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FUNCTIONS WITH REAL POLES AND ZEROS

R. REDHEFFER

Throughout this paper {λn} is a real sequence with λnΦθ
and λn ^ λn+i9 — °° < n < oo. The counting function A^u) is
the number of λn between 0 and u, counted negatively for
negative u. Similarly μn is a real sequence with μnΦθ and
with counting function A2(u). In this summary (which corre-
sponds to the case p = 1 of the paper) we define

by taking all factors for which λn and μn lie on the interval
{—R,R) and then letting R~> oo. Our objective is to obtain
conditions on the growth of F{z) from conditions on the
function Λ(u) = Λ^u) — Λ2(u).

Denoting the even part of Λ(u) by Aβ(u\ we can state our
first result as follows: Suppose Λ(u) = O(u) and

lim
ur r/u )

for each u Φ 0. Then

log I F(reίθ) \ = πΛ(r) | sin θ \ -2Ae(r)θ sin d + r cos θ Γ •

apart from an error term ηr log | 2 esc θ |, where η -> 0 uniformly
in 0 < 1̂ 1 < π as r-^oo. This improves theorems of Pfluger,
Kahane and Rubel, Cartwright, and others, in that we do not
assume existence of lim A(u)/u, we do not assume that F is
entire or even, and the error term has a convergent integral
with respect to θ. Similar theorems for functions with
negative poles and zeros, given later in the paper, gener-
alize other familiar results. Here the error term involves
log (2 sec hθ).

Another kind of result is briefly described as follows:
Let R — R(x) and S = S(x) be positive functions such that the
ratios x/R, R/x, x/S, S/x are bounded as | x \ —» oo. Then for
many purposes the function

[
can be replaced by the function

Λ*(z;R,S)= -R Z — U

This remark is given content by detailed estimates of the
error and of A*. (For simplicity of statement the text takes
R — S but the form mentioned here is sometimes more con-
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346 R. REDHEFFER

venient, and is allowed by the proofs.) The development
leads to a simple, systematic method of proving variety of
growth theorems. Formulation of such a method is a principal
goal of this paper, and our specific examples are intended
only for illustration.

1. S o m e pre l iminary matters* We begin by giving a precise
description of the class of functions being considered, and we also
introduce some notation. With λΛ and μn as described above, our
objective is to estimate the magnitude of the expression

(1) F(F(z) U Z ? \

where W denotes the Weierstrass primary factor,

The product is interpreted by taking all factors for which λn and μn

lie on the interval ( — R,R) and then letting R —> oo. Thus, if A =
Λι — Λ2, we have

( 3 ) log F(z) = lim [* log W(z, u)dA(u) ,

when the limit exists. A suitable branch of the logarithm is easily
determined in the upper half plane or in the lower half plane, and
the relation between these branches is established by requiring that
integrals of form

Γ-K(u, z)A(u)du

be always even or odd, according as K is even or odd. To keep track
of these matters, we never introduce angles larger than π. Thus

z = x + ίy — reίθ , w h e r e r > 0 a n d —π<.θ^π.

The letters z, x, y, r, θ are used in this sense, whereas the letters
C, D+, D~, D, p, a, β, 7 denote constants.

The decomposition of a function into even and odd parts is ex-
pressed by use of subscripts e and o. Thus, for any function φ we
define φ = φe + φ0 where φe is even, φ0 is odd, and ^0(0) = 0. We also
set

( 4 ) Λ = Aι-Λ2, A(u) = u-*Λ(u) , Ά(r) - Γ
J-r U

where p = 0,1, 2, and — oo < u < αo, but 0 < r < <χ>. The letter
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F is reserved for functions which satisfy the hypothesis, and hence
the conclusion, of the following elementary lemma. (The designation
as " Theorem 1" does not describe the status of the assertion, but
serves to facilitate cross reference. A similar convention is used for
lemmas and corollaries throughout this paper.)

THEOREM 1 (lemma). Let Ae(u) = o(u), A0(u) = o(u2), and suppose
that

S CO fθθ

u~2Ae(u)du and I u~3A0(u)du
o Jo

exist. Then the limit defining F(z) exists for z Φ μn, and if also

S ec O«

[uAe(u) + zA0(u)] Δz du .
o U(Z2 — U2)

For proof, integrate by parts in (3). The integrated terms have
the form

and disappear as R—>co, We have, therefore,

( 5 ) log F(z) = zp lim \* A(u) - du
u(z — u)

provided the latter limit exists. Replacing u by —u gives another
form for the integral (5), and still a third form is obtained by taking
half the sum of these two. In terms of Ae and Ao the third form is

zΛ* Ae(u) / 1 _ 1
2 J-.R u \z — u z +

du

2 J-R U \Z — U Z — U

Inasmuch as (z2 — u2)~ι = u~2 + O(u~*) the integrals in (6) converge as
R —» oo? and this gives Theorem 1.

Formulas similar to (5) are well known in the theory of entire
functions. But since A = Ax — Λ2, and since the factor up has been
divided out in the definition of A, the present assumptions are weaker
than the customary ones. For example when p — 1 the even part of
A is required to satisfy only

Λβ(u) = o(uz), 1 vr*Ae(u)du exists .
Jo
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Regardless of the value of p, both {λj and {μn} can belong to products
of infinite genus without invalidating the conclusion.

2* An asymptotic formula* By analogy with familiar properties
of entire functions one can surmise that regular behavior of F follows
from existence of the two limits

( 7) lim A(u) = D- , lim A(u) = D+ .
11—*—oo iι—*oa

We shall see that this is the case and in fact, that the weaker condition

( 8 ) lim [A(ru) - A(r/u)] = 0 , (u Φ 0) , A(u) = 0(1)

introduced by the author [11] is sufficient. Evidently (7) implies (8)
but the converse is false even if λΛ and μn are integers.

THEOREM 2. Suppose A(u) is bounded and A(ur) — A(r/u) —> 0 as
r —> co, for each fixed u Φ 0. Then

r~p log I F(reiθ) \
= [πA(r) sgn θ — 2A0(r)θ] sin pθ + A(r) cos pθ + η log | 2 esc 0

where rj —+ 0 uniformly in 0 < | # | < π as r—*oo.

We have to write log | 2 esc θ | rather than log | csc 0 | because of
the accident that the latter function vanishes at θ — ττ/2. The as-
sertion of uniformity is relevant only near 0 and π.

Upon taking r = us we find that the first condition (8) is equivalent
to the two conditions

( 9) lim [Ae(rt) - Ae(r)] - 0 , limJ4,(rί) - A0(r)] = 0 , t > 0 .

By Theorem 1 log | F(z) \ = Re[zp(Ie + Io)] where

(10) Ie = \ e^ - z d u , ^ o — l ^—^—z2 du .
J-°° Z — U J-« u(^2 — U2)

An easy contour integration gives

— -du=-πisgny

and hence, Ie can be estimated as in [5]. That is, multiply (11) by
Ae(r), subtract from (10), and let u = tr. The result is

= 2 sgn

The integral is now analyzed by breaking the range at δ and 1/δ,
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where δ is a small positive constant. In this decomposition the first
and third integrals are uniformly O(δ) by inspection, since | A(u) | is
bounded. The second does not exceed

(12) Vι(r) [
J <5 z2 - rΨ

-dt

where Ί]1 is a bound for | Ae(rt) — Ae(r) | on the interval δ <̂  t ^ 1/δ.
Since the limits (9) are known to be automatically uniform [6] on any
fixed interval (δ, 1/δ) we have ηλ(r) —• 0 as r —» oo.

The integral multiplying η^r) in (12) does not exceed the value
it would have for δ = 0 +, namely,

-du == Γ — = if (cos Θ)
Jo (1 - W cos 2^ + f)1'2Jo I z2 - u21 Jo (1 - 2t2 cos 2θ + tψ2

where K denotes the complete elliptic integral of the first kind. By
an elementary calculation

iί(cos θ) - log I esc θ I (θ —> 0 or π)

and hence, the desired estimate is obtained if we choose δ first, then r.
Estimation of Io depends on the observation that

I. = Ά(r) + 2 Γ -AitlL rH

Jo z2 — fr2 t(z2 - t2r2)

In order to replace A0(tr) by A0(tτ) — A0(r), consider the sum

- Γ t d t + Γ ω d t α, = βH ,
Jo O) — t2 Ji ί(θ) — ί2)

which arises when -40(ίr) is replaced by 1. Setting t = 1/s in the
second integral produces an integral much like the first, so that

j(ω) = i (θ - A sgn θ

by a short calculation. We now write

Io = Ά(r) + 2j(ω)A0(r) + 2

Γ~ Λ(*r) - A0(r)

Ji ί(2;2 - f r 2 )

The range of integration is divided at δ and 1/δ in the first and second
integrals, respectively. Of the resulting four integrals the first is
O(δ) and the last is O(δ2), by inspection. The two others together
are dominated by
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f d t 9

z2 - t2r2

Since this has the same form as the expression leading to (12), the
desired estimate is obtained by choosing δ first, then r.

The result of this analysis is

log F(z) = -πiAe(r) sgn θzp + A(r)zp + ί(2θ - π sgn θ)A0{r)zv

apart from a term rjzv log | 2 esc θ |, where ΎJ is uniformly small as
r —* oo. Upon taking real parts and dividing by rp we get Theorem 2.

3* Discussion and illustrations* If the main assumption on A
is replaced by

= 0 ,

A0(rt) - A0(r) \ dt = 0lim

for each δ > 0, then the same conclusion holds in Theorem 2, except
that the term log 12 esc θ \ must be replaced by the larger term
|csc0| . (The condition that A be bounded can also be weakened,
as is evident.) To prove the sufficiency of (13) we need only observe
that

ZT sin θ
z2 - rΨ

_ 1
2

e»e _ !
ue _ f

The advantage of the term log | 2 esc θ | is that it has a convergent
integral with respect to θ. More generally, let F be a function sat-
isfying the conclusion of Theorem 2, with the error term η log | 2 esc θ \
replaced by any function 7)(r, θ) such that

By Jensen ?s theorem

lim Γ η(r, θ)dθ = 0 .

Λ(r) = — (* log
2^: j

(15)

and hence substitution of the expression of Theorem 2, with such an
error term, gives

JL [

for

= Ae(r)[l - ( - )

1. From this it follows that

A0(r)[l + (-)
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Γ \A0(rt) - A0(r)]dt -> 0 or Γ [Ae(rt) - Ae(r)]dt — 0
Jo Jo

a s f ^ o o , for p even or p odd, respectively. In short, conditions of
the type (13) are close to being necessary as well as sufficient.

We now consider some special cases. When F is even then
F(X) — 0 if and only if F( — λ) = 0, and the same applies to 1/F. Hence
A is odd, and we conclude

A(u) = Ae{u) (p odd) , A(u) = A0(u) (p even) .

The corresponding simplified form of Theorem 2 can be read off by
inspection. In particular, the case p = 1, F even, gives

log I F(reiΘ) | = πA(r) | sin θ | + o(r) log | 2 esc θ | .

If we specialize further by making A2 — 0 (so that F is entire) then
this is a result of Kahane and Rubel [5], supplemented by the ad-
ditional information concerning uniformity of the error.

To introduce the next example define

h(θ) = lim sup r~p log | F(reiθ) \

r-*oo

as is customary, and also

a = lim sup [| A(r) | + | A0(r) |] , a — lim sup A(τ) .

1—>oo r—><»

For 0 < | pθ | < τr/2 Theorem 2 gives

α cos pθ — πa\ sin p^ | ^ fc((9) ̂  α cos pθ + πa \ sin pθ | .Because of the poles of F(s) we cannot get any estimate for θ — 0.
But if A2 — 0 then JF7 is an entire function of order p, under the
hypothesis of Theorem 2, and continuity of the Phragmen-Lindelof
function gives:

THEOREM 3 (corollary). Let F be an entire function satisfying
the hypothesis of Theorem 2. Then

lim S Up log I TO I = lim sup Γ

ί/ ί/̂ e latter limit is positive, and otherwise the left side is ^ 0.

There is a similar theorem for x —» — oo which distinguishes the
cases: p even, p odd. If F is even and p is odd, the integral in
Theorem 3 vanishes identically, and the conclusion is log | F(x) \ ̂  o(xp).
The special case p = 1 is in [11], though the proof here follows [5].

To show the connection of our results with the classical theory
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of entire functions, introduce the sum

P
(16)

S(r) = [ •Λ(u) du
u (p = 0) .

By partial integration

(17) S(r) = 2p-1A0(r) + Ά0(r) , p ^ 1 ,

giving an alternative form of Theorem 2. As a special case, if

lim A(u) — D for | u | —> oo, then

r~p log I F(reiθ) | — TΓD sgn # sin #># — S(r) cos pθ = η log | 2 esc ̂

where η —> 0 uniformly in 0 < | # | < τ r as r —> oo. For proof note that
(8) holds and lim A0(r) = 0, lim Λ(r) = £>. Thus the result follows
by substitution in Theorem 2. The choice Λ2 = 0, p = 1 gives a theorem
of Pfluger [2], supplemented by the uniformity of the error term.
If we specialize further by taking D = 0 the result is a theorem of
Cartwright [2], also supplemented.

4* Evaluation of the error* Besides the function A introduced
in §1 we require

(18) A*(z, R) = \X+R Ai<u) du , R > 0 .
Jtf-β Z — U

The result of applying the operator * to any function is here called
an incomplete Hubert transform of that function, because it becomes
a Hubert transform when R = oo. Both Ά and A* are, as a rule,
principal terms in our estimates. The former is important if the
growth of A is moderately fast, while the latter is important near
the real axis.

By contrast, the expressions

(19) Λ-(r) = [(lλl^ϊidu + \(ΣXlAMldu, m
JoV r J u } \ u u

\
u }r\u/ u

are in the nature of error terms. We take the view that the ~ in
Af the * in A*, and the superscript in Am denote operations to be
performed on any function to which they are applied. Thus, Â  is
obtained from (19) with m = 2 and with Ao replacing A.

THEOREM 4. For 0<\θ\<πwe have

I z~p log F{z) - A{r) | ^ 2 | esc θ \ [A\(τ) + A2

0(r)\
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and for 2x2 ̂  r2, | x | ^ R we have

I S-* log F(z) - 1 ( | x I) - A*(s, B) | ^ 4-L^i-[Ai(| a? |) + Λ2(l x I)] .

To prove the first assertion set

2z2

 τ 2u2

1 9 9 ' Z 9 9

z2 — u2 z2 — u2

The integral multiplying zv in Theorem 1 can be written

A(r) + I (—i + — ^ - V <Z% + \ (2-f- + - ^

Since | ̂  sin (9 | <J2, this gives the desired estimate.

To get the second estimate define

z + u u(z + u)

When x > 0 the conclusion of Theorem 1 gives

z-*> log F(z) - A(x) - A*(z, R)

S x—R/ Δ oi Δ \ Cx Δ A

A + J^.k1&+ Δi—as.
o \ Z Z / J x—R ZS oo / ~A z2A \ Cχ+R Λ Cx+R

χ+R\ ΊJb2 V? J jx Z Jx

If 2R <; x and 0 ^ u ^ x — R, it is possible to show that

i ^ 2x2 ^ 4x

and evidently | k3 \ ̂  1 for u > 0. Hence (20) admits an estimate some-

what sharper than

(22) J-LfVJ
3 J ϊ JoV

AL +
r rx

Similarly, if u ^ x + R and 2i2 ̂  a?, then

2u2 ^ 9x\h\ ̂

and f or x ^ u ^ (3/2)» it is possible to show t h a t | k4 \ ̂  18r2/(5^3).

For 212 <̂  a; the expression (21) is therefore dominated by
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Addition of (22) and (23) gives an estimate which is sharper than
that of the theorem when r2 ^ 2x2.

So far we have assumed x > 0. If φ(z) = 2"*logics) then φ( — z)
is obtained by writing ~Ae(u) instead of Ae(u) in the formula for
φ(z) (Theorem 1). Upon noting the effect of this substitution on Ao,
on A*, and on the error terms, we obtain Theorem 4.

The restriction 2x2 <: r2 means that | sin θ \ ̂  (l/2)τ/ΊΓ, in other
words, z lies in a 90-degree sector centered about the positive or
negative real axis. Now, a restriction of the type | sin θ | <; δ is entirely
harmless, because for other values of z the first estimate can be used.
It is therefore relevant to note that, if sin θ = 0(VT) and R = \x\ O(δ),
then the coefficient " 4 " in the second error term can be replaced by
1 + O(δ) as δ —> 0 + . This is true because the stated conditions give

R I k, I ̂  I x I , R I k2 | ^ | x | , 2 | k3 | ^ 1 , 2 | £&41 ^ 3

apart from a factor 1 + O(S), and r = | x | apart from the same factor.
The second assertion of Theorem 4 remains valid if the term

~11 x I A\{\ x I) is replaced by

( 2 4 )
R Jι*ι ^62 r Jo r Jo | x \ — u

Proof of this requires a somewhat different estimate for the part of
the error due to Ae on (0, x), x > 0. By (20) this part of the error
does not exceed

1 Cx-R 0^2 i far

- * * \A.(u)\du + ±\ \A.(u)\du.
r Jo χ£ ~ u r U~R

The conclusion (24) now follows from the inequality

^ g 1 + — ^ — (x > 0, u > 0) .
X U

X2 — U X — U

5. The classes Bp and Mp. As noted in §1, r ^ 0. If φ = φ(r)
is a function of r the statement " φe Bp" means that φ is integrable
and

(25) [lί^lLdr < oo , p = const .

On the other hand functions of u, such as A(u), are defined for
— cx5 < u < oo. The statement A G JBP then means that (25) holds for
φ(r) — A(r) and for φ(r) = ^.( —r). Thus both the even and odd parts,
Ae and A01 have to satisfy (25).

If I φ(r) I admits an increasing majorant φ+(r) e Bp then we say
In agreement with the above convention a function such as
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A(u) belongs to B£ if | A(r) | <£ φ(r) and | A( — r)\ ^ ψ(r), where φ is
an increasing function satisfying (25).

If φ = φ(r) is a function of r the statement " φ e Mp" means that
p ^ 0, and that φ(r)rp is increasing but φ(r)r~p is decreasing. For
functions of u rather than r the same convention is used as in the
case B. Thus, the even and odd parts must belong to Mp, taking
u = r ^ 0.

THEOREM 5 (lemma). Let φ ̂  0 be integrable, let φ = 0 near 0,
and for m > 0 define

φ{r) = [j&Ldu, Φ'(τ) = [(ΆYiίΞLdu + \(i.
Jo u j o V r / ^ j r \ t 6

Then:
( i) ^ G ilfp implies (m — p)φm ^ 2φ.
(ii) ^ e S p implies φeBf for p > 0 αwd 0m e 5 P /or | p\ < m.
(iii) // r"φ(r) is increasing for some a, then φeBp=*φe Bf for

p > 0.
(iv) φeBp implies raφm(r) eBj+a for p + a > 0, \p\ < m.
( v ) 0(r) log r e Bp => φm e Bf for p = m.

The statement (i) is trivial and (ii) follows by a change in order
of integration, as is well known. To get (iii) consider φ(2r) — φ(r).
Under the given hypothesis it is found that φ(r) ^ 7φ(2r) for some
constant 7. But φ(r)eBf by (ii), and hence φ(2r) has the same
property. The statement (iv) follows from

eBp+a =>r«φm eB\
p\a

In the last step we used (iii) together with the observation that
rmφm(r) is nondecreasing for m > 0. Proof of (v) is similar.

In (iii) the purpose of assuming raφ(r) increasing is to ensure an
inequality of form φ(r) <£ jφ(βr) for large r. The same end would be
accomplished by the weaker condition

(26a) \\φ{tr) - δφ(r)]^-
Ja t

^ 0

where a, β and δ are constant, with /3 > α :> 0, δ > 0. The class Mp

can be generalized similarly, without invalidating our conclusions.
Conditions of the type (26a) are useful for getting an estimate on

Λ(u) from Jensens's theorem (15), since the latter gives Λ(r). Thus if
φ(u) = A(u) satisfies (26a) together with

(26b) φ o ( \ u \ ) ^ ε \ φ ( ε u ) \ , \u\>u0,
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for some positive constant ε, then

Λ(r) £ O[H(r)] - | A(r) \ £ O[H(r))

for every function HeMp, and furthermore,

Λ{r) eBp=> A(u) e Bp

for every p. These conditions are fulfilled for many meromorphic
functions [and for all entire functions, since in that case A0(r) is
increasing and | A(u) | <̂  2A0(\ u |)].

6* The incomplete Hubert transform* We now estimate the
incomplete transform, A*. If D ^ 0 is constant, denote by K(D) the
class of functions A such that A(u) + Du is nondecreasing; for example

A,(u) - DueK(D) .

We say "x and λw are separated by c" if c is a positive constant
such that the conditions

— ^n = X — λ n > G

hold for all n.

THEOREM 6 (lemma). Let φ be integrable and for \ u — x \ ̂  R
define

M = s u p I φ(u) I , J = [Z+R I φ(u) \ d u ,
Jx-R

φ* = du .
x-R Z — U

Then:
( i) I Im φ* I £ πM, \ Re ^* | ^ 2Mlog | csc 0 |, | 0* | ^ 2Mlog | esc 0 |

/or αϊϊ i2, /or i2 ^ | x |, α^d /or max (4i2, 2 | y |) ^ | a; |, respectively.
(ii) 7%e condition φ e K(D) implies Re ζ5* ^ 2min (DR, VJ
(iii) 7/ λΛ and x are separated by c, then ReΛ* ^ — 2Rc~\

The statement (i) follows from the observation that

(27)

x+R

S x+R

x—R

u

Re-
z — u

du — 2 log cot — ψ ,

du — 2 log esc

where ψ is the first-quadrant angle defined by

βin* = 1*1 .
{R2 + yψ2
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To establish (ii) define

(28) I(φ) = Re φ*(z, R) = Γ+* x ~ u

 2φ(u)du .

If φ e K(D) then φ(u) = D(x — u) + ψ(u) where ψ is increasing. There-
fore I(ψ) <g 0, and we obtain

I(φ) = I[D(x - u)] + I{f) ^ I[D(x - u)] ^ 2DR .

Proof of the inequality involving J depends on the fact that for
y = 0 the kernel in (28) not only changes sign at x, but is monotone
on each side of x. We carry out the proof by maximizing I(φ) subject
to

(29)

where Jo is constant. We can suppose Λ/DJ0 ^ OR, since otherwise
the desired estimate follows from the estimate already obtained.

If φ(u) = 0 at u — x, the maximizing function must be positive
for u < x and negative for u > x. (Otherwise we could increase /
without changing J.) Thus, (x — u)φ(u) Ξ> 0, the value of I increases
as I y I decreases, and hence we can assume y = 0. Since (x — u)~ι is
monotone for u < x, the area at the left of x should be pushed as
close to x as possible. Similarly the (negative) area at the right of
x should be pushed as close to x as possible. The maximizing function
for y = 0 therefore follows the line s — D(x — u) from x — a to x + β,
say, and is zero elsewhere.

Because of the symmetry of (x — u)~\ if a > β we could do better
by transferring some of the area from the left to the right, and
similarly if a > β. Thus a = β, and the maximum value is 2Da as
in the previous discussion. Since Da2 ^ Jo, this gives the final result.

We must still justify our initial assumption that φ = 0 at the
central point, x. The following elegant discussion, simpler than the
author's, is due to Ernst Straus. Let φ — φί + φ2, where φx is even
about the point x and φ2 is odd, with φ2{x) = 0. Then

Φ e K{D) ^φ2e K(D) , I(φ) - I(φ2) , J(φ) ̂  J(φ2) .

Indeed, the first relation can be seen from the fact that φ e K(D) is
equivalent to φ' ;> — D when φ is differentiate. The second is obvious,
and the third follows from

(30) 2 Ϊ * I φ21 du ^ \R(\ φ, - φ21 + I φ, + φ2 \)du .
Jo Jo

Therefore φ can be replaced by φ2, giving ^(0) = φ2(0) — 0.
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The somewhat informal language of the foregoing discussion is
best suited to a restricted class of functions φ, such as the class of
piecewise continuous functions. (The A in Theorem 1 is in fact piece-
wise continuous.) But since smooth functions are dense in the Lebesgue
class L, we have actually established (ii) in full generality.

Under the hypothesis (iii) the condition Λ(u) = 0 at u = x implies
that the graph of s = Λ(u) lies above the line s = c~\u — x) f or u < x
and below the line for u > x. The foregoing method thus gives the
conclusion.

7* Comparison* No use has been made of the fact that Λ2 is
an integer, and hence it is permissible to take Λ2(u) = Du, | u |p sgn u,
and so on. The resulting estimates give information about the entire
function associated with Alm Thus many classical results on entire
functions that seem unrelated to ours are in fact corollaries.

The same extension can be made without losing the applicability
to meromorphic functions. Namely, if A(u) ~ B(u) as \u\—+°°, we
compare F(z) with the function zpG(z), where

(31) G(z) = lim [* B(u) du .
iί-»oo J-i? u(Z — U)

It is supposed that B(r) exists as a Cauchy principal value, and the
integral (31) therefore exists also, near 0, as a Cauchy principal value.
A suitable relation between the branches for y > 0 and y < 0 is found
by the transformations leading to Theorem 1. Since the integral
operators in Ά, A* and in Theorem 1 are linear, Theorem 6 remains
valid if z~p log F(z) is replaced by

zr* log F(z) - G(z)

and A is replaced by E — A — B. For proof, assume that the integrals
El and El converge; otherwise there is nothing to prove. Since
B = A — E the corresponding integrals with B also converge (though
perhaps not absolutely) and we can transform the integral for G as
in Theorem 1. This establishes the assertion.

For example, if 0 < p < 1, our interpretation leads to

(32)
r

u |p sgn u- du = π esc πp[( — z)p + zp]

u(z — u)

I u \p du = π esc πp[( — z)p - zp\
u(z — u)

where 0 < | θ \ < π. Here zp is real for z > 0 and regular for | z \ > 0,
I θ I < π. Subtraction produces the familiar formula
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(33) I up du = πzp esc πp , | θ | < π .
Jo u(z + u)

As another illustration, let D0{u) = D sgn u for | u | ;> 1, and
D0(u) = 0 otherwise. Then

Γ
J-oo

= D l o g ( l - z2)
u(z — u)

= iD(2θ - π sgn θ) + 2D log r + O(r~2) .

For B(u) = D we have G(z) = —πiDsgnθ by (11), and combining this
with the above result for Do gives

(34)
= iθ(D+ - D-) - D+ rΐ sgn θ + jD(r) + 0{r~2) ,

where Z)(u) is defined to be

for the range u < — 1, — l ^ u ^ l , and 1 < w, respectively.
These equations give a suitable value for G, and the relation

between F and G is then determined by Theorem 4. Analysis of the
term J57* is facilitated by the fact that

(35) P(z)[A(u)]* - [P(u)A(u)]* = [^* P(z) ~ P { u ) A{u)du
Jx-R Z — U

for any function P(z). If P satisfies a Lipschitz condition—and in
particular if P is analytic—the foregoing expression often admits a
bound of the same order as our error terms. Thus, [P(u)A(u)Y can
be replaced by the simpler expression P(z) [A(u)]*. As an illustration,

(36) I zpA*(z, R) - A*(z, R) \ S p(r + Ry-1^* \ A(u) \ du .
Jx-R

This leads to an alternative form of Theorem 4, involving A rather
than A.

8* A theorem of Lindelof* When used in the manner described,
Theorems 4-6 give a variety of specific results with the greatest ease.

THEOREM 7 (corollary). Let S(r) be the sum (16) and let A(u)
= O[£f(^|)] where HeMp, \p\ < 1. Then the following statements
are equivalent:

( i ) r~p log I F(reiθ) \ = O[H(r)] for some θ with sin θ cos pθ Φ 0.
(ii) r~p log I F(reiθ) \ = 0[H(r) log 12 esc θ \ ] uniformly inθ<\θ\<π.
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(iii) S(r) = O[H(r)].

For proof note that (i) => (iii) by the first estimate in Theorem 4,
together with Theorem 5 (i). The implication (iii) => (ii) follows from
the two estimates in Theorem 4, together with Theorem 5 (i) and
Theorem 6 (i). This is true because the inequality

(37) I A ( u ) I ^ H(r)rp(\ x | - R)~P f o r \ x \ < R , \ x - u \ < R

holds whenever | A(u) \ S H(\ u |) with HeMp. Thus we get a suitable
value for M in Theorem 5. Finally, (ii) => (i), completing the circle
of equivalence.

By Theorem 5 (ii) and (iv) we see that Theorem 7 also applies
when the condition " = O(H)" is replaced throughout by " e Bp" or
" eB£, \p\<l. But the assertion of uniformity requires | esc θ \
instead of log | 2 esc θ\, if by uniformity we mean that the dominating
function Φ(r) in (25) can be selected independently of θ.

As a special case we can choose H(r) = h(r)rp where h(r) is
constant or tends to zero in such a way that H e Mp. Theorem 7
therefore applies when the condition O(H) is replaced by O(rp) or o(rp),
I p I < 1. The choice p = 0, leading to 0(1), or o(l), gives an extension
of Lindelδf's criterion to meromorphic functions of the type considered
in Theorem 1. In this connection we should recall that the condition
A(u) = O[H(\ u I)] can be replaced by the corresponding condition on

(38) jF\(r) = — Γ r~p log | F(reiβ) | dθ

provided (26) holds for the function A.
Introduction of Fx(r) shows an interesting contrast between the

cases p even, p odd. In the first case ί\(r) and S(r) depend on Λo

only, and each is readily estimated in terms of the other. But in the
latter case Fx(r) involves Ao only, while Sir) involves Ae only. Thus,
the two terms are wholly independent. A somewhat different formu-
lation of the content of Theorem 7 produces Tauberian theorems,
relating the function

(39) F,(r, θ) = r~p log | F(reiθ) \ - S(r) cos pθ

to Fx{r). The Tauberian condition is (26) for φ = A, which is always
verified when F is entire.

These results can be extended as indicated in § 7. For conditions
of the type

(40) I A ( - u ) - D ~ \ ^ H ( \ u \ ) , I A ( u ) - D + \ £ H(u) , u > 0 ,

we choose G in (34) and obtain
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Fx(r, θ) = r-Mog | F(reiβ) |
(41) ~

- [πD+ sgn θ + (D- - D+)θ] sin pθ - A(r) cos p<9 ,

instead of (39). The resulting statements about J?\(r, #) overlap with
Theorem 2.

9* Equal right and left densities* We discuss the case D~ =D+

in (40) and (41), for which the densities of combined zeros and poles
are the same in each half plane. The main result is:

THEOREM 8. Let \A(u) - D\ ^ H(\u\) where HeMp, \ρ\<l,
and define

Fx(r, θ) = r~p log | F(reiθ) \ - πD sin pθ sgn θ - A(r) cos pθ .

Then for any constant C > 2 there is a constant d such that:
(i) I ί\(r, θ) I ̂  CH(r)[\og \ esc θ \ + CJ 0 < | β | < TΓ

(ii) F^r, θ) ^ Cίί(r) log+ h Cx provided F is entire, p is
L H(r) J

, α^d (1 — p) A(u) is bounded below.
Moreover, if instead of He Mp we have H{r) decreasing and rH(r)
increasing for large r, the conclusions (i) and (ii) hold with an extra

1error term 2H(r) log4

H(r)

We first consider the case HeMp. The preceding results are
applied, to F(z) - zpG(z) with B(u) = D, so that G(z) = -πiDsgnθ.
By Theorem 5(ΐ), the first estimate of Theorem 4 gives both parts of
Theorem 8 in any region of the type | sin θ \ ;> δ > 0. We therefore
use the second estimate of Theorem 4, taking | sin θ \ ̂  δ and R — δ j x
The positive constant δ is chosen so small that

(42)

and also, by (37), so small that E(u) = A(^) - Z> satisfies

(43) I JE?(w) I ̂  (l + — η\H{r) , for | a? - u \ £ R .

The result of applying Theorem 4 is now

(44) I log F(z) - zpΆ(r) - πiDzp sgn θ - zpE*(z, R) \ ̂  (const) H(r)rp .

We have used the fact that E(\ x\) = A(\ x\) = Ά(r) + 0[H(r)]. Since
£7*(z, R) can be estimated by (43) and Theorem 6(i), we obtain
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\(r, θ) I ̂  (2 + i-)?)(k)g I esc θ | + C

where CΊ is constant. If | sin θ \ is small, this is less than the bound
in Theorem 8 even with CΊ = 0. The inequality for other values of
θ is ensured by choosing d large enough.

The second assertion depends on the fact that uA(u) e K{D0) for
some constant Do. Indeed, if the graph s — Λ^u) is approximated
within ε by an increasing differentiable function Λε(u)y the corresponding
expression Aε satisfies

[uA8(u)Y ~ [u'-'AAu)]' ^ (1 - p)u-*At(u) = (1 - p)A.(u) .

This gives uAε(u) e K(D0) where Do is independent of ε, and hence
uA(u) has the same property. We have used the fact that uι~v >̂ 0
for p odd, and also the assumption that (1 — p) A(u) is bounded below.

Since uA(u) e K{D0), evidently uE(u) e K{D0 + D). Writing E* as
an abbreviation for E*(z, R), we note that

(45) zpE* = zp-'zE* = zp~ι[uE{u)Y + O[rpH(r)]

by (35). If 0 < s < R the interval of integration (x — R, x + R) can
be broken at the points x ~ s and x + s. The integral over (x — s,
x + s) is estimated by Theorem 6(ii) and the rest of the integral by
(43). Thus,

Re [uE{u)Y ^ 2(D0 + D)s + 2(1 + J U W r ) ( | x | + i2) log ^ .
\ 4 / s

We choose s = min [iϋ, riί(r)], and recall that | x \ + R ^ r(l + δ). In
view of (42) the result is

(46) Re [uE{u)Y ^ 2 ( l + —7])rH{τ) log+ — — + 0[rH(r)] .
V 3 / ΐz(r)

By Theorem 6(i), the imaginary part of [uE(u)]* is 0[rH(r)].
Hence, using (45),

(47) Re (zpE*) = r^1 cos (p - l)θ Re [uE(u)]* + 0[rpH(r)]

and, taking real parts in (44),

rpF0(r, θ) ^ Re (zpE*) + 0[rpH(r)] .

Since | sin ^ | is small and p is odd, cos (p — 1)0 > 0. The sense of
the inequality (46) is therefore preserved in (47), and we obtain the
statement (ii).

The final assertion follows from
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(48) —\rH(u)du ^ -H(r) log H(r) + O(H) ,
T Jo

and from a similar estimate for the expression (24), with a factor 2
in the principal term. The details are similar to those in [11].

To see the connection of Theorem 8 with results of the literature,
let p = 1 and define h(τ) — rH(r). The hypothesis is then

I Λ(u) — Du I ^ h(\u I)

and the conclusion (ii) states

(49) log I F(z) I ̂  x[ J^L du + πD\y\ + Ch(r)\\og+ - f- +

If h(r) is increasing and r~ιh{r) decreasing, C is any constant larger
than 4, and if r~ιh{r) e Mp with | p | < 1 then C is any constant larger
than 2. As shown by examples in [11], the values 2 and 4 cannot be
improved.

Equation (49) refers to entire functions of genus 1. For meromorphic
functions the result is given by Theorem 8(i), and in particular, (49)
holds as an equality, with C replaced by a bounded function of r and
θ, in any region of the type

I sin θ I ̂  (const) H(r) .

This is evident by comparing the forms of the error in (i) and (ii).
When F is even the integral on the right of (49) is 0. Hence,

(49) extends and sharpens several results of Boas and the author [3],

[12], [11]. If

K+i ~ K ^ c > 0 ,

as is assumed by Boas, we can also extend his estimate

(50) log I F'(K) I ̂  ~ C2h(r) log Γ-τfτ-1 ~ C3h(r)
L h(r) J

to the more general functions being considered here. With

W(x, λ) = ( l - ^ V λ , λ = Xn ,

we have

F(x) - F(X) _ F(x) exlλ

x — λ W(x, λ) λ

as x—>λ, where F1 is defined by the equation. When x = λ the
function Fx{x) satisfies the conditions needed in Theorem 6(iii). This



364 R. REDHEFFER

latter result can therefore take the part that was formerly taken by-
Theorem 6(ii); and a simplified version of the argument leading to
Theorem 8 now gives (50).

10* Oriented products* If A(u) = 0 for u > 0, the decomposition
into even and odd parts is unnecessary, and the appropriate conditions
on A are, as a rule, such that A(r) is an error term rather than a
principle term. But despite this increased simplicity, the desired
estimates are not special cases of the foregoing. The trouble is that
the previous error terms are large on the positive real axis, whereas
they should now be small.

To discuss these matters define

(51) A\r) =

and let φ\r) be given by (51) with A( — u) = φ(u), for any function φ.
The expression (51) is an error term analogous to those in (19).
Though (51) does not follow from (19) by putting m — 0, we have

(52) φ\τ) ^ φ\τ) ^ φ\r) ^ φ(τ) + φ\r)

and hence, φ\r) can be estimated by Theorem 5. Since φ\r) is in-
creasing, it is automatically in B^ if in Bp.

If φ is a function of r the statement " φeLp" means that φ is
positive and integrable, and

(53) lim -έί^I = tp , t > 0

A function of u belongs to Lp if its even and odd parts do when
regarded as functions of r. As was the case for Bp, here too interest
centers about the behavior as r —> oo, Convergence of the integrals
near 0 is assured for the functions with which we are concerned, and
is not emphasized in the sequel.

It is known [6] that the functions satisfying (53) can be represented
in the form

(54) φ(r) = rpp(r) exp I •

where lim p(r) = p0 > 0 exists and lim q(r) = 0 a s r ^ o o , This shows
that the convergence (53) is uniform on d <̂  t ^ 1/δ. As is also known
[9], the class Lp is a slight generalization of the class {rp{r)}, where
p(r) is a Lindelof proximate order with limit p. Using this fact, or
(54), we obtain
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(55)
φeLp=> φ(r) ~ ρ~*Φ(r) for p > 0 ,

φeLp=* φm(r) ~ 2m(m2 - ρ2)~ιώ{r) for | p \ < m .

These serve the same purpose for the class Lp as was served by
Theorem 5 for Bp and Mp.

T H E O R E M 9 . L e t A(u) = 0 for u > 0 . Then for \θ\<π

z~* log F(z) I ^ sec — t A\r) ,

R

and for x + R <; 0,

I z~p log F(z) — A*(z, R) I <:

Also if A(-u) ~ H(u) eLp, 0 < p < 1,

s-p log F(z) - H(r)eipΊπ esc πp | <:

where η —• 0 uniformly in\θ\<πasr—>°°.

I) .

2 sec— <

With k3 — z/(z + ^) as before, we set kδ = 1 — fc3 and note that
each function satisfies

i cos — < ^ 1 for u > 0 .

The first assertion follows from this and (5). The second follows from

s-* log .F(z) - A*(z, R) = \*~~R AtvLkt du H

\
°
x+R

du
U

where kQ = zu/(z — u) and kΊ = z/(z - u). We use the fact that

kJ< x - RI i | i g 2 aj 11

on the relevant intervals.

For the third statement there is no loss of generality in taking

A(-u) = H(u). According to (33) and (5)

\H(u) - H(r)[ —

o L \ r .

If δ is a small positive number, the integral from 0 to δr is uniformly
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O[δpH(r)] by (55) and (53). Similarly, the integral from r/δ to oo is
uniformly O^-pH(r)].

For the integral from δr to r/δ the substitution u = rt gives an
upper bound of form

1/δ H(tr)

H(r)
- tp dt

t\ξ
ξ = eίθ .

Since the convergence (53) is uniform, the proof of Theorem 9 is
complete if

S i/δ jf 1

— ^ (const) log 2 sec — θ ,
t ζ + t\ ~ 2

δ being fixed. But (56) is easily verified by (27).
The first two parts of Theorem 9 correspond to Theorem 4, and

hence, the discussion of A* and of comparison applies without change.
For example, let a, β and p be constants between 0 and 1, and for
u > 0 suppose I A( — u) — np \ ̂  H(u), where u~aH(u) increases and
uβ~Ή(u) decreases. Then

(57) I log F(z) - πzp+p esc πp \ ̂  r

vH(r)(— + —) sec — θ
\a β/ 2

for I θ I < π, as is seen by use of the comparison function (33) in the
first assertion of Theorem 9. A sharper result, involving log sec 0/2,
follows from the second assertion. The third statement of Theorem
9 sharpens and extends the classical result of Valiron [9].

Instead of the particular function up one can introduce an arbitrary
comparison function B(u). The resulting development yields an alterna-
tive form of Theorem 2, in which the given condition on A(u) is
replaced by

lim\
A{ru) - j ί ί r M l = o , A^L = 0(1)
B(ru) B(r/u) J B(u)

11* Elementary remarks on completeness* The function A*
introduced in the preceding discussion has an interesting connection
with the problem of completeness of complex exponentials. A set
{eiλ»x} has completeness length I if it is complete on every interval of
length less than /, and on no larger interval. In other words, the
completeness length is I if the condition

(58) G(z) = [* f(t)eiBt dt = Q a t z = Xn
J—a

implies that / is equivalent to 0, when a < //2, and has a nontrivial
solution / when a > 1/2. It is well known that I is independent of
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the class Lp to which / belongs. We therefore take feL2, so that
the Paley-Wiener representation theorem can be used. If the set is
complete on no interval we set / = 0, and if it is complete on every
interval, then 1= oo.

To distinguish the completeness interval for exp (iλnx) from that
for exp (ίμnx) we write 7(λ) or I(μ), as the case may be. As elsewhere
in this paper, Aγ is the counting function for the λ's and A2 for the
μ's, and A = Aι — A2. The assumption that λ Φ 0 and μ Φ 0 involves
no loss of generality, because any finite number of λ's or μ's can be
altered without affecting the completeness.

It is convenient to define

(59) e = Γ J^Ldu , A'(x) = x\~ A(w) + Λ{~w) du .
J - ~ u2 Jι*ι u2

The notation Λ°° suggests a function that describes the behavior of A
near oo. This contrasts with the function

Λ (x, R) = ["-4&-du ,
Jx-R X — U

which is a measure of local behavior.

THEOREM 10 (lemma). If AeB1 and p = 1, then

log I e~cxF(x) I + A°°(x) - A*(x, R) e B+

where R is any positive measurable function of x such that R/x and
x/R remain bounded as \ x | —> oo.

If Fί(z) is any function with zeros Xn and poles μn, by using
Jensen's theorem as in [7] we get

log I F,{x) I - A*(x, R) = 4-\ l o ^ I F& + Reiθ) \ dθ .
2π Jo

The choice F^z) = e~czF(z) gives an alternative form of this lemma.
For proof observe that the function A(u) — A(u)/u satisfies

uA\u) e Bt , uA\u) e B+

by Theorem 5 (iv). Also Theorem 5 (ii) gives

xA*(x,R) - Λ*(x,R)eBt

provided R — O(\x\). Theorem 10 now follows from Theorem 4, afteϊ
multiplication by x.

To illustrate the use of this result suppose I(μ) < oo and let G(z)
be the [function (58), with a slightly larger than I(μ)/2. When
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G(μ) = 0, partial integration gives

f{t)eMdt = \a myxt dt
Jμ — x J-o

where

r eiμwf(w)dw .
a

Hence, |/i(ί) | can be estimated by the integral of \f(w) |, and repetition
gives a multiple integral just like the remainder term in Taylor's
series. If

P(x) = Π — (N factors)
x - μn

and G is suitably normalized, it follows that

On the other hand, for S ^ 0

Λ*(x, S) = Λ*(x, S) - At*(x, S) ^ -Δt*(x, S),

since Aγ(u) is nondecreasing. By partial integration

-Λ2(x,S) = \og\P(x)\ + NlogS

where P(x) is the product over all μ on the interval (x — S, x + S),
and N is the number of μ'a on this interval. Since (2aS)N/Nl < e2aS,
the foregoing inequalities give

(60) Δ*(x, S) + log I G(x) I ̂  2aS .

When AeBly Theorem 10 gives

(61) log I e—F(x)G(x) \ ̂  Λ*(x, R) - Λ*(x, S) + 2aS - Λ~{x)

apart from a function of class Bt.
If ψ(x)eBΐ, there is an entire function E(z), of arbitrarily small

type, such that \E(x)\ ^ exp [ — φ(\ x |)]. (A simple proof of this well
known result is given in [10] and also in [12].) Since (10) shows
that log I F(iy) \ = o(\y\) when AeBlf we conclude that J(λ) <: I(μ), if
the function on the right of (61) admits an upper bound ψ(x) e Bf.
Symmetry of the hypothesis then gives J(λ) = I(μ).

A convenient way to handle the term Λ°°(x) is to assume

(62) t\A(u) + Λ(-u)\ l 0 g u d u <

Ji U2
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In this case the function φ(r) = \A(r) + A(~r) | satisfies φτeBf by
Theorem 5(v). Since \A°°(r)\ < φ\r), we conclude that A°°eBt.

It is also true that A°°eBf if AeB, and if (62) holds with
A(u) + A( — u) replaced by its mean value Δ(u),

A(n) = — \U [A(t) + A(-t)]dt .
U Jo

Indeed, the fact that AeBx makes Λ(u) == o(u), and hence we can
express A°° in terms of A by partial integration. The conclusion follows
from Theorem 5 as before. Whenever A°° e Bf, this term can be
dropped from (61). (For symmetric sequences, A~ = 0.)

The foregoing discussion gives the following simple result:

THEOREM 11 (remark). We have J(λ) = I(μ) whenever

°^r \ A(u)du e Bι and ( I | A(u) \ du) e Bι .
r J—r \}—r J

For proof, by inspection

I Δ*(x, R) - Δ*(x, S) I S —\X+R I Δ(u) \ du .

If S is chosen to be the square root of the integral we are led to
the second condition in Theorem 11. The first condition follows from
the remarks made in connection with (62). It should be observed that
the conditions are independent, in the sense that neither follows from
the other, even if A(u) is replaced by \A(u)\.

The interest of Theorem 11 lies partly in the fact that the proof
is so elementary, and partly in the fact that no regularity is assumed
for the individual sequences {λj and {μn}. Thus, {λj might have
density 0 and JΓ(λ) = oo without invalidating the conclusion.

By the Schwarz inequality the second condition of the theorem
holds if

A(u) \dueB1
/y» J γ

where φ is any positive function such that

f~ dr
rφ(r)

< oo .

If φ(r)/r is decreasing, an integration by parts shows that this new
condition can be replaced by

φ(\u\)\Λ{u)\eB1.
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In particular, we can take φ(r) = log r(log log r)a with a > 1. Since
the choice φ(r) = log r is already sufficient to ensure the first condition
of Theorem 11, /(λ) =I(μ) follows with no further hypothesis. In the
special case in which {λj is symmetric and A2(u) = Du the result is
a sharpened form of a criterion of Koosis ([8], Th. 11).

12* Additional remarks on completeness• Apart from the
Paley-Wiener theorem, the foregoing discussion from beginning to end
uses nothing more elaborate than integration by parts. We now
mention a stronger result that follows from the deep theorem of
Beurling and Malliavin [1],

If the two functions

A(x) and Λ*(x, R) - Λ~(x)

of Theorem 10 both belong to Bu the result [1] gives J(λ) = I(μ).
The same holds if the fuction on the right of (61) admits an upper
bound in Bl9 We use this latter observation to establish.1

THEOREM 12. If/r(x) e B, and A(x) log log | x \ e Bu then I(λ) = I(μ).

The right side of (61) is φ(x) — A°°(x), where

(63) φ(x) = 2 a S - [ Λ(χ J r t ) ~ A(χ ~ *) d t .
Js t

We form a sequence with xn = 2n and yn so that (yn, yn+1) is the middle
third of the interval (xn, xn+1). On the interval (xn, xn+1) it is con-
venient to define

R(x) = Rn = \xn , S(x) = Sn = \R% .
3 n2

Since xn = yn - Rn < yn+1 + Rn = xn+1, for Sn ^ t ^ Rn it follows that

\Vn+1 I Λ(x + t) - A (x - t) I dx ^ 2\Xn+ί I A(x) \ dx .

Hence by (63)

\Vn+1 I φ(x) I dx ^ aSnxn + 2 log ^ Z L Γ " + 1 | A(X) \ dx .

Dividing by x\ and summing on n, we conclude that

1 Note added in proof (July 1967). Recently published work of Beurling and
Malliavin shows that A(x)eBι is actually sufficient.
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where E is the set of all the middle thirds. A similar calculation
using a different sequence {xn} gives the result for the left-hand
thirds, and likewise for the remaining thirds. Repeating the argument
for x < 0, we find that φ{x) e Bu and hence J(λ) <̂  I(μ). Symmetry
gives J(λ) = I(μ).

The above choice of Sn leads to a simple result but is not optimum.
If Sn is chosen so as to minimize the estimate, the needed condition
is found to be

4 - < °° > where In = \"n+1 ISψi dx .

This is sharper than the former condition X In log n < °o.
The foregoing results do not assume that either sequence {λn} or {λJ

has a density. However, the special case Λ2(u) = Du, where D is a
positive constant, gives added insight into the function Λ*. We then
have

A(u) = Aλ{u) ~ Du , Λ*(x, R) = Ax*(x, R) + 2DR

and the criterion of Koosis [7] can be stated as follows: If the set
{ei?nX} is not complete on an interval of length 2πD, there is a function
Φ(x) e B19 independent of R, such that

- A*(x, R) ^ φ(x) .

On the other hand, assuming A e B1 and A°° e Bu our results show
that J(λ) ^ 2πD if

A*(x, R) ^ φ(x)

where φ e δ l t Here the condition is needed not for all R but only for
R restricted as in Theorem 10.

A set {eUnX} is said to be exact if it is complete on some interval
but becomes incomplete when one term eiλx is removed. The set has
finite (positive or negative) excess if it becomes exact upon removal
or adjunction of finitely many terms. We now establish:

THEOREM 13 (remark). Let {eiln%} have finite excess on an interval
of length 2πD and suppose A(u) = Aλ(u) — Du e Bx. Then A°° e Bt.
Also, if f(t) is not equivalent to 0 and is orthogonal to all but a
finite number of functions eiλnt, the function

G(z) =\ f{t)eiztdt

satisfies
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— Γ log I G(x + Reiθ) I dθ - 2DR e Bt
2π Jo

when R is restricted as in Theorem 10.

Without loss of generality we can assume that {λj consists pre-
cisely of the zeros of G(z), and that G(0) = 1. As far as the form
of G is concerned, we shall use only the fact that G(z) satisfies

where φeBt. The Hadamard factorization theorem then shows that
the function G is identical with the function e~c*F(z) of Theorem 10,
with A2(u) = Du. By Jensen's theorem

log I G(x) I - A*(x, R) = — Γ log | G(x + Reiθ) \ dθ .
2π Jo

Since A*(x, R) = A*{x, R) + 2DR, the inequality (64) together with
the above gives

log I G(x) I - A*(x, R) ^ φ{\ x I).

Theorem 10 now shows that Λ^ix) admits a lower bound in Bt for
— oo < x < oo, and since A°° is odd, we conclude that A°°eBt. Ap-
plying Theorem 10 again gives the second assertion.

13* Examples concerning entire functions* The foregoing
analysis distinguishes rates of growth specified by

h(r) , h(r) log ?

r , h(r) logr .
h(r)

Also the classes Bx and Bt are distinguished. We give examples to
show that these distinctions do not result from inadequacy of the
analysis, but are essential.

Throughout the discussion

A(u) — A^u) — Du

where Ax is the counting function for the real sequence {λj and D is
a constant between 0 and 1. The condition D < 1 enables us to
construct examples with simple zeros at the integers only, but is
otherwise irrelevant.

We use h to denote a function which is continuous, positive, and
even, and satisfies the conditions

h(r) = o(r) , r~ιh{r) e Mp
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for some p, 0 < p < 1. (The latter condition could be considerably
weakened.)

EXAMPLE 1. Let | Λ(u) \ £ h(\u\) and let

G(z) = e~cz Π (l - — V "•

where the constant c is chosen so that G(\ x |) = o(\ x |). Then if
h(r) log r e Bx we have log+ | G(x) \ e Bf. But if h(r) log r is not in Bt

there is a function G of the above type, with simple zeros at the
integers only, such that log+ | G(x) | is not in B19

The example depends on the fact that, under the given hypothesis,

(65) log I e~cxF(x) | = A*(x, R) - Λ~(x) + E(x) ,

where the error term E satisfies

R ( l - p) I E(x) I ^ ( c o n s t ) \ x \ h ( \ x \ )

for R <: I x I and | x \ > 1. This follows as in the proof of Theorem 10.
Since A e K{D) an easy argument, similar to others in this paper, gives

A*(x, R) £ 2h(r) log —JL- , r = | α? | ,
Λ(r)

apart from terms of lower order. The dominant term is therefore Λ°°y

in general. We now choose A so that

A(r) + A(-r) = h(r) ,

using the fact that, if h is differentiable, h'{r) = o(l) as r —• co, and
hence Λ/(r) < 1 - D.

As suggested by this example, quite generally the behavior of G
is dominated by J°° on the real axis, unless some special condition is
imposed. From now on we assume that F is even, so that Λ°° = c — 0,
and

The further construction of examples is based on A* rather than A°°.
To simplify the statements, we say that the even function F belongs
to h if h has the above-described properties, F is given by the fore-
going canonical product, and the function Δ(u) = A^u) — Du satisfies
I A(u) I ̂  h(u) for u > 0. The statement that F has integral zeros
means that all the zeros Xn are integers, and are simple; that is, no
λu is repeated. By thus restricting the class of functions, we give
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more content to our examples.

EXAMPLE 2. If h(r) log r/h(r) e Bu then log+ | F(x) | 6 Bt for every
even function F belonging to h. But if h{r) \ogr/h(r) is not in B1

then there is an even function F with integer zeros, belonging to h,
such that log+ | F(x) | is not in Bt.

If r > eh, then h log r/h is increasing, and hence the positive
statement follows from the proof of Example 1. In the course of
proving the negative statement we shall also establish:

EXAMPLE 3. There is an even entire function of arbitrarily small
type, with integral zeros, such that log | F(x) | is in Bι but log+ | F(x)
is not in Bt.

Results of this sort are established by the following observation:
Let xn = an be any geometric sequence with a > 1. Then if φ > 0 and
φ e Mp for some p, the conditions

r < c o and Σ

are equivalent. We omit the routine proof.
Let h be given with h log r/h not in B1<f but let h e Bly as can

be assumed by diminishing h. Form a sequence

so that yn^ < xn < yn. The point sets {xn} and {yn} together form a
geometric sequence with ratio V e . We construct F belonging to h
with integer zeros as follows: The graph of Δ(u) for increasing u > 0
follows alternately the curves given by

h(u) , D(xn - u) , -h(u) , (1 - D)(u - yn) .

Here the word "follows" means that the graph is within 1, say, of
the designated path. Since F is even, A( — u) = —Λ(u), completing
the definition. The precise behavior for small u is not important.

Since A°° = 0, we have

log I F(x) I = Λ*(x, R) + O[h(x)] , x > 0

when R/x and x/R are bounded. The choice R = (lβ)xn gives

log I F(xn) I = 2h(xn) log -^- + O[h(xn)] .

Hence, if φ(x) is any monotone majorant of log+ | F(x) \ and x is large,.
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The second inequality follows from the fact that the integrand is
monotonic for eh(x) < x, and shows that log+ | F(x) | is not in Bt.
This completes the proof of Example 2.

We now show that log+ | F(x) \ e Bx. The fact that log- | F(x) \ e B,
and hence log | F(x) \ e Bu follows from known properties of entire
functions.

It is convenient to write p < Q whenever

P <; cLQ + c2h , d, c2 const .

If yn~ι < % < yn, as now assumed, we have

(66) log+ F(x) < h(x) log
h{x)

and also

(67) log+ Fix) < r κ ~ A _MϋL du - p h(u) du

where h = h(xn). The inequality (66) gives

log x> yώ) ^χ ^ a {xn) ^ ^ d,n

\X-X \^2h X2 ~~ X2dχ ^ h g

χ2 χ\ h(xn)

apart from terms of lower order. Since xn — en

9 the sum on n can
be estimated by an integral involving e\ The change of variable
u = e% gives

l o g d u < ^
u2 u h(u)

If x — xn + ί, and 11 \ ̂  2fe, a short calculation based on (67) gives

(68) log+ F(x) < h(xn) log x l - f

z

We have used the fact that h(u) can be replaced by h(xn) and that

t2 > t2 - h2 > —f .
~ ~ 4

If (68) is integrated from t — htot = xjV 2 , and doubled to account

for the interval ( — a?n/τ/2, — Λ), we conclude that

[ log+ I F(x) I dx < xnh(%n)
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where In is the part of (yn_19 yn) for which | x — xn | ;> 2h. This gives

F(x)dχ< h(xn)
2 Xn

Summing on n as before and setting u = e\ we get

This completes the construction of Example 3.
The function satisfies the additional condition Λ(u) e Bt. Hence,

this condition does not ensure log+ | F(x) \eBt. On the other hand
the condition

A(u) log\og\u\eB,

ensures log | F(x) \eB1 by an argument similar to that in Theorem 12.
We shall show that the factor log log | u | cannot be dropped:

EXAMPLE 4. There is an even entire function with integral zeros,
of type πD, such that Λ(u) e Bu but log+ | F(x) | is not in Bx.

Form a sequence xn = 4n and let Λ(u) follow alternately lines of
slopes

0 , 1 - D, -D, 0

so that the graph forms a triangle above the axis, which lies wholly
to the left of xn and ends at xn. If the area of the triangle is Jn1

we require J^x~2Jn < ©o, so that Λ(u)eBx. The base of the triangle
is dλ/Jn, where d is a positive constant and, hence, the base is o(xn)
as n —• co. There is therefore no interference between adjacent
triangles.

For xn < x< (S/2)xn and R — xn we have

Λ*(x, R) ^
x — xn + dV Jn '

since the value of the integral would be diminished if the whole of
the area Jn were located at xn — dV~J~n. Hence,

S 3/2xw

Λ^(x1

apart from terms of lower order. Applying Theorem 10, we see that
log+ I F(x) I will not belong to B, if
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The choice JJx% = ^ ( l o g n)~2 fulfills all conditions.
Upon re-examining the proof and referring to the remarks follow-

ing Theorem 12, we obtain:

EXAMPLE 5. Let {In} be a given sequence of positive numbers
such that

4 — 0, Σ 4 1 o g - ^ - < - .

Let {xn} be a given geometric sequence with ratio > 1 . If

then the corresponding even entire function F satisfies log+ | F(x) | e Bx.
But if the series diverges there is an even function F of this sort,
with integral zeros, such that log+ | F(x) | is not in Blm

A result related to Theorem 11 is:

EXAMPLE 6. Let h(τ) be an increasing function satisfying

Γ Λ(u)du ^ h\r) .

If h(τ) e Bί9 then log+ | F(x) \ e B1 holds for the even canonical product,
F, formed from the Xn

rs. But if h is not in Bt there is such a function
F, with A satisfying the above inequality and with log+ | F(x) \ not in Bΐ.

The proof is left to the reader.

Note added October 1966.
According to a recent unpublished result of Matzayev, Λ(u) —

Du e Bi implies log | F(x) \ e Bι for even entire functions of genus 1.
Hence, the condition A e Bx in Example 4 cannot be replaced by AeBf.
Actually, Theorem 10 yields the following generalization of Matzayev's
theorem to meromorphic functions which need not be even:

A(u) e Bt => log I F(x) \ - Λ(x) e Bx .

Because of the interest and simplicity of this result, we present an
independent development of it elsewhere.
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