A NOTE ON FUNCTIONS WHICH OPERATE

alan G. Konheim and Benjamin Weiss

Let $\mathfrak{Q}, \mathscr{B}$ denote two families of functions $a, b: X \rightarrow Y$. A function $F: Z \cong Y \rightarrow Y$ is said to operate in ($\because, \mathscr{B}, \mathscr{B}$) provided that for each $a \in \mathfrak{Z}$ with range $(a) \cong Z$ we have $F(a) \in \mathscr{B}$. Let G denote a locally compact Abelian group. In this paper we characterize the functions which operate in two cases:
(i) $\mathfrak{H}=\Phi_{r}(G)=$ positive definite functions on G with $\phi(e)=r$ and $\mathscr{B}=\mathscr{\Phi}_{i . d ., s}(G)=$ infinitely divisible positive definite functions on G with $\phi(e)=s$.
(ii) $\mathfrak{U}=\mathscr{B}=\widetilde{\mathscr{D}}_{1}(G)=\log \mathscr{\Phi}_{\text {i.d.,1 }}(G)$.

The determination of the class of functions that operate in ($\mathfrak{C}, \mathscr{B}$) for other special families may be found in refernces [3]-[8]. Our goal here is to extend the results of $[5,6]$ and, at the same time, to obtain a new derivation of the results recently announced in [3].
G will denote a locally compact Abelian group and $B^{+}(G)$ the family of continuous, complex-valued, nonnegative-definite functions on G. Let

$$
\begin{aligned}
\Phi_{r}(G) & =\left\{\phi: \phi \in B^{+}(G) \text { and } \phi(e)=r\right\}^{1} \\
\Phi_{i . d ., r}(G) & =\left\{\phi: \phi \in \Phi_{r}(G) \text { and }(\phi)^{1 / n} \in B^{+}(G) \text { for } n \geqq 1\right\} \\
\widetilde{\Phi}_{r}(G) & =\log \Phi_{i . d ., r}(G)=\left\{\log \phi: \phi \in \Phi_{i . d ., r}(G)\right\}
\end{aligned}
$$

In the case where G is the real line $\Phi_{1}(G)$ is the class of characteristic functions, $\Phi_{i . d ., 1}(G)$ the class of characteristic functions corresponding to the infinitely devisible distributions while $\widetilde{\Phi}_{1}(G)$ is the class of logarithms of this latter class whose form is well known since Levy and Khintchine.

Theorem 1. If G has elements of arbitrarily high order then F operates on $\left(\Phi_{r}(G), \Phi_{i . d . s}(G)\right)$ if and only if

$$
F(z)=s \exp c(f(z / r)-1) \quad(|z| \leqq r)
$$

where $c \geqq 0$ and

$$
f(z)=\sum_{n, m=0}^{\infty} a_{n, m} z^{n} z^{m} \quad(|z| \leqq 1)
$$

with

[^0]$$
a_{n, m} \geqq 0 \quad \text { and } \quad \sum_{n, m=0}^{\infty} a_{n, m}=1
$$

Lemma 1. Let

$$
h(s, t)=\sum_{n, m=0}^{\infty} b_{n, m} s^{n} t^{m} \quad(|s|,|t| \leqq 1)
$$

with

$$
b_{n, m} \geqq 0 \quad \text { and } \quad \sum_{n, m=0}^{\infty} b_{n, m}=1
$$

Suppose that for each integer $k, k \geqq 1$ we have

$$
(h(s, t))^{I / k}=\sum_{n, m=0}^{\infty} b_{n, m}(k) s^{n} t^{m} \quad(|s|,|t| \leqq 1)
$$

with

$$
b_{n, m}(k) \geqq 0 \quad \text { and } \quad \sum_{n, m=0}^{\infty} b_{n, m}(k)=1 .
$$

Then

$$
h(s, t)=\exp c(g(s, t)-1)) \quad(|s|,|t| \leqq 1)
$$

where

$$
g(s, t)=\sum_{n, m=0}^{\infty} g_{n, m} s^{n} t^{m} \quad(|s|,|t| \leqq 1)
$$

with

$$
c \geqq 0 \quad g_{n, m} \geqq 0 \quad \text { and } \quad \sum_{n, m=0}^{\infty} g_{n, m}=1
$$

Proof of Lemma 1. Since $(h(s, t))^{1 / k}$ is to be a generating function with nonnegative coefficients we must have $h(0,0)=b_{0,0}>0$. For suitable $\varepsilon>0$ we then have

$$
0<1-h(s, t)<1 \quad(0 \leqq s, t \leqq \varepsilon)
$$

Thus $k(s, t)=\log \{1-(1-h(s, t))\}$ admits an expansion

$$
k(s, t)=\sum_{n, m=0}^{\infty} k_{n, m} s^{n} t^{m} \quad(0 \leqq s, t \leqq \varepsilon)
$$

Clearly $k_{0,0}<0$; we want to prove that all of the remaining coefficients $k_{n, m}$ are nonnegative. Assume on the contrary that

$$
\left\{(n, m):(n, m) \neq(0,0) \quad \text { and } \quad k_{n, m}<0\right\} \neq \phi
$$

Let $\left(n_{0}, m_{0}\right)$ be a minimal element in this set (under the usual partial
ordering in the plane). We then write

$$
k(s, t)=k_{0,0}+\sum_{\substack{0 \leq n \leq n_{0} \\(n, m) \neq m \leq(0,0),\left(m_{0}, m_{0}\right)}} k_{n, m} s^{n} t^{m}+k_{n_{0}, m_{0}} s^{n} t^{m_{0}}+r_{n_{0}, m_{0}}(s, t)
$$

It is easily seen that the coefficient of $s^{n_{0} t^{m_{0}}}$ in $\exp \frac{1}{N} k(s, t)=$
coefficient of $s^{n_{0}} t^{m_{0}}$ in $\exp \frac{1}{N}\left\{k_{0,0}+\sum_{\substack{0 \leq n \leq n_{0} \\ \text { osm } \\(n, m) \neq(0,0),\left(n_{0}, m_{0}\right)}} k_{n, m} s^{n} t^{m}+k_{n_{0}, m_{0}} s^{n_{0}} t^{m_{0}}\right\}$.
But this coefficient is of the form

$$
\left\{\frac{1}{N} k_{n_{0}, m_{0}}+\frac{1}{N^{2}} \sigma\left(\frac{1}{N}\right)\right\} \exp \frac{1}{N} k_{0,0}
$$

where σ is a polynomial. For N sufficiently large this coefficient has the sign of $k_{n_{0}, m_{0}}$ which provides a contradiction. Thus $k_{0,0}<0$ and $k_{n, m} \geqq 0((n, m) \neq(0,0))$.

Proof of Theorem 1. By setting $\widetilde{F}(z)=(1 / s) F(r z)$ we may assume that $r=s=1$. If F operates in $\left(\Phi_{1}(G), \Phi_{i . d ., 1}(G)\right)$ then $(F)^{1 / k}$ operates in $\Phi_{1}(G)$ for each integer $k, k \geqq 1$. Thus from [5]

$$
(F(z))^{1 / k}=\sum_{n, m=0}^{\infty} a_{n, m}(k) z^{n} \overline{z^{m}}(|z| \leqq 1)
$$

with

$$
a_{n, m}(k) \geqq 0 \quad \text { and } \quad \sum_{n, m=0}^{\infty} a_{n, m}(k)=1
$$

By virtue of Lemma 1 the proof is complete.
Lemma 2. If G has elements of arbitrarily high order then F operates in $\widetilde{\Phi}_{i}(G)$ implies that for any $r, 0<r<\infty$

$$
F(z)=c(r)\left\{\sum_{n, m=0}^{\infty} a_{n, m}(r)(r+z)^{n}(r+\bar{z})^{m}-1\right\}
$$

whenever $|z+r| \leqq r$ where $c(r) \geqq 0, a_{n, m}(r) \geqq 0$ and

$$
\sum_{n, m=0}^{\infty} a_{n, m}(r) r^{n+m}=1
$$

Proof. We begin by observing that

$$
\Phi_{r}(G)-r=\left\{\phi-r: \phi \in \Phi_{r}(G)\right\} \subseteq \widetilde{\Phi}_{1}(G)
$$

Thus if $F_{r}(z)=F(z-r)$ then $\exp F_{r}$ operates in $\left(\Phi_{r}(G), \Phi_{i . d .1}(G)\right)$ which proves the lemma by Theorem 1.

Theorem 2 [3]. If G has elements of arbitrarily high order then F operates in $\widetilde{\Phi}_{1}(G)$ if and only if

$$
\begin{gather*}
F(z)=-\alpha+\beta z+\gamma \bar{z}+\int_{0}^{\infty} \int_{0}^{\infty}\{\exp (s z+t \bar{z})-1\} \mu(d s, d t) \tag{*}\\
\operatorname{Re} z \leqq 0
\end{gather*}
$$

where
(i) α, β and γ are real and nonnegative,
(ii) μ is a positive measure on $\{(s, t): 0 \leqq s<\infty, 0 \leqq t<\infty\}$ which is bounded (except perhaps at the origin) and for which

$$
\int_{0}^{\infty} \int_{0}^{\infty} \frac{t+s}{1+t+s} \mu(d s, d t)<\infty .
$$

Proof. Since it is clear that functions of the form (*) operate on $\widetilde{\Phi}_{1}(G)$ it suffices to prove the reverse implication. We begin by noting that if $0<r<\rho$ then

$$
\begin{aligned}
& c(r)
\end{aligned} \begin{aligned}
& \left.\sum_{n, m=0}^{\infty} a_{n, m}(r)(r+z)^{n}(r+w)^{m}-1\right\} \\
& \quad=c(\rho)\left\{\sum_{n, m=0}^{\infty} a_{n, m}(\rho)(\rho+z)^{n}(\rho+w)^{m}-1\right\}
\end{aligned}
$$

whenever $|z+r| \leqq r$ and $|w+r| \leqq r$, where F admits the expansion

$$
\begin{gathered}
F(z)=c(\rho)\left\{\sum_{n, m=0}^{\infty} a_{n, m}(\rho)(\rho+z)^{n}(\rho+\bar{z})^{m}-1\right\} \\
|\rho+z| \leqq \rho
\end{gathered}
$$

We now may uniquely define a function $\Psi(z, w)$ in $0 \leqq z<\infty$, $0 \leqq w<\infty$ by

$$
\Psi(z, w)=c(r)\left\{1-\sum_{n, m=0}^{\infty} a_{n, m}(r)(r-z)^{n}(r-w)^{m}\right\}
$$

provided $0 \leqq w \leqq r$ and $0 \leqq z \leqq r$. We note that

$$
\begin{gathered}
\frac{(-1)^{j+k-1} \partial^{j+k}}{\partial^{j} z \partial^{k} w} \Psi(z, w) \geqq 0 \\
0 \leqq w<\infty \\
j, k \geqq 0 \quad j \leqq z<\infty \\
j+k>0
\end{gathered}
$$

It follows from a theorem of Bochner [2, p. 89] that

$$
\Psi(z, w)=\alpha+\beta z+\gamma w+\int_{0}^{\infty} \int_{0}^{\infty}[1-\exp -(s z+t w)] \mu(d s, d t)
$$

where α, β, γ and μ have the desired properties.
We proceed now to give the connection between Theorem 2 and the results announced in [3].

Definition. A continuous complex-valued function defined on a locally compact Abelian group G is said to negative definite if

$$
\sum_{j=1}^{n} \sum_{i=1}^{n}\left\{f\left(x_{i}\right)+\overline{f\left(x_{j}\right)}-f\left(x_{i} x_{j}^{-1}\right)\right\} a_{i} \bar{a}_{j} \geqq 0
$$

for any complex numbers $\left\{a_{i}\right\}$, any $\left\{x_{i}\right\} \subseteq G$ and for $n=1,2, \cdots$. The class of such functions is denoted by $N(G)$. It was already noticed by Beurling and Deny [1] that $N(G)=-\widetilde{\Phi}_{1}(G){ }^{2}$ We include a brief proof for the reader's convenience.

Lemma 3. A continuous, complex-valued, function f on G is negative definitely if and only if $\exp (-f)$ is the Fourier transform of an infinitely divisible distribution on \widehat{G}.

Proof. (Necessity) By Bochner's theorem it suffices to show that $\exp (-(1 / n) f)$ is a positive definite function on G for $n=1,2, \cdots$. Since $(1 / n) f$ is a negative definite function it suffices to check that $\exp (-f)$ is positive definite. Now

$$
\begin{aligned}
& \sum_{j=1}^{n} \sum_{i=1}^{n} \exp \left(-f\left(x_{i} x_{j}^{-1}\right)\right) a_{i} \bar{a}_{j} \\
& =\sum_{j=1}^{n} \sum_{i=1}^{n} \exp \left\{f\left(x_{i}\right)+\overline{f\left(x_{j}\right)}-f\left(x_{i} x_{j}^{-1}\right)\right\} \\
& \quad \cdot\left(a_{i} \exp \left(-f\left(x_{i}\right)\right)\right) \overline{\left(a_{j} \exp \left(-f\left(x_{j}\right)\right)\right)} .
\end{aligned}
$$

But the matrix

$$
\exp \left(f\left(x_{i}\right)+f\left(x_{j}\right)-f\left(x_{i} x_{j}^{-1}\right)\right)
$$

is the limit of positive linear combinations of "element-wise" products of positive definite matrices. Since such products are again positive definite by Schur's theorem [9] we see that $\exp (-f)$ is indeed positive definite.
(Sufficiency) By DeFinetti's theorem and the fact that $N(G)$ is closed under pointwise limits it suffices to show that $1-\phi \in N(G)$ for $\phi \in \Phi_{1}(G)$. We must therefore show

[^1]\[

$$
\begin{align*}
& \sum_{i=1}^{n} \sum_{j=1}^{n}\left\{1-\phi\left(x_{i}\right)+1-\phi\left(x_{j}\right)-1+\phi\left(x_{i} x_{j}^{-1}\right)\right\} a_{i} \bar{a}_{j} \\
& \quad=\sum_{i=1}^{n} \sum_{j=1}^{n} \phi\left(x_{i} x_{j}^{-1}\right) a_{i} \overline{a_{j}}+\left|\sum_{i=1}^{n} a_{i}\right|^{2}-2 \operatorname{Re} \sum_{i=1}^{n} a_{i} \sum_{j=1}^{n} \overline{a_{j} \phi\left(x_{j}\right)} \geqq 0 . \tag{}
\end{align*}
$$
\]

To prove (${ }^{* *}$) we first set $\phi(x)=\chi(x)$ where χ is a character of G noting that (**) becomes

$$
\left|\sum_{i=1}^{n} a_{i} \chi\left(x_{i}\right)\right|^{2}+\left|\sum_{i=1}^{n} a_{i}\right|^{2}-2 \operatorname{Re} \sum_{i=1}^{n} a_{i} \sum_{i=1}^{n} \overline{a_{i} \chi\left(x_{i}\right)} \geqq 0 .
$$

For general ϕ we need only observe that by Bochner's theorem ϕ is in the closure of the convex hull spanned by the characters of G.

It is now clear that F operates on $N(G)$ if and only if \widetilde{F}, defined by $\widetilde{F}(z)=-F(-z)$, operates on $\widetilde{\Phi}_{1}(G)$. Making this transformation Theorem 2 becomes identical with the main theorem of [3].

References

1. A. Beurling and J. Deny, Dirichlet spaces, Proc. Nat. Acad. Sci. U.S.A. 45 (1959), 208-215.
2. S. Bochner, Harmonic analysis and the theory of probability, University of California Press, 1960.
3. K. Harzallah, Fonctions cpérant sur les founctions définies négatives à valeurs complexes, C. R. Acad. Sc. 262 (1966), 824-826.
4. H. Helson, J. P. Kahane, Y. Katznelson and W. Rudin, The functions which operate on Fourier transforms, Acta Math. 102 (1959), 135-157.
5. C. S. Herz, Fonctions opérant sur les fonctions définies-positives, Ann. Inst. Fourier 3 (1963), 161-180.
6. A. G. Konheim and B. Weiss, Functions which operate on characteristic functions, Pacific. J. Math. 15 (1965), 1279-1293.
7. W. Rudin, Positive definite sequences and absolutely monotonic functions, Duke Math. J. 26 (1959), 617-622.
8. I. J. Schoenberg, Positive definite functions on spheres, Duke Math. J. 9 (1942), 96-108.
9. -, Metric spaces and positive definite functions, Trans. Amer. Math. Soc. 44 (1938), 522-536.
10. I. Schur, Bemerkungen zur Theorie der beschränkten Bilinearformen mit unedlichvielen Veranderlichen, J. für Math. 140 (1911), 1-28.

Received July 12, 1966. The research of A. C. Konheim was supported by the United States Air Force under Contract No. AF 49(638)-1682.

IMB Watson Research Center
Yorktown Heights, New York

[^0]: ${ }^{1}$ We denote the identity element of G by e.

[^1]: ${ }^{2}$ Professor C. S. Herz has kindly pointed out that this result was actually first given by I. J. Schoenberg [9], albeit in a different context.

