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ON THE DERIVATIVE OF CANONICAL PRODUCTS

MORRIS MARDEN

In this paper we study an entire function of genus p that
has the canonical product form

(1.1) f(z) = ΠΓ=i [1 - (*/αy)l exp [(zfa) + (l/2)(«/αi)* +

+
For the derivative / ' of such a function we develop some
results analogous to the theorems of Lucas and Jensen for
polynomials, as well as some results in the case that all but
one dj lie on a prescribed set.

The zeros of / are subject to the restrictions that they are
simple (so assumed for convenience only) and

(1.2) 0 < I α, I ̂  I α21 ^ , Σ~= 11 a, \~^1 < - .

By straightforward calculation, we may reduce the logarithmic
derivative of / to the form

(1.3) Ά

We thereby see that / ' has always a p-fold zero at z = 0. In general
it has an infinite number of other zeros. Any such zero ζ satisfies
the equation

(1.4)
i=i αj(ζ - as)

That is, if

(1.5) sN = Σf=i aΓ(ζ - aάy
ι ,

then Soo = lim sN — 0 for each zero ζ Φ 0 of / ' .
Our aim is to locate these zeros ζ, knowing the location of the

zeros a,- of /.
For the case that all the ad are real, Hille [2] establishes the

following theorem essentially due to Cesaro [1]: Let f be a canonical
form of genus p whose zeros are real. Then the zeros of / ' are
also all real and they include one and only one zero between each
pair of consecutive aό of like sign. In effect this result extends
Rollers Theorem to real canonical products having only real zeros.

In developing analogues to Lucas' and Jensen's theorems we shall
be determining the location of the zeros of the derivative for functions
(1.1) having at least some nonreal zeros.

331



332 MORRIS MARDEN

2* Real canonical products* Let us assume that / is a real
entire function of form (1.1). If α is a real zero of / and if ζ =
ζ + iη is any zero of / ', the term corresponding to zero a in (1.4)
has the imaginary part

(2.1) J^\ - 1 = - 2 .
a)

If however

a = b + ic = Aeia ,

where 0 < a < π and A > 0, is any nonreal zero of /, then a = b — ic
is also a zero of / and the pair of terms in (1.4) corresponding to the
pair α, a has the imaginary part

L ap(ζ - a) + ap(ζ - a) J

— — (f ~ >̂) sin pa — (η — c) cos pa:
(2.2) ~ A»[(ξ - by + (η- cf]

, (g — 6) sin pa — (η + c) cos p α

A'[(ξ - bf + (v + cγ]
, a)

where

Γ(ζ, a) = [(ί - δ)2 + ^2 - c2] cos pα + 2c{ξ - b) sin pa .

If α: = (τr/2j))(l + 2kp), k = 0, 1, .. , p - 1, then

(2.3) Γ(ζ,α) = (- l) '2c(f-6)

and Γ(ζ, α) = 0 is the equation of the line through points α, a. For
all other values of a

(2.4) Γ(ζ, a) = {(ζ — b + c tan pα)2 + rf — c2 sec2 pα:} cos pα

so that Γ(ζ, a) = 0 is the equation of the circle with center at
(b — c tan pα) and radius c sec pα:. This circle goes through points
α, α. In any case, the inequality Γ(ζ, a) > 0 defines a circular region.

We now prove the following theorem.

THEOREM (2.1). Let f be a real entire function of form (1.1).
With each pair of conjugate imaginary zeros aj9 aά of f, associate
the circular region Γ3 defined from (2.3) or (2.4) by the inequality
Γ(ζ, aj) > 0. Then no nonreal zero of f lies simultaneously in all
the regions Γ3.
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Proof. If there were a nonreal zero ζ of / ' in the upper half
plane and also in all the regions Γ3 , the imaginary parts of all the
terms in (1.4) would be negative for all real a3 according to (2.1) and
would also be negative for all pairs of conjugate imaginary a3 accord-
ing to (2.2). Thus in (1.5) \^(sh) < 0, \^{sN - sh) < 0 for λ =
± 1 , Xη<0, fixed h and all N>h so that X^is* — sh) ^ 0 and

Soo Φ 0 contradicting (1.4). Hence, Theorem (2.1) is valid.
It is clear from the above proof that the following sharper

results are also valid.

THEOREM (2.1)'. Under the hypotheses of Theorem (2.1) no non-
real zero of f can lie simultaneously inside some region Γ3 and in
the closures of the remaining regions Γ3. Likewise no nonreal zero
of f can lie simultaneously outside the closure of some region Γ 3

and outside the remaining regions Γ3.

To specify the location of the real zeros ζ = ζ + iO of / ' , we
compute for each conjugate pair a, a of zeros of /

1 1 = 2L(g, a
dp(ζ - a) J I ζ - a

a)
. ap(ζ — a) ap(ζ — a) J \ζ

where

(2.5) L(ς, a) = (ξ — b) cos pa — c sin pa .

We thus obtain the following result.

THEOREM (2.2). Let f be a real entire function of form (1.1).
A real point ζ — ξ is not a zero of / ' if it satisfies simultaneously
the inequalities ap (ξ — a3) > 0 for all real a3 and L(ξ, a3) > 0 for all
pairs of conjugate imaginary a3, or, the inequalities av

3(ζ — a3) < 0
for all real a3 and L(ξ, a3) < 0 for all pairs of conjugate imaginary
aά.

In particular, if p = 0, then

Γ(ζ, a) = (ξ - bf + rf - c2

so that Γ(ζ, a) > 0 is the exterior of the (Jensen) circle which has
the line segment joining the pair of conjugate zeros a and a as
diameter. That is to say, each nonreal zero of / ' must lie in at
least one Jensen circle. Thus the Jensen Theorem [4] for polynomials
carries over without change to entire functions of genus zero, as was
shown originally by Walsh [6].

Also, in the case p = 0, the inequalities L(ζ, a) = ζ — 6 > 0 ( < 0 )
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and a%ζ - aά) = (ξ - a5) > 0 (<0) imply that all the zeros of the
derivative lie in any strip — oo<^a^&(z)^β^ co that contains
all the aά. In a sense this confirms that Lucas Theorem ([2], p. 22)
carries over to entire functions of genus zero as was proved originally
by Porter [5].

3* Zeros in prescribed sectors* In the sequel we shall use the
notation ^(T) for the complement of a set T in the complex plane,
Sίf{T) for the convex hull of T and <9"{T, v) for the set of points
from which T subtends an angle of at least v. The set S^(T, v) is
a star shaped domain relative to T and has the properties:

for π > vx > v2 ^ 0. Also, if V is a point set, we shall denote by
[β ί ωF] the point set z = eίωzlf zλe V.

We shall now prove the following theorem.

THEOREM (3.1). Given the sector Vo: 0 ^ arg2 ^ a < π/p, let V
be the union of the sectors [ei2πklPV0] for k ~ 0, 1, , p — 1. Let f,
an entire function of form (1.1), have all its zeros on a set TaV.
Then all the zeros of f lie in S^(T, π — pa).

Proof. Let us assume on the contrary that / ' has a zero ζ out-
side S^(T, π — pa). Since T subtends an angle v of less than π — pa
at ζ, we can associate with ζ a point τ Φ ζ such that

(3.1) 0 ^ arg [τ - ζ)/(α, - ζ)] ^ v < TΓ - pa ,

for all α, e Γ. Let us multiply (1.5) by eipa(τ — ζ) thus obtaining the
equation

i=i α5(α,. - ζ)

If ajeeWVo,

2πk ^ arg α ? ^ pα: + 2τrA: ,

— 2πk £ arg (eipaajp) ^ -2τr£; + j9α: .

From (3.1) and (3.3) it follows that we may represent each term in
the sum (3.2) as a vector lying in the convex sector

(3.4) σ: 0 ^ arg z ^ v -]- pa < π .

Hence s£ e σ, {s% — s£) e σ and (s£ — s%)s% Φ 0 for fixed h and all
N > h so that (si - s ί ) G ( 7 if sZ — s% Φ 0. In any case sZ = s% +
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(s* — s*) Φ 0 contradicting (1.4).
Having proved Theorem (3.1), let us now derive a number of

corollaries.

COROLLARY (3.1). // all the zeros of an entire function f of
genus zero lie in an open half plane, all the zeros of / ' lie in the
same half plane.

This corollary is the special case of Theorem (3.1) obtained by
setting p = 0. It is equivalent to Porter's generalization [5] of Lucas'
Theorem that all the zeros of the derivative of an entire function /
of genus zero lie in the convex hull of the zeros of /.

COROLLARY (3.2). Let f be an entire function of form (1.1) hav-
ing all its zeros in a set T lying on the set of rays arg z = 2πk/p,
k = 0, 1, 2, , p - 1. Then all the zeros of f lie in 3ίf{T).

This corollary is merely the special case a = 0 of Theorem (3.1).

COROLLARY (3.3). Let T he the intersection of the disk \z\ ^ R
and the sectors V of Theorem (3.1). Let f be an entire function of
form (1.1) with all its zeros on T. Then f has all its zeros on the
disk I z I ̂  R sec (pa/2).

For Corollary (3.3), the function / of form (1.1) necessarily
reduces to the product of a finite number of the factors. When
p = 0, / becomes a polynomial and the corollary becomes one that
can be deduced from Lucas' Theorem.

Other corollaries follow from Theorem (3.1) when we choose T
as a half strip, a sector or some other simple convex set. We leave
the details to the reader.

4* All but one zero specified. We shall now study the location
of the zeros of /', the derivative of a function / of form (1.1), when
we know the location of all but one zero of /. Let us assume the
unknown zero is αi# If ζL and ζ2 are any two distinct zeros of f'(z),
then from (1.4)

(4.1) Σ — A r = 0 f fc = l , 2 .
α?(ζ a)

From equations (4.1), let us eliminate alm We thus obtain the equa-
tion

(4.2) σj+1 + τ^σ? = 0
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where

co -I co 1

(4.3) σk = Σ ——* , τk = Σ -y-^

We now prove the following theorem.

THEOREM (4.1). Let /, an entire function of form (1.1),
all but one of its zeros on a set T. Let T be contained in the
sector

V: 0 <£ arg z ̂  a < π/p(p + 1)

/ ' /̂ αs at most one zero in ^[S^(T, v)] where
v = [π - p(p+l)a]/[2(p + 1)].

Proof. Let us assume on the contrary that / ' has two distinct
zeros ζi and ζ2 in ^[S^(Tf v)]. Since in ζι and ζ2, the angle sub-
tended by Γ is less than v, we may associate with ζ1 and ζ2 the two
points λ2, λ2 with Xλ Φ ζlf λ2 Φ ζ2 such that

(4.4) 0 ̂  arg riJfc < v for i = 1, 2, . . . , fc = 1, 2 .

where

Let us multiply (4.2) by e^+^pW - ζO^+^λ 2 - ζ 2) p + 1. Equation
(4.2) becomes

(4.5) (σ*y+1 + τ*τ*(σ*y = 0

where

tf0* = β ^ ^ λ , - ζx)(λ2 - ζ2)σ0

τ = e p ( λ l _ ζ l ) Γ l

T* = ^ α ί ( λ 2 - ζ 2 ) τ 2 .

We shall show that (σo*)ί)+1 and [τ1*τ2*(ί71*)?'] are vectors in the same
convex sector and so their sum cannot vanish in contradiction to (4.5).

For this purpose, let us examine the argument of the i-th term
in σ$. Using (4.4), we find

(4.6) 0 ̂  arg [eapiajprβlri3\ < pa + 2v .

Since pa + 2v = π/(p + 1), the j-th term of <70* for each j lies in
the same convex sector and so that also σ$ lies in the same sector.
Hence
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(4.7) 0 ^ arg (σ*)p+1 < p(p + l)a + 2{p + l)v = π .

Similarly, let us examine the argument of the i-th term in σf.

0 ^ arg [e{p-1)aia^+1rόιrj2] < (p - l)a + 2v .

Since (p — l)a + 2v = [π/(p + 1)] - a, the i-th term in σf, for each
j , lies in sector

0 ^ arg z < (p - l)a + 2v

which therefore, being convex, also contains σf. Hence,

(4.8) 0 ^ arg (σ*)p < p(p - l)a + 2pv .

Also, let us examine the argument of the j-th term in τk. For
k = 1, 2 and all i,

0 <Ξ arg [epaiajprjk] < pa + v .

Since pα + v = π/2(p + 1), the sector in which the i-th term lies for
all j ,

0 ^ arg z < pa + v

is convex and so also

(4.9) 0 ^argτt < pa + v , k = 1,2 .

From (4.8) and (4.9) now follow

(4.10) 0 ^ arg [(σϊ)*τ?τ}] < p(p + l)α + 2(p + l)v < π .

From (4.7) and (4.10) we observe that the left side of (4.5) does
not vanish in contradiction to equation (4.5). Hence, Theorem (4.1)
has been established.

Let us specialize Theorem (4.1) to the case that a = 0. For T
the positive real axis, &*(T, π/2(p + 1)) is the sector

I arg z I ̂  π - [π/(2p + 2)]

Hence, <Sf [^(Γ, π/2(p + 1))] is the sector |arg(-s) | < π/(2p + 2).
We thus obtain

COROLLARY (4.1). Let f, an entire function of form (1.1), have
only one zero which is not positive real. Then its derivative / ' has
at most one zero in the sector

I arg {-z) I < ττ/(2p + 2) .

Let us note that the function / in Corollary (4.1) is not neces-
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sarily real.
In the event that we choose T as the sector V of Theorem (4.1),

let us take the angle a so that a < π/[p + l)(p + 2)]. For this
smaller choice of a than the bound given in Theorem (4.1), we have
v > a. The domain S*(T, v) is then the sector

— (π — v) <£ arg z ^ a + π — v .

We thus obtain

COROLLARY (4.2). Lei /, an entire function of form (1.1),
αϊi, δ^ί one of its zeros in the sector

0 ^ arg 2 ^a < ττ/(p + l)(p + 2) .

αί mosί one zero of f lies in the sector

π — (v — a) < arg z < π + y

where v — [π — p(p + l)α]/2(p + 1).

Finally, if we suppose that / has a finite number of zeros, we
may derive the following.

COROLLARY (4.3). Let f an entire function of form (1.1) have
only a finite number of zeros, of which all except one are in the
closed interior of a circle C of radius R drawn inside the sector
0 ^ arg z ^ a < π/p(p + 1). Then f has at most zero exterior to
the concentric circle C of radius

R' = R esc (v/2) ,

where v = [π — p(p + l)a]/2(p + 1).

Corollary (4.3) suggests a previous theorem [3] that if k zeros
of an w-th degree polynomial P lie in a disk | z \ ̂  a where 1 < k S
n, then at least k — 1 zeros of the derivative of P lie in the disk
1 z I ̂  αcsc[7r/2(π — k + 1)]. In fact, Corollary (4.3) is similar to the
case k = n — 1 of this theorem.

Again we may state other corollaries of interest by taking T as
a half-strip, sector or other configuration drawn interior to sector V.
We leave the details to the reader.
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