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A STABILITY THEOREM FOR A THIRD ORDER
NONLINEAR DIFFERENTIAL EQUATION

J. L. NELSON

A stability theorem and a corollary are proved for a
nonlinear nonautonomous third order differential equation. A
remark shows that the results do not hold for the linear case.

THEOREM. Let p/(t) and ¢(f) be continuous and ¢(t) = 0,
p(t) < 0 with p/(t) 2 0. For any A and B suppose

A+ Bt — St q(s)ds < 0
3%

t
for large ¢t where Q(t) =S q(s)ds, then any nonoscillatory solu-
to

tion x(t) of the equation

= p(t)w + Q(t)w2”+1 = 07 n= 19 2’ 3: Tty
has the following properties;
sgnx = sgn %, + sgn &, lim %(t)
t—oo

=lim#{) =0,lim|2({)|=L=0,

oo t

and (%) 2(t), %(t) are monotone functions.
CoroLLARY. If g(t) > € > 0 for large ¢, then lim; ... z(¢) = 0.

In this paper, a nonoscillatory solution x(f) of a differential
equation is one that is continuable for large ¢ and for which there
exists a ¢, such that if ¢ > ¢, then x(¢) = 0. Under above conditions
on p(t) and q(t) there always exist continuable nonoscillatory solutions

of the equation
(1) T + pt)T + gty =0.
This follows from an exercise in [1] by letting

@(t) = v.(9), 2(t) = — (D), E(t) = wu(0) ,
so that

?21 = —Y.
Yo = —Ys
¥ = —[a@)yi" — p(t)v.] .

Equation (1) can then be written as the system ¥ = — f(¢, %) where
f(t,0) =0, f(¢,y) continuous for ¢ = 0,9, ¥;, ¥, = 0 and fi(¢, %) = 0,
k=1,23, for y, > 0. In fact ||%(0)]| may be prescribed.
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THEOREM 1.! If p and q satisfy the following conditions for
large t,

(i) q(t) = and q continuous,

(ii) p(t) < 0 with p'(t) = 0 and continuous,

(iii) for any A and B, A + Bt — St Q(s)ds < 0 for large t where
t 14
Q) = | a@0ds, °

then foroany nonoscillatory solution x(t) of (1) the following pro-
perties hold for large t:

(a) sgnax =sgni +# sgni, where sgnax = {

lif x O}
(o) lim &(¢) = lim (t) = 0, lim/x(t)) = L = 0.

—-1lifx0
(e) «(t), (1), Z(t) are monotone functions.

Proof. Suppose x(t) is a solution that does not oscillate. Let a
be a large positive number such that xz(¢) = 0 for ¢ = a.

Since —x(t) is also a solution of (1), without loss of generality,
assume that x(t) > 0 for ¢t = a. (1) may be written in the form

(2) mfflt()t) + ﬁﬁfl?((f)) =—q@t) for t<a.

An integration from o to ¢, an integration by parts, and another
integration from a to ¢ yield

&(t) 2n + 1t ((s))°
w2 S & (s)

+(2n+1)(n+1)gt(t—;ﬁ%£—§'ﬂds
(3) S R O N VIO
2n Je 2*™(s) 2n Je 2*"(8)

= M+ Kt — StQ(s)ds :

Assertion 1. For any t, > a, #(t) cannot be nonnegative for all
t >t,. Suppose that #(¢) = 0 for all ¢ > ¢,. Let ¢, be so large that
the conditions of the theorem hold for all ¢t > ¢, and ¢, = t,. For
t = t, the following holds

o(t) P —s)@s) 5. 1 (" _ps)
L, + @t i+ 1) || L g L[
1 (* (= 9)p'(s) i _
20 0,y ds = 0 Ko — Qo

1 This theorem appears in the author’s Ph. D. dissertation written at the
University of Missouri under the direction of W. R. Utz.



A STABILITY THEOREM 343

where all constants are combined and named M. For sufficiently large
_ — t

¢ the right side, 1 + Kt — SQ(s)ds, is negative and the left side
0

positive, this is clearly impossible.
There are two possibilities for &(¢).
Case 1. #(t) < 0 for ¢t > t, for some ¢.
Case 2. For each te(a, =) there is a ¢ > ¢t such that #(%) = 0.

Assertion 2. Case 2 is impossible.

Let t, be a large ¢ such that @(¢) = 0. There exists a number
t, > t, such that 4@(¢,) < 0. Let r be the greatest zero of #(t) less
than ¢,. There exists a number ¢, > ¢, such that #(¢,) = 0. Let s be
the smallest zero of #(t) greater than t,, Multiply the original differ-
ential Equation (1) by #(t) to obtain

T ()it) + pOED)F + qt)z* () = 0,

integrating from 7 to s and using integration by parts on the first
integral gives

_ S:[a'c'(t)]zdt + S:p(t)[a'c(t)]zdt + Siq(t)xz”“(t)a’c(t)dt ~0.

The left side is negative, this is clearly impossible and Assertion 2 is
proved. Therefore, there exists a ¢ such that #(¢t) < 0 for ¢ > .
Consider Equation (1) written in the form

z(t) = —pB)&(t) —q(@)a* (1) ,

the right side is negative for large t. Therefore, % (t) <0 for t > t.
This implies that #(¢) is a decreasing function and d(f) is concave
downward for ¢t > £. Since #(t) is eventually of one sign, there are
three possibilities for #(t).
Case 1. lim, ., &(t) = — o
Case 2. lim, ., %(t) =¢<0
Case 3. lim,., @(t) = 0.
Case 1 is impossible since it implies that x(¢) is negative for large t.
Case 2 also implies that x(¢) is negative for large t. Therefore, the
only remaining possibility is
lim#(t) = 0 .
t—oo
Since #(t) is decreasing and must remain positive for large ¢, &(¢) is
eventually monotone increasing. Since #(f) is monotone decreasing
and positive, lim,_.. (¥)¢ exists. Suppose that lim,_.% (¢) = ¢ > 0. Then
x(t) eventually has slope larger than ¢/2, this is impossible since
2(t) < 0 for large ¢t. Therefore, lim, . %(t) = 0. Thus x(t) is positive,
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decreasing and concave upward for large ¢.
COROLLARY. If q(t) > e >0 for large t, then lim,.. z(t) = 0.

Proof. Suppose lim,_., «(t) = L, L = 0. Since —=x(t) is a solution
whenever x(t) is a solution, it can be assumed without loss of gener-
ality that L > 0. Consider Equation (1) in the form

% (t) = — p(t)E(t) — q(t)a™™(t) .
Since lim,..4(¢) = 0 and lim,.. p(t) = p, where p < 0, given any «

such that

0< —Z— < L™+ for large ¢

L — )2 < () < LY 4+ a/2 and p(t)2(t) > 0. Therefore,
z(t) = — pt)&(t) — qt)x*'(t) < — e(L*** — a/2) < 0 and &(¢) must then
tend to — oo as ¢ tends to + oo, this is impossible. This L = 0.

REMARK. The following example illustrates the theorem.

1. g2t
r— =0+ —a*=0.
2 2

x = et is a solution with the required properties .

REMARK. The theorem does not hold for n = 0, i.e., in the
linear case.

Proof. Consider @ — 2% + « = 0, 2 = ¢’ is a solution.
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