and (23) gives an estimate which is sharper than
that of the theorem when 7* < 222,

So far we have assumed z > 0. If 4(z) = 277 log F(z) then ¢(—z)
is obtained by writing — A,(w) instead of A,(uw) in the formula for
#(z) (Theorem 1). Upon noting the effect of this substitution on A4,
on A*,6 and on the error terms, we obtain Theorem 4.

The restriction 2a* < #* means that |sinf| < (1/2)v2, in other
words, z lies in a 90-degree sector centered about the positive or
negative real axis. Now, a restriction of the type |sin 6| < ¢ is entirely
harmless, because for other values of z the first estimate can be used.
It is therefore relevant to note that, if sin = O(1/ ¢ ) and R = |z | O()),
then the coefficient “4” in the second error term can be replaced by
1+ O@) as 6 — 0 +. This is true because the stated conditions give

Rik|l=|«], Rlkl=|z|, 2[kl=1, 2]ok[=3

apart from a factor 1+ O(9), and r = | x| apart from the same factor.
The second assertion of Theorem 4 remains valid if the term
4R | x| Az |) is replaced by

24) 4 |2 |2 Soe AW 4, +iglx‘|AB(u)]du+ |2 Sm—x A | g0,

R Jisn % r Jo r Jo | —u
Proof of this requires a somewhat different estimate for the part of
the error due to A4, on (0,x), « > 0. By (20) this part of the error
does not exceed

z—R 2
L2 A du+ L
r Jo X — U r

| 1AW du.

The conclusion (24) now follows from the inequality

22° <1+ x

@ — u T — U
5. The classes B, and M,. As noted in §1, »r = 0. If ¢ = 4(7)
is a function of r the statement “ ¢ e B,” means that ¢ is integrable
and

(x>0, u>0).

(25) Sf%dr < e, 0=const.
On the other hand functions of w, such as A(u), are defined for
—oo < % < o, The statement A4 € B, then means that (25) holds for
é(r) = A(r) and for ¢(r) = A(—r). Thus both the even and odd parts,
A, and A,, have to satisfy (25).

If | ¢(r)| admits an increasing majorant ¢*(r) e B, then we say
#e BS. In agreement with the above convention a function such as
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A(u) belongs to B, if |A(r)| < ¢(r) and | A(—7)| < ¢(r), where ¢ is
an increasing function satisfying (25).

If ¢ = ¢(r) is a function of r the statement “ ¢ ¢ M, means that
© =0, and that ¢(r)r® is increasing but ¢(r)r— is decreasing. For
functions of # rather than » the same convention is used as in the
case B. Thus, the even and odd parts must belong to M,, taking
u=1r=0,

THEOREM 5 (lemma). Let ¢ = 0 be integrable, let ¢ = 0 near 0,
and for m > 0 define

o< [, g (2 2 [(2) S

r r wu

Then:
(i) ¢€M, implies (m — 0)p™ < 24.
(ii) ¢ e B, implies g B, for o >0 and ¢™e B, for |p| < m.
(iii) If r¢(r) is increasing for some «, them ¢ € B, = ¢ € B, for
o> 0.
(iv) ¢ € B, implies r*¢™(r)€ By . for o+ a >0, || < m.
(v) ¢(r)logreB,= ¢™ec B for o = m.

The statement (i) is trivial and (ii) follows by a change in order
of integration, as is well known. To get (iii) consider #(2r) — &(»).
Under the given hypothesis it is found that ¢(r) < v$(2r) for some
constant v. But ¢(r)e B, by (ii), and hence ¢(2r) has the same
property. The statement (iv) follows from

peB,=¢"c B,—= 19" € By, — 19" € B, .

In the last step we used (iii) together with the observation that
r™¢™(r) is nondecreasing for m > 0. Proof of (v) is similar.

In (iii) the purpose of assuming 7r%¢(r) increasing is to ensure an
inequality of form ¢(r) < v4(Br) for large ». The same end would be
accomplished by the weaker condition

(262) [lsn — o5 L 20, rzw,

where a, 8 and 6 are constant, with 8 > a =0, 6 > 0. The class M,
can be generalized similarly, without invalidating our conclusions.

Conditions of the type (26a) are useful for getting an estimate on
A(w) from Jensens’s theorem (15), since the latter gives A(r). Thus if
é(u) = A(u) satisfies (26a) together with

(26b) slul) Zelgeu)|, [|ul>u,,



356 R. REDHEFFER

for some positive constant ¢, then
A(r) < O[H(r)] = | 4(r) | < O[H(r)]
for every function He M,, and furthermore,
A(r)e B, = A(u) e B,

for every p. These conditions are fulfilled for many meromorphic
functions [and for all entire functions, since in that case A,(r) is
increasing and | A(u)| < 24,( w])].

6. The incomplete Hilbert transform. We now estimate the
incomplete transform, A*., If D = 0 is constant, denote by K(D) the
class of functions A such that A(u) + Du is nondecreasing; for example

A(u) — Due K(D) .

We say “z and )\, are separated by c¢” if ¢ is a positive constant
such that the conditions

)\’n—H_)\'ngcy Ix_)’nlgc

hold for all n.

THEOREM 6 (lemma). Let ¢ be integrable and for |u —xz| < R
define

M = sup | ¢(u) |, J = S:iz | g(u) | du | 5t = Sx+R B(u) du .

z—R 2 — U

Then:
(i) |Img¢*| = nM,|Reg¢*| < 2Mlog|csch],|¢*| < 2Mlog|csc |
for all R, for R < |x|, and for max (4R, 2|y|) < |x|, respectively.
(ii) The condition ¢ € K(D) implies Re ¢* < 2min (DR, V' DJ).
(iii) If n, and x are separated by c, then Re A* = —2Rc™.

The statement (i) follows from the observation that
1

Sz+R
z—R| 2 — U
z+R 1
S R
*—R

z— U
where + is the first-quadrant angle defined by

ldu = 2log cot %«jr ,
(27)

e [duzzlogcscfz#

in o — ||
S = — .
n Q‘l’\ (RZ + yZ)l/Z



FUNCTIONS WITH REAL POLES AND ZEROS 357

To establish (ii) define

(28) I($) = Re ¢*(z, R) = S”R U suydu

= y R (x _ u)z + yz 7\ .
If ¢ e K(D) then ¢(u) = D(x — u) + +(u) where 4 is increasing. There-
fore I(+) < 0, and we obtain

I(¢) = I[D(x — w)] + I(y) = I[D(x — w)] = 2DE .

Proof of the inequality involving J depends on the fact that for
y = 0 the kernel in (28) not only changes sign at 2z, but is monotone
on each side of z. We carry out the proof by maximizing I($) subject

to
(29) Jo) =\ 1o du=J,,

where J, is constant. We can suppose 1VDJ, < DR, since otherwise
the desired estimate follows from the estimate already obtained.

If ¢(u) =0 at u = x, the maximizing function must be positive
for v < x and negative for u > x. (Otherwise we could increase I
without changing J.) Thus, (x — u)¢(u) = 0, the value of I increases
as | y| decreases, and hence we can assume y = 0. Since (x — w)™* is
monotone for % < x, the area at the left of 2 should be pushed as
close to x as possible. Similarly the (negative) area at the right of
2 should be pushed as close to x as possible. The maximizing function
for y = 0 therefore follows the line s = D(x — u) from 2 — « to x + B,
say, and is zero elsewhere.

Because of the symmetry of (x — u)~%, if & > £ we could do better
by transferring some of the area from the left to the right, and
similarly if « > 8. Thus @ = 8, and the maximum value is 2D« as
in the previous discussion. Since Da*® < J,, this gives the final result.

We must still justify our initial assumption that ¢ = 0 at the
central point, x. The following elegant discussion, simpler than the
author’s, is due to Ernst Straus. Let ¢ = ¢, + ¢,, where ¢, is even
about the point  and ¢, is odd, with 4,(x) = 0. Then

pcK(D) = ¢, € KWD), I(g)=1ILg), J(o)=J(g).

Indeed, the first relation can be seen from the fact that ¢ e K(D) is
equivalent to ¢’ = — D when ¢ is differentiable. The second is obvious,
and the third follows from

R R
(30) 21,1 du = {06 = 6. + 16+ gudu.

Therefore ¢ can be replaced by ¢,, giving #(0) = ¢,(0) = 0.



358 R. REDHEFFER

The somewhat informal language of the foregoing discussion is
best suited to a restricted class of functions ¢, such as the class of
piecewise continuous functions. (The A in Theorem 1 is in fact piece-
wise continuous.) But since smooth functions are dense in the Lebesgue
class L, we have actually established (ii) in full generality.

Under the hypothesis (iii) the condition A(u#) = 0 at w = « implies
that the graph of s = A(u) lies above the line s = ¢'(u — z) for u < «
and below the line for u > x. The foregoing method thus gives the
conclusion.

7. Comparison. No use has been made of the fact that 4, is
an integer, and hence it is permissible to take A,(w) = Du, |« |° sgn u,
and so on. The resulting estimates give information about the entire
function associated with 4,. Thus many classical results on entire
functions that seem unrelated to ours are in fact corollaries.

The same extension can be made without losing the applicability
to meromorphic functions. Namely, if A(u) ~ B(u) as |u|— oo, we
compare F(z) with the function 2°G(z), where

(31) G(z) = lim S:B(u)_u@-z_—u)-du .

It is supposed that B(r) exists as a Cauchy principal value, and the
integral (31) therefore exists also, near 0, as a Cauchy principal value.
A suitable relation between the branches for ¥y > 0 and y < 0 is found
by the transformations leading to Theorem 1. Since the integral
operators in A, A* and in Theorem 1 are linear, Theorem 6 remains
valid if 277 log F'(z) is replaced by

z7?log F(2) — G(?)

and A is replaced by £ = A — B. For proof, assume that the integrals
E! and E? converge; otherwise there is nothing to prove. Since
B = A — E the corresponding integrals with B also converge (though
perhaps not absolutely) and we can transform the integral for G as
in Theorem 1. This establishes the assertion.

For example, if 0 < p < 1, our interpretation leads to

Sm | u |"—z-du = wesc ol (—z)P — 2°|
—eo u(z — u)
(32)

Sm lul sgnu— 2= du = 7 ese wo[(—=2)° + 27]
—eo u(z — u)

where 0 < |6| < m. Here z° is real for z > 0 and regular for | z| > 0,
16| < m. Subtraction produces the familiar formula
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33 Sw o ® _ _du=rmzesen , ] .
(33) o w(z + u) o o] <=

As another illustration, let D,(u) = Dsgnu for |u| =1, and
D,(u) = 0 otherwise. Then

Sw D,,(u)—-—z——du = Dlog (1 — 2%
—e Uz — u)

=1D(20 — wsgn ) + 2Dlog r + O(r~?) .

For B(w) = D we have G(z) = —miDsgnd by (11), and combining this
with the above result for D, gives

B(u) = D(u) = G(z)

(34) . : -
=Dt — D7) — D*mwisgn 8 + D(r) + O(r™?) ,

where D(u) is defined to be
D=, (D"+D7), D

for the range u < —1, —1 <% =<1, and 1 < u, respectively.

These equations give a suitable value for G, and the relation
between F and G is then determined by Theorem 4. Analysis of the
term E* is facilitated by the fact that
xTRMA(u)du

— %

z—R VA

@) PEAWI — [P@Aw]” = |

for any function P(z). If P satisfies a Lipschitz condition—and in
particular if P is analytic—the foregoing expression often admits a
bound of the same order as our error terms. Thus, [P(u)A(u)]* can
be replaced by the simpler expression P(z) [A(w)]*. As an illustration,

(36) |24 B~ 46 R = o+ B Aw) | du

This leads to an alternative form of Theorem 4, involving A rather
than A.

8. A theorem of Lindeldf. When used in the manner described,
Theorems 4-6 give a variety of specific results with the greatest ease.

THEOREM 7 (corollary). Let S(r) be the sum (16) and let A(uw)
= O[H(u|)] where HeM,, |p|<1l. Then the following statements
are equivalent:

(i) r?log| F(re®)| = O[H(r)] for some 6 with sin @ cos pd + 0,

(i) r~?log | F(re')| = O] H(r)log |2 csc 0 | |unt formly in 0<|0| <.
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(iii) S(r) = O[H(7)].

For proof note that (i) = (iii) by the first estimate in Theorem 4,
together with Theorem 5 (i). The implication (iii) = (ii) follows from
the two estimates in Theorem 4, together with Theorem 5 (i) and
Theorem 6 (i). This is true because the inequality

@37 |Aw)| = Hr)r (x| — R for |2|<R, |z—u|<R

holds whenever | A(u) | < H(|w|) with He M,. Thus we get a suitable
value for M in Theorem 5. Finally, (ii) = (i), completing the circle
of equivalence.

By Theorem 5 (ii) and (iv) we see that Theorem 7 also applies
when the condition “ = O(H) ” is replaced throughout by “ € B,” or
“eBj, |p| <1. But the assertion of uniformity requires |cscé|
instead of log | 2 csc 8|, if by uniformity we mean that the dominating
function ¢(r) in (25) can be selected independently of 4.

As a special case we can choose H(r) = h(r)r* where h(r) is
constant or tends to zero in such a way that He M,. Theorem 7
therefore applies when the condition O(H) is replaced by O(r°) or o(r?),
[o] < 1. The choice p = 0, leading to O(1), or o(1), gives an extension
of Lindelof’s criterion to meromorphic functions of the type considered
in Theorem 1. In this connection we should recall that the condition
A(u) = O[H(|%])] can be replaced by the corresponding condition on

(38) Fi(r) = _1_S = log | F(re'®) | df
2 J—=

provided (26) holds for the function A.

Introduction of F'(r) shows an interesting contrast between the
cases p even, p odd. In the first case F,(r) and S(r) depend on 4,
only, and each is readily estimated in terms of the other. But in the
latter case F'(r) involves 4, only, while S(r) involves A, only. Thus,
the two terms are wholly independent. A somewhat different formu-
lation of the content of Theorem 7 produces Tauberian theorems,
relating the function

(39) F(r,0) = rlog | F(re*®)| — S(r) cos pb

to Fy(r). The Tauberian condition is (26) for ¢ = A, which is always
verified when F' is entire.
These results can be extended as indicated in §7. For conditions

of the type
(40) |A(—u)— D~ | = H(u|), |Aw)—D*|=Hu), u>0,

we choose G in (34) and obtain



FUNCTIONS WITH REAL POLES AND ZEROS 361

F(r, 6) = r?log | F(re®)|

41 ~
(4 — [rD+sgn @ + (D~ — D+)8]sin pf — A(r) cos b ,

instead of (39). The resulting statements about F(r, 6) overlap with
Theorem 2.

9. Equal right and left densities. We discuss the case D~ =D+
in (40) and (41), for which the densities of combined zeros and poles
are the same in each half plane, The main result is:

THEOREM 8. Let |A(w) — D| < H(w|) where He M, |p| <1,
and define

Fi(r, 6) = r—log | F(re®)| — D sin pf sgnd — A(r) cos pf .

Then for any constant C > 2 there is a constant C, such that:
(i) | Fy(r, 6)| < CH(r)[log |csc 8| + Ci] o<l <

(i) Fir, 0) = CHr)|log* 7

odd, and (1 — p) A(u) is bounded below.

Moreover, tf instead of He M, we have H(r) decreasing and rH(r)
wncreasing for large r, the conclusions (i) and (ii) hold with an extra
1

H(r) ~

+ Cl] provided F 1s entire, p s

error term 2H(r)log*

We first consider the case He M,. The preceding results are
applied . to F(z) — 2°G(z) with B(u) = D, so that G(2) = —nwiDsgné.
By Theorem 5(¢), the first estimate of Theorem 4 gives both parts of
Theorem 8 in any region of the type |[sinf| =06 > 0. We therefore
use the second estimate of Theorem 4, taking [sinf| < dand R =4 |x|.
The positive constant § is chosen so small that

1 1
= < =
(42) (1+ 477>(1+5)=(1+ 377)
and also, by (87), so small that E(u) = A(w) — D satisfies
1
(43) |E(u)l§(1+z—77>H(r), for |o¢—u|<R.
The result of applying Theorem 4 is now

(44) |log F(z) — 2?A(r) — wiDz’ sgn 0 — 2? E*(z, R) | < (const) H(r)r” .

We have used the fact that E(|«|) = A(«|) = A(r) + O[H(r)]. Since
E*(z, R) can be estimated by (43) and Theorem 6(i), we obtain
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| Fyr, 0)] < (2 4 —12—77>(10g lesc 8| -+ C)H(r)

where C, is constant. If |sin@| is small, this is less than the bound
in Theorem 8 even with C, = 0. The inequality for other values of
0 is ensured by choosing C, large enough.

The second assertion depends on the fact that wA(u) e K(D,) for
some constant D,. Indeed, if the graph s = 4,(u) is approximated
within ¢ by an increasing differentiable function 4,(u), the corresponding
expression A, satisfies

[uA.w)] — [u—"4.w)] = 1 — p)u—4(u) = (1 — p)A.(u) .

This gives uwA.(w) € K(D,) where D, is independent of ¢, and hence
#A(uw) has the same property. We have used the fact that u*? =0
for p odd, and also the assumption that (1 — p) A(u) is bounded below.

Since uwA(u) € K(D,), evidently uE(u) e K(D, + D). Writing E* as
an abbreviation for E*(z, R), we note that

(45) 2?E* = 277zE* = 22 {uEw)]* + O[r?H(r)]

by (385). If 0 < s < R the interval of integration (x — R, x + R) can
be broken at the points * — s and « + s. The integral over (x — s,
2 + s) is estimated by Theorem 6(ii) and the rest of the integral by

(43). Thus,
R

Re [uEw)]* < 2(D, + D)s + 2(1 + %77)1{(@(1 z|+ R)log £

We choose s = min [R, rH(r)]|, and recall that |z| + R < r(1 + 6). In
view of (42) the result is

(46) Re [uBw)]* < 2 (1 n —é—ﬁ)rﬂ(r) log* Fl(r_) + O[rH(r)] .
By Theorem 6(i), the imaginary part of [uE(u)|* is O[rH(r)].
Hence, using (45),
47 Re (2?E*) = r*~'cos (p — 1)0 Re [uE(w)]* + O[r*H(r)]
and, taking real parts in (44),
r?F,(r, 0) < Re :* E*) + O[r*H(r)] .

Since |sin @ | is small and p is odd, cos(p — 1) > 0. The sense of
the inequality (46) is therefore preserved in (47), and we obtain the
statement (ii).

The final assertion follows from
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(48) %—STH(u)du < —H(») log H(r) + O(H),
0

and from a similar estimate for the expression (24), with a factor 2
in the principal term. The details are similar to those in [11].

To see the connection of Theorem 8 with results of the literature,
let p = 1 and define h(r) = rH(r). The hypothesis is then

| A(u) — Du| = h(|u])

and the conclusion (ii) states

49) log|F(z)| =< xSr_ A(?) du + 7D |y| + Ch('r)[log+ hZ‘) + Cl]

r U
If h(r) is increasing and r—*h(r) decreasing, C is any constant larger
than 4, and if »—'h(r) € M, with |p| < 1 then C is any constant larger
than 2. As shown by examples in [11], the values 2 and 4 cannot be
improved.

Equation (49) refers to entire functions of genus 1. For meromorphic
functions the result is given by Theorem 8(i), and in particular, (49)
holds as an equality, with C replaced by a bounded function of » and
#, in any region of the type

|sin 6| = (const) H(r) .

This is evident by comparing the forms of the error in (i) and (ii).

When F' is even the integral on the right of (49) is 0. Hence,
(49) extends and sharpens several results of Boas and the author [3],
[12], [11]. If

>\‘n+1_>\’ngc>01

as is assumed by Boas, we can also extend his estimate

(50) log | F(x,) | = —Ch(r) log | e |- et

to the more general functions being considered here. With

W, \) = <1 — %)e”“‘ , AN=N,,

we have

F@) — FO\) _ _ F@) eh

=F (x)A ¥ — en'Fi (M
T — W,y n T )

as ¢ — X\, where F, is defined by the equation. When x =)\ the
function F(x) satisfies the conditions needed in Theorem 6(iii). This
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latter result can therefore take the part that was formerly taken by
Theorem 6(ii); and a simplified version of the argument leading to
Theorem 8 now gives (50).

10. Oriented products. If A(w) = 0 for w > 0, the decomposition
into even and odd parts is unnecessary, and the appropriate conditions
on A are, as a rule, such that A(r) is an error term rather than a
principle term. But despite this increased simplicity, the desired
estimates are not special cases of the foregoing. The trouble is that
the previous error terms are large on the positive real axis, whereas
they should now be small.

To discuss these matters define

(51) A(r) = Soiﬁl_(_;_’:‘ﬂ du + TS“ IA(%;u)l du

and let ¢°(r) be given by (51) with A(—u) = #(u), for any function 4.
The expression (51) is an error term analogous to those in (19).
Though (51) does not follow from (19) by putting m = 0, we have

(52) $(r) = ¢'(r) = ¢°(r) = (r) + $(r)

and hence, ¢°(») can be estimated by Theorem 5. Since ¢°(r) is in-
creasing, it is automatically in Bj if in B,.

If ¢ is a function of r the statement “ ¢ e L,” means that ¢ is
positive and integrable, and

53 im 27 e is0.
3 = p(r)

A function of u belongs to L, if its even and odd parts do when
regarded as functions of ». As was the case for B,, here too interest
centers about the behavior as r — «. Convergence of the integrals
near 0 is assured for the funections with which we are concerned, and
is not emphasized in the sequel.

It is known [6] that the functions satisfying (53) can be represented
in the form

(54) 4(r) = rop(r) exp SLZ’ dt

1

where lim p(r) = p, > 0 exists and lim ¢(r) = 0 as » — o. This shows
that the convergence (53) is uniform on 0 < ¢ < 1/6. As is also known
[9], the class L, is a slight generalization of the class {r*"'}, where
o(r) is a Lindelof proximate order with limit o. Using this fact, or
(54), we obtain



FUNCTIONS WITH REAL POLES AND ZEROS 365

¢ €L, = §(r) ~ p7'¢(r) for 0>0,

(55)
¢ € L, = ¢™(r) ~ 2m(m* — 0°)~'¢(r) for |po|<m.

These serve the same purpose for the class L, as was served by
Theorem 5 for B, and M,.

THEOREM 9. Let A(w) =0 for w> 0. Then for || <=
lz?log F(z)| = )sec —;—0' A7),
and for x + R <0,
|2 log F(z) — A*z, R)| < 2_’%’140(( z|) .
Also iof A(—wu) ~ Hwu)eL,, 0 < p <1, then
|z77 log F(z) — H(r)e’w ese wp | < nH(r) log (2 sec %0)
where 17— 0 uniformly in |0| < m as r— oo .

With k, = z/(z + u) as before, we set &k, =1 — k;, and note that
each function satisfies

kicos-é-ﬁl <1 for w>0.

The first assertion follows from this and (5). The second follows from

2z ?log F(z) — A*(z, R) = Sx_R Afu) ke du + Sz

—oo u2 z—R

_fl(_u)du
w

) A g g o [T AW g,
z+R U u

z

where k; = zu/(z — w) and %k, = 2/(z — u). We use the fact that

2

by < o — B|1EL < 210 121 = 2L

x
R R
on the relevant intervals.

For the third statement there is no loss of generality in taking
A(—w) = H(uw). According to (33) and (5)

2 du
w(z +u)

o
0

z7?log F(z) — H(r)e'’'T ese Tp = S [H(u) - H(r)(%)P]

If 6 is a small positive number, the integral from 0 to é» is uniformly
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Ojo°H(r)] by (55) and (53). Similarly, the integral from /6 to oo is
uniformly O[é*—°H(r)].

For the integral from 6r to r/0 the substitution u = rt gives an
upper bound of form

e dt

H(tr) e
t1eE+t]’

— 10
Hr) §=e".

H(q')g

)

Since the convergence (53) is uniform, the proof of Theorem 9 is
complete if

1/8
(56) S at 77 = (const) log 2 sec %0 ,

s t|&+
0 being fixed. But (56) is easily verified by (27).

The first two parts of Theorem 9 correspond to Theorem 4, and
hence, the discussion of A* and of comparison applies without change.
For example, let «, 8 and p be constants between 0 and 1, and for
u > 0 suppose |A(—w)— w’| < H(u), where w “H(u) increases and
uf~'H(u) decreases. Then

(57) |log F(z) — mzPtfescmp| = r”H(w)(% + %) sec —;—0

for |6| < =, as is seen by use of the comparison function (33) in the
first assertion of Theorem 9. A sharper result, involving log sec 6/2,
follows from the second assertion. The third statement of Theorem
9 sharpens and extends the classical result of Valiron [9].

Instead of the particular function u* one can introduce an arbitrary
comparison function B(u). The resulting development yields an alterna-
tive form of Theorem 2, in which the given condition on A(u) is
replaced by

im [ACw) - Alr/w) ] _ Aw) _
hm[B(ru) B(r/u)] =0, By T w20

r—o0

11. Elementary remarks on completeness. The function A*
introduced in the preceding discussion has an interesting connection
with the problem of completeness of complex exponentials. A set
{¢*»*} has completeness length I if it is complete on every interval of
length less than I, and on no larger interval. In other words, the
completeness length is I if the condition

(58) G(z) = Siaf(t)emdt —0 at z=1,

implies that f is equivalent to 0, when a < I/2, and has a nontrivial
solution f when a > I/2, It is well known that I is independent of
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the class L? to which f belongs. We therefore take fe L? so that
the Paley-Wiener representation theorem can be used. If the set is
complete on no interval we set I = 0, and if it is complete on every
interval, then I = .

To distinguish the completeness interval for exp (in,x) from that
for exp (ip,x) we write I(\) or I(1), as the case may be. As elsewhere
in this paper, 4, is the counting function for the A\'s and 4, for the
M's, and 4 = A, — A,. The assumption that » == 0 and ¢ # 0 involves
no loss of generality, because any finite number of \'s or g's can be
altered without affecting the completeness.

It is convenient to define

69 o= AW gy, ) <o ADEAC 4y

The notation A~ suggests a function that describes the behavior of 4
near oo, This contrasts with the function

A*(x, R) = ri:% du

which is a measure of local behavior.

THEOREM 10 (lemma). If A€ B, and p =1, then
log|e**F(x) | + A4=(x) — A*(x, R) € Bf
where R 1is any positive measurable function of x such that R/x and
2/R remain bounded as |x|— oo.
If F\(2) is any function with zeros A, and poles y,, by using

Jensen’s theorem as in [7] we get

log | F\(a) | — 4*(z, R) = 517?8 log | Fi(x + Re®) | do .
1]

The choice F(z) = ¢**F(z) gives an alternative form of this lemma.
For proof observe that the function A(w) = A(w)/u satisfies
uwA'(u) € B, uA*(u) € Bf
by Theorem 5 (iv). Also Theorem 5 (ii) gives
xA*(x, R) — A*(x, R) € Bf

provided R = O(Jx|). Theorem 10 now follows from Theorem 4, after
multiplication by «.

To illustrate the use of this result suppose I(¢) < - and let G(z)
be the ifunction (58), with @ slightly larger than I(x)/2. When
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G(p) = 0, partial integration gives

_ﬂ_i_x S_ fit)ei=tdt = S_ Ft)e dt

where
Fut) = ie*““St ¢ fl)dav .

Hence, | fi(t) | can be estimated by the integral of |f(w)|, and repetition
gives a multiple integral just like the remainder term in Taylor’s

series. If
1

P(x) =11 (N factors)

n

and G is suitably normalized, it follows that

(2a)"
| P(x)G(z) | = T

On the other hand, for S =0
A*(x, S) = 4,*(x, S) — A4,*(x, S) < —4,*(x, S),
since 4,(w) is nondecreasing. By partial integration
—Ay(x, S) = log | P(x)| + Nlog S

where P(z) is the product over all ¢ on the interval (xz — S,z + S),
and N is the number of p’s on this interval. Since (2aS)Y/N! < 5,

the foregoing inequalities give

(60) A*(x, S) + log |G(x) | < 2a8S .

When A e B,, Theorem 10 gives

. (61) log | e F(2)G(x) | £ A4*(x, R) — A*(x, S) + 2aS — A~(x)

apart from a function of class Bj.

If ¢(x) € Bf, there is an entire function E(z), of arbitrarily small
type, such that |E(x)| < exp[—4(]2|)]. (A simple proof of this well
known result is given in [10] and also in [12].) Since (10) shows
that log | Fl(iy) | = o(|y|) when A€ B,, we conclude that I(\) < I(p), if
the function on the right of (61) admits an upper bound ¢#(z) € B;.
Symmetry of the hypothesis then gives I(\) = I(g).

A convenient way to handle the term A=(x) is to assume

= [Au) + A(—u) |
1 u?

logudu < o .

(62) S
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In this case the function ¢(r) = |A(r) + A(—7r)| satisfies ¢'e Bf by
Theorem 5(v). Since |A=(r)| < ¢'(r), we conclude that A= e Bjf.

It is also true that A~eBf if 4eB, and if (62) holds with
A(u) + A(—u) replaced by its mean value A(u),

) = % XO [A@) + A(—t)]dt .

Indeed, the fact that 4ec B, makes /A(u) = o(u), and hence we can
express /A~ in terms of 4 by partial integration. The conclusion follows
from Theorem 5 as before. Whenever /A~ e Bjf, this term can be

dropped from (61). (For symmetric sequences, 4= = 0.)
The foregoing discussion gives the following simple result:

THEOREM 11 (remark). We have I(\) = I(yt) whenever
log7 S A(w)du € B, and (S | A(w) | du>1/2eBl.
ro Jer -r
For proof, by inspection
1 z+R
|44, B) = 47, $)| = | [4) | du.
z—R

If S is chosen to be the square root of the integral we are led to
the second condition in Theorem 11. The first condition follows from
the remarks made in connection with (62). It should be observed that
the conditions are independent, in the sense that neither follows from
the other, even if A(u) is replaced by | A(w)].

The interest of Theorem 11 lies partly in the fact that the proof
is so elementary, and partly in the fact that no regularity is assumed
for the individual sequences {\,} and {z,}. Thus, {»,} might have
density 0 and I(A) = o« without invalidating the conclusion.

By the Schwarz inequality the second condition of the theorem
holds if

(1) S | A(w) | dw e B,
r —7

where ¢ is any positive function such that

r TZ(C“)

If ¢(r)/r is decreasing, an integration by parts shows that this new
condition can be replaced by

#(|ul) [ 4(w)| e B, .
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In particular, we can take ¢(r) = log r(log log )* with @ > 1. Since
the choice ¢(r) = log r is already sufficient to ensure the first condition
of Theorem 11, I(\) =I(x) follows with no further hypothesis. In the
special case in which {\,} is symmetric and 4,(x) = Du the result is
a sharpened form of a criterion of Koosis ([8], Th. 11).

12. Additional remarks on completeness. Apart from the
Paley-Wiener theorem, the foregoing discussion from beginning to end
uses nothing more elaborate than integration by parts. We now
mention a stronger result that follows from the deep theorem of
Beurling and Malliavin [1].

If the two functions

A(z) and A*(z, R) — 47(x)

of Theorem 10 both belong to B, the result [1] gives I(\) = I(y).
The same holds if the fuction on the right of (61) admits an upper
bound in B,. We use this latter observation to establish.!

THEOREM 12. If 4=(x) € B,and A(x) log log | x| € By, then I(\) = I(1).

The right side of (61) is ¢(x) — 4=(x), where

(63) é(x) = 2aS — S: Az + t) —t Mz —1) g

We form a sequence with x, = 2" and y, so that (¥,, ¥..,) is the middle
third of the interval (z,, z,.,). On the interval (z,, «,.,) it is con-
venient to define

1

nZ

R, .

Since Ly = Ypu — Rn < Y1 T Rn = Xpt1y for Sn _S_ t é Rn it follows that

S”"“ A+ t) — A(@ — 8) | do < 25’””“ | A() | das .

Yn

Hence by (63)

§ | ¢(2) | do = aS,e, + 2log f;ﬂ S | Aw) | dz

Yn n Y%n

Dividing by 2 and summing on %, we conclude that

E

1 Note added in proof (July 1967). Recently published work of Beurling and
Malliavin shows that A(x)€ B; is actually sufficient.
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where FE is the set of all the middle thirds. A similar calculation
using a different sequence {z,} gives the result for the left-hand
thirds, and likewise for the remaining thirds. Repeating the argument
for # < 0, we find that ¢(x) € B,, and hence I(\) < I(y). Symmetry
gives I(\) = I(y).

The above choice of S, leads to a simple result but is not optimum.
If S, is chosen so as to minimize the estimate, the needed condition
is found to be

IL,—0, > I1log* Il < co, where I, = Sznﬂ—-—l A(ZCH de .
x

n Tn

This is sharper than the former condition > I, logn < co.

The foregoing results do not assume that either sequence {\,} or {\,}
has a density. However, the special case A,(w) = Du, where D is a
positive constant, gives added insight into the funetion 4*. We then
have

A(w) = 4,(w) — Du , A*(x, R) = 4,*(x, R) + 2DR

and the criterion of Koosis [7] can be stated as follows: If the set
{e*»*} is not complete on an interval of length 27D, there is a function
é(x) € B,, independent of R, such that

— 4*(@, R) = ¢(2) .

On the other hand, assuming 4e B, and A4~e B, our results show
that I(\) < 27D if

A*(x, R) = 4()

where ¢ ¢ B,. Here the condition is needed not for all R but only for
R restricted as in Theorem 10.

A set {¢'*»"} is said to be exact if it is complete on some interval
but becomes incomplete when one term ¢‘*® is removed. The set has
finite (positive or negative) excess if it becomes exact upon removal
or adjunction of finitely many terms. We now establish:

THEOREM 13 (remark). Let {€'*»"} have finite excess on an interval
of length 2rxD and suppose A(u) = A(u) — Due B,. Then A=< By.
Also, if f(t) is mot equivalent to 0 and is orthogonal to all dbut a
finite number of functions €=, the function

G(2) = SDD fit)e dt

satisfies
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517;5 log | G(z + Re®)| dd — 2DR ¢ Bf

when R 1s restricted as in Theorem 10.

Without loss of generality we can assume that {\,} consists pre-
cisely of the zeros of G(z), and that G(0) = 1. As far as the form
of G is concerned, we shall use only the fact that G(z) satisfies

(64) | G(z) | < em2WI+o0iaD

where ¢ ¢ Bf. The Hadamard factorization theorem then shows that
the function G is identical with the function e¢=**F(z) of Theorem 10,
with 4,(u) = Du. By Jensen’s theorem

log | G(z) | — A*(@, B) = _21.7; S log | G(z + Re®) | do .
0
Since A*(x, R) = Af(x, R) + 2DR, the inequality (64) together with
the above gives
log | G(»)| — 4*(z, R) = ¢(|z ).

Theorem 10 now shows that /=(x) admits a lower bound in B for
— oo < 1 < oo, and since 4~ is odd, we conclude that 4A~eBj. Ap-
plying Theorem 10 again gives the second assertion.

13. Examples concerning entire functions. The foregoing
analysis distinguishes rates of growth specified by

k(r),  h(r)log hz;) ., h(r)logr.

Also the classes B, and B; are distinguished. We give examples to
show that these distinctions do not result from inadequacy of the
analysis, but are essential.

Throughout the discussion

A(w) = A, (w) — Du

where 4, is the counting function for the real sequence {\,} and D is
a constant between 0 and 1. The condition D < 1 enables us to
construct examples with simple zeros at the integers only, but is
otherwise irrelevant.

We use h to denote a function which is continuous, positive, and
even, and satisfies the conditions

h(r) = o(r) , r~*h(r) e M,
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for some p,0 < o < 1. (The latter condition could be considerably
weakened.)

ExampLE 1. Let |4A(w)| £ h(Ju|) and let

G(z) = eI (1 - _)f_>ezlln

where the constant ¢ is chosen so that G(|z]) = o(Jz|). Then if
h(r)log r € B, we have log* |G(x) | € Bf. But if h(r)logr is not in B,
there is a function G of the above type, with simple zeros at the
integers only, such that log*|G(x)| is not in B,.

The example depends on the fact that, under the given hypothesis,
(65) log |e=“F(x) | = A*(x, B) — A~(z) + E(x) ,
where the error term E satisfies
Rl — o) | E(x) | = (const) | @ | k(|2 )

for R <|xz|and |z| > 1. This follows as in the proof of Theorem 10.
Since 4e K(D) an easy argument, similar to others in this paper, gives

r

h(’/’)’ T:lxly

A*(z, R) < 2h(r) log

apart from terms of lower order. The dominant term is therefore A=,
in general. We now choose 4 so that

A(r) + A(=7r) = h(r) ,

using the fact that, if & is differentiable, A'(r) = o(1) as  — oo, and
hence A'(r) <1 — D.

As suggested by this example, quite generally the behavior of G
is dominated by 4= on the real axis, unless some special condition is
imposed. From now on we assume that F' is even, so that 4~ =¢ = 0,

and

zZ
F(z):H<1—7>.
The further construction of examples is based on A* rather than A~.
To simplify the statements, we say that the even function F belongs
to h if h has the above-described properties, F' is given by the fore-
going canonical product, and the function A(u) = 4,(u) — Du satisfies
| A(w) | £ h(u) for u > 0. The statement that F has integral zeros
means that all the zeros \, are integers, and are simple; that is, no
A, is repeated. By thus restricting the class of functions, we give
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more content to our examples.

ExaMPLE 2. If A(r)log r/h(r) € B, then log* | F(x)| € B} for every
even function F' belonging to . But if h(r)logr/h(r) is not in B,
then there is an even function F' with integer zeros, belonging to &,
such that log* | F(x)| is not in Bj.

If » > eh, then hlogr/h is increasing, and hence the positive
statement follows from the proof of Example 1. In the course of
proving the negative statement we shall also establish:

ExaMPLE 3. There is an even entire function of arbitrarily small
type, with integral zeros, such that log | F(z)| is in B, but log™ | F(z) |
is not in By.

Results of this sort are established by the following observation:
Let x, = a™ be any geometric sequence with ¢ > 1. Then if ¢ > 0 and
é€ M, for some p, the conditions

S“_@_dT < oo and Z ¢(xn) < o

7

“n

are equivalent. We omit the routine proof.
Let h be given with & log #/h not in B,, but let heB, as can
be assumed by diminishing k. Form a sequence

z, = e, Y, = e"*, n=1

so that v,., <z, < ¥y,. The point sets {x,} and {y,} together form a
geometric sequence with ratio 1e. We construct F belonging to &
with integer zeros as follows: The graph of A(u) for increasing w > 0
follows alternately the curves given by

h(u) ’ D(ajn - u) ’ _h(u) ’ (1 - D)(u - yn) .

Here the word “follows” means that the graph is within 1, say, of

the designated path. Since F' is even, A(—u) = —A(u), completing

the definition. The precise behavior for small # is not important.
Since 4= = 0, we have

log | F(x) | = A*(xz, R) + O[h(2)], x>0
when R/x and z/R are bounded. The choice R = (1/3)x, gives

log | F(x,) | = 2h(z,) log h(“i) + O[(,)] -

Hence, if ¢(x) is any monotone majorant of log* | F(x)| and « is large,
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ggmﬁ—l ¢(ﬂ3) da Z 2}’1/({1;”) log X, g S“’n+1 h(x) ].Og h(x) dx .
oy X2 @, h(x,) 2, & x

The second inequality follows from the fact that the integrand is
monotonic for eh(x) < «, and shows that log*|F(x)| is not in Bj.
This completes the proof of Example 2.

We now show that log* | F(x) | € B,. The fact that log—| F(z)| € B,
and hence log| F(x)| e B,, follows from known properties of entire
functions.

It is convenient to write p < @ whenever

P=<¢Q + ch, ¢, ¢y const .

If y... <2 <y, as now assumed, we have

(66) log* F(x) < h(z) log —~
h(x)
and also
67) log* F(z) < Swn—h—ﬂ@— du — rn Mdu
0 r— U T th X — U
where i = h(x,). The inequality (66) gives
S log” F(@) g0 < W@ 150 @
le—z,]S2h a? ol h(x,)

apart from terms of lower order. Since z, = ¢, the sum on = can
be estimated by an integral involving e¢!. The change of variable
u = e gives

= h(u) h(u) u -
S " ” log ) du < oo,

If x =, +t, and || = 2k, a short calculation based on (67) gives

a2 — ¢?

tZ

(68) log™ F(2) < h(zx,) log

We have used the fact that i(u) can be replaced by i(x,) and that

vzt —n

1\

3.
1

If (68) is integrated from t = h tot = x,/1/ 2, and doubled to account
for the interval (—x,/v" 2, —h), we conclude that

SI log* | F(x) | do < @,h(x,)
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where I, is the part of (y,_,, ¥.) for which {2 — x,| = 2h. This gives

g log™ Fl(x) dx < h(x,)
I, 2? Z,

Summing on # as before and setting w = ¢!, we get

This completes the construction of Example 3.

The function satisfies the additional condition 4(w)e Bi. Hence,
this condition does not ensure log* | F(x)| e Bf. On the other hand
the condition

A(w) log log |u | € B,

ensures log | F(x) | € B, by an argument similar to that in Theorem 12,
We shall show that the factor loglog |« | cannot be dropped:

EXAMPLE 4. There is an even entire function with integral zeros,
of type mD, such that A(u)e B,, but log* | F(x)| is not in B,.

Form a sequence x, = 4" and let A(u) follow alternately lines of
slopes

0, 1-D, —-D, 0

so that the graph forms a triangle above the axis, which lies wholly
to the left of «, and ends at z,. If the area of the triangle is .J,,
we require >.x;%J, < oo, so that A(u) e B,. The base of the triangle
is dv/J,, where d is a positive constant and, hence, the base is o(x,)
as m— o, There is therefore no interference between adjacent

triangles.
For z, < 2< (3/2)x, and R = x, we have
J
A*(x, B) = n —,
@ )'x—xn—deJn

since the value of the integral would be diminished if the whole of
the area J, were located at z, — di/J,. Hence,

3/22,
"A*(z, Rydw = J, 1

apart from terms of lower order. Applying Theorem 10, we see that
log* | F(x) | will not belong to B, if

> == J” log

l/J
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The choice J,/x% = n~*(log n)~? fulfills all conditions.
Upon re-examining the proof and referring to the remarks follow-
ing Theorem 12, we obtain:

ExampLE 5. Let {I,} be a given sequence of positive numbers
such that

I,—0, ZInlog—}—< oo .

Let {x,} be a given geometric sequence with ratio >1. If

S”“de <I
x2 = n 9

then the corresponding even entire function F' satisfies log* | F(x) | € B..
But if the series diverges there is an even function F of this sort,
with integral zeros, such that log*| F(x)| is not in B,.

A result related to Theorem 11 is:

ExampLE 6. Let &(r) be an increasing function satisfying
Sr Aw)du < B(r) .

If h(r)e B,, then log* | F(x)| € B, holds for the even canonical product,
F, formed from the A\,’s. But if % is not in B, there is such a function
F, with 4 satisfying the above inequality and with log* | F(x) | not in B;.

The proof is left to the reader.

Note added October 1966.

According to a recent unpublished result of Matzayev, A(u) —
Du e Bf implies log | F(x)| e B, for even entire functions of genus 1.
Hence, the condition 4 € B, in Example 4 cannot be replaced by 4 ¢ Bj.
Actually, Theorem 10 yields the following generalization of Matzayev’s
theorem to meromorphic functions which need not be even:

A(w) € Bf = log | F(z)| — A(x) e B, .

Because of the interest and simplicity of this result, we present an
independent development of it elsewhere.

BIBLIOGRAPHY

1. A. Beurling, and P. Malliavin, On Fourier transforms of measures with compacl

support, Acta Math. 105 (1961), 141-175.
2. R. P. Boas, Jr., Entire functions, New York, 1954. References to the original



378 R. REDHEFFER

sources are given here.

3. ———, The growth of analytic functions on a line, J. Analyse Math. 4 (1955), 1-28.
4. J. P. Kahane, Sur la totalité des suites d’exponentielles imaginaires, Ann. Inst.
Fourier 8 (1959), 273-275.

5. J. P. Kahane, and L. A. Rubel, On Weierstrass products of zero type on the real
axts, Illinois J. Math. 4 (1960), 584-592.

6. J. Korevaar, T. van Aardenne-Ehrenfest, and N. G. de Bruijn, A note on slowly
oscillating functions, Nieuw Arch. Wisk. (2) 23 (1949), 77-86.

7. Paul Koosis, Sur la totalité des systémes d’expomentielles imaginaires, Comptes
Rendus 250 (1960), 2102-2103.

8. ———, Sur la non-totalité de certaines suites d’exponentielles sur des intervalles
assez longues, Ann. Sci. Ecole Norm. Sup. (2) 75 (1958), 125-152.

9. B. Levin, Jr., Distribution of zeros of entire functions, Amer. Math. Soc. Trans.,
Providence, R.I.

10. S. Mandelbrojt, Transformée de Fourier de fonctions entiéres et séries de Dirichlet:
un principe de dualité, J. Analyse Math. 10 (1963), 381-404.

11. R. M. Redheffer, On even entire functions with zeros having a density, Trans.
Amer. Math. Soc. 77 (1954), 32-61.

12. ———, Ganze Funktionen und Vollstindigkeit, Osterreich. Akad. Wiss. 6 (1957),
96-99.

Received February 8, 1966. The preparation of this paper was sponsored by the
Office of Naval Research. Reproduction in whole or in part is permitted for any
purpose of the United States Government.

UNIVERSITY OF CALIFORNIA, L0OS ANGELES





