GROUPS ADMITTING A FIXED-POINT-FREE AUTOMORPHISM OF ORDER 2ⁿ

FLETCHER GROSS

Let G be a finite solvable group which admits a fixedpoint-free automorphism of order 2^n . The main result of this paper is that the nilpotent length of G is at most 2n - 2 for $n \ge 2$. This is an improvement on earlier results in that no assumptions are made regarding the Sylow subgroups of G.

Suppose G is a finite solvable group which admits a fixed-pointfree automorphism of order p^n where p is a prime. Then it is known that the nilpotent length of G is at most n provided that $p \neq 2$ ([8], [10], [6]). This result also holds for p = 2 if the Sylow qsubgroups of G are abelian for all Mersenne primes q ([8], [10]). The purpose of the present paper is to obtain an upper bound on the nilpotent length in the case p = 2 without imposing any restrictions on the Sylow subgroups of G. Our result is

THEOREM 1.1. If G is a finite group admitting a fixed-pointfree automorphism of order 2^n , then G is solvable and has nilpotent length at most Max $\{2n - 2, n\}$.

Here it should be noted that if G admits a 2-group as a fixedpoint-free operator group then G must have odd order and thus must be solvable from [2].

The usual methods employed to prove results about solvable groups admitting a fixed-point-free automorphism of order p^n are so similar to the methods used by Hall and Higman [7] to find upper bounds on the *p*-length that it seems natural to ask whether both types of results might follow from some general theorem about linear groups. If p = 2 this can be done and the theorem is the following:

THEOREM 1.2. Let G be a finite solvable linear group over a field K such that the order of $F_1(G)$ is divisible by neither 2 nor the characteristic of K. Assume that g is an element of order 2^n in G such that the minimal polynomial of g has degree $< 2^n$. Then $g^{2^{n-1}}$ must belong to $F_2(G)$.

Here $F_1(G)$ is the greatest normal nilpotent subgroup of G and $F_2(G) = F_1(G \mod F_1(G))$. In addition to implying Theorem 1.1, Theorem 1.2 also immediately implies Theorem B of [4] which in turn implies that $l_2(G) \leq \max \{2e_2(G) - 2, e_2(G)\}$ for any solvable group G([4], [5]).

FLETCHER GROSS

2. Preliminary results. For the rest of this paper we adopt the convention that all groups referred to are assumed to be finite. If G is a linear group operating on V and U is a G-invariant subspace, then $\{G \mid U\}$ denotes the restriction of G to U. If g is an element of a linear group such that the minimal polynomial of g has degree less than the order of g, then g is said to be exceptional. The rest of the notation used agrees with that of [2].

Before proceeding to the proof of Theorem 1.2, some preliminary results are needed.

LEMMA 2.1. Let Q be an extra-special q-group which is operated upon by an automorphism g of order p^n where p is a prime distinct from q. Assume that [Q', g] = 1 and let K be an algebraically closed field of characteristic different from q. Then, if M is any irreducible $K - Q\langle g \rangle$ module which represents Q faithfully, it follows that M is an irreducible K - Q module.

This follows from either [1, Th. 1.30] or [7, Lemma 2.2.3] depending on whether the characteristic of K differs from or is equal to p, respectively. Next we need a generalization of Theorem 2.5.4 of [7].

THEOREM 2.2. Suppose that

(i) Q is an extra-special q-group which admits an automorphism g of order p^n where p is a prime distinct from q.

(ii) [Q', g] = 1.

(iii) K is a field of characteristic different from q.

(iv) M is a faithful, irreducible $K - Q\langle g \rangle$ module.

(v) g is exceptional on M.

Then the following must hold:

(a) $p^n - 1 = q^d$.

(b) If Q_1/Q' is a subgroup of Q/Q' that is transformed faithfully and irreducibly by $\langle g \rangle$, then $|Q_1/Q'| = q^{2d}$ and $[Q, g] \leq Q_1$.

(c) The minimal polynomial of g on M has degree $p^n - 1$.

Proof. First we show that K may be taken to be algebraically closed. Let L be an algebraically closed extension of K and let N be an irreducible $L - Q\langle g \rangle$ submodule of $M \bigotimes_{\kappa} L$. Now if c generates Q', then, since $c \in Z(Q\langle g \rangle)$, c has no nonzero fixed vectors in M. It immediately follows from this that c is not the identity on N. Since any nontrivial normal subgroup of $Q\langle g \rangle$ must contain c, this implies that N is a faithful $L - Q\langle g \rangle$ module.

Thus in proving the theorem we may as well assume that K is algebraically closed. The lemma now implies that M is an irreducible K-Q module. If char (K) = p, then the theorem follows from

Theorems 2.5.1. and 2.5.4 of [7]. Hence we now suppose that char $(K) \neq p$.

Q/Q' is the direct product of groups transformed irreducibly by g. Thus there is a subgroup Q_1/Q' such that g transforms Q_1/Q' irreducibly according to some automorphism of order p^n . Now if Q_1 were abelian, then, since $g^{p^{n-1}}$ does not centralize Q_1 and M is a completely reducible $K - Q_1$ module, it would follow easily that the minimal polynomial of g would have degree p^n . Hence Q_1 is not abelian and so must be extra-special. This implies that $|Q_1| = q^{2d+1}$ for some d.

Now if N is an irreducible $K - Q_1 \langle g \rangle$ submodule of M, N must faithfully represent Q_1 since c is represented by a scalar matrix. Hence N is an irreducible $K - Q_1$ module.

Since g is exceptional, there is at least one p^n -th root of unity in K which is not an eigenvalue of g. The argument given in [10, pp. 706-707] now implies that $p^n - 1 = q^d$ and exactly $(p^n - 1) p^n$ -th roots of unity occur as eigenvalues of g. Thus it only remains to show that $[Q, g] \leq Q_1$ to complete the proof of the theorem. If $Q_1 = Q$, this is trivial. Therefore assume that $Q \neq Q_1$. Then if $Q_2 = C_Q(Q_1)$ we find that Q_2 admits g and Q is the central product of Q_1 and Q_2 .

We now use the construction given in [7, p. 21] to construct linear groups H_1 , H_2 where $H_i = Q_i \langle g_i \rangle$ and g_i is a *p*-element which transforms Q_i in the same way as g. In the Kronecker product of H_1 and H_2 , the product of Q_1 and Q_2 becomes identified with Q. Since M is an irreducible K - Q module, it follows that $g_1 \otimes g_2$ differs from g only by a scalar factor. Since g is of order p^n , we find that

$$g = \alpha(g_1 \otimes g_2)$$

where $\alpha^{p^n} = 1$. Now if $[Q_2, g] \neq 1$, then g_2 has at least two distinct eigenvalues β, γ . But g_1 has $p^n - 1$ distinct eigenvalues. Thus if λ is any p^n -th root of unity then at least one of $\lambda/\alpha\beta$ and $\lambda/\alpha\gamma$ must be an eigenvalue of g_1 . But this would imply that λ would be an eigenvalue of g. Since g is exceptional, we must have that $[Q_2, g] = 1$.

COROLLARY 2.3. Under the hypothesis of the theorem let V be Q/Q' written additively and consider V as a $GF(q) - \langle g \rangle$ module. Then the minimal polynomial of g on V is of degree at most 2d + 1.

Proof. This follows immediately from (b).

THEOREM 2.4. Let G = PQ be a linear group over a field Kwhere Q is a q-group normal in G $(q \neq 2)$ and P is cyclic of order $2^n > 2$ generated by an element g such that $[Q, g^{2^{n-1}}] \neq 1$. Assume that char $(K) \neq q$ and that the minimal polynomial of g is of degree at most 3. Then we must have q = 3 and n = 2. *Proof.* Extending K affects neither hypothesis nor conclusion so we may as well assume that K is algebraically closed. Now let S be a subgroup of Q which is minimal with respect to being normalized by g but not centralized by h where $h = g^{2^{n-1}}$. Then S is a special q-group.

If V is the space on which G operates, then $V = V_1 \bigoplus V_2 \bigoplus \cdots$ where the V_i are the homogeneous K - S submodules of V. Without loss of generality we may assume that [S, h] is not the identity on V_1 . But if g^{2^m} is the first power of g fixing V_1 , then the minimal polynomial of g has degree at least 2^m times the degree of the minimal polynomial of $\{g^{2^m} | V_1\}$. This implies that g must fix V_1

Now let U be an irreducible K - PS submodule of V_1 . [S, h] is not the identity on U but $Z\{S \mid U\}$ must be cyclic generated by a scalar matrix. Thus we conclude that $\{S \mid U\}$ is an extra special qgroup whose center is centralized by $\{g \mid U\}$. From Theorem 2.2 we now obtain that $2^n = q^d + 1$ and the minimal polynomial of $\{g \mid U\}$ has degree $2^n - 1$. This implies that n = 2 and q = 3.

3. Proof of Theorem 1.2. Neither the hypothesis nor the conclusion of the theorem is affected by extending the field K. Thus we may assume without loss of generality that K is algebraically closed. Now if n = 1, then, since g is exceptional, g would have to be a scalar matrix which would imply that $g \in Z(G)$. Hence we assume that n > 1 and let $h = g^{2^{n-2}}$.

If Q is any normal nilpotent subgroup of G, then char $(K) \not\models |Q|$ and so V, the space on which G operates, is a completely reducible K-Q module. Therefore $V = V_1 \bigoplus V_2 \bigoplus \cdots$ where the V_i are the homogeneous K-Q submodules. G must permute the V_i since $Q \triangleleft G$. Now if h^2 did not fix each V_i , then it would follow that the minimal polynomial of g would be of degree 2^n which is a contradiction. Let H be the set of all elements in G which fix each minimal characteristic K-Q submodule of V for each normal nilpotent subgroup Q in G. Clearly $H \triangleleft G$. Hence $F_i(H) \leq F_i(G)$ for i = 1, 2. Also we have shown that $h^2 \in H$.

It follows from [4, Lemmas 3.2 and 3.3] that [Q, H] = 1 if Q is any normal abelian subgroup of G and that $F_1(H)$ is of class 2. $F_1(H) = Q_1 \times Q_2 \times \cdots$ where Q_i is the Sylow q_i -subgroup of $F_1(H)$ and q_i is an odd prime. Since Q_i is of class at most 2, Q_i is a regular q_i -group. Then the elements of order at most q_i form a subgroup R_i in Q_i . If $R = R_1 \times R_2 \times \cdots$, then $C_H(R) \leq F_1(H)$ [9, Hilfssatz 1.5].

The proof now divides into two parts. First we will show that h^2 induces the identity automorphism on any 2'-subgroup of $F_2(H)/F_1(H)$. In the second part we consider how h^2 operates on a 2-subgroup of $F_2(H)/F_1(H)$. Part I. Suppose that p is an odd prime which divides

 $|F_{2}(H)/F_{1}(H)|$.

It is easy to show that there is a Sylow *p*-subgroup P of $F_2(H)$ which is normalized by g. We now proceed to prove that

$$[P, h^2] \leq F_1(H)$$
 .

To do this we first note that, since $P \nleq F_1(H)$, $C_P(O_{P'}(F_1(H))) = P \cap F_1(H)$. Now let $N = P \cap F_1(H)$ and suppose that $[P, h^2] \nleq N$.

Since $C_P(O_{P'}(F_1(H))) = N$, there is a $q_i \neq p$ such that $[h^2, P, R_i] \neq 1$. Now let U be a minimal characteristic $K - R_i$ submodule of V on which $[h^2, P, R_i]$ is not the identity. Let $q = q_i$, $S = \{P \mid U\}$, and $Q = \{R_j \mid U\}$. h^2 must fix U but cannot be a scalar matrix on U since $\{[h^2, P, R_i] \mid U\} \neq 1$. Let $g^{2^{n-m}}$ be the first power of g to fix U and let g_1 be the restriction of $g^{2^{n-m}}$ to U. But if g_1 were not exceptional then g could not be exceptional. Hence g_1 is exceptional and so m must be > 1. Now let $h_1 = g_1^{2^{m-2}}$.

Then $[h_i^2, S, Q] \neq 1$. Since U is the sum of isomorphic, irreducible K - Q modules, Z(Q) must be cyclic generated by a scalar matrix. Therefore $[Z(Q), S\langle g_i \rangle] = 1$ and, since Q is a homomorphic image of a class 2 group of exponent q, Q must be an extra-special q-group.

Next let U_1 be an irreducible $K - Q \langle g_1 \rangle$ submodule of U. Lemma 2.1 implies that U_1 is an irreducible K - Q module and so U is the sum of K - Q modules isomorphic to U_1 . From Theorem 2.2 we obtain that $2^m - 1 = q^d$ and $[Q: C_Q(g_1)] = q^{2d}$. Then q must be a Mersenne prime and d = 1.

Now let W be Q/Q' written additively and consider W as a $GF(q) - S \langle g_1 \rangle$ module. The minimal polynomial of g_1 on W has degree at most 3 from Corollary 2.3. Since $[h_1^2, S]$ is not the identity on W, Theorem 2.4 now implies that m = 2 and p = 3 which contradicts

$$p
eq q = 2^m - 1$$
 .

Thus we have shown that h^2 induces the identity automorphism on any 2'-subgroup of $F_2(H)/F_1(H)$.

Part II. The 2-subgroups of $F_2(H)/F_1(H)$ have to be handled differently and we apply the method of [4, pp. 1224-1228]. Accordingly, let $V = V_{i1} \bigoplus V_{i2} \bigoplus \cdots$ where the V_{ij} are the homogeneous $K - R_i$ submodules of V. For each i and j, let

$$C_{ij} = \{x \mid x \in H \text{ and } \{[R_i x] \mid V_{ij}\} = 1\}.$$

Next let H_1 be the intersection of all the C_{ij} which contain h^2 . If h^2 belongs to no C_{ij} then set H_1 equal to H. In any event $H_1 \triangleleft H$,

 $h^2 \in H_1$, and g normalizes H_1 .

Now choose P to be a Sylow 2-subgroup of $F_2(H_1)$ such that $P \langle g \rangle$ is a 2-group. If $x \in P$, we now assert that $[h^2, x] = [h, x]^2$. The proof of this is identical with the proof of Lemma 3.4 in [4] and, for this reason, is omitted.

Now from the above we see that $[h^2, P] \leq D(P)$. This combined with our result proved in Part I implies that $[h^2, F_2(H_1)] \leq D(F_2(H_1))$ mod $F_1(H_1)$. But this implies that $h^2 \in F_2(H_1)$. Since $F_2(H_1) \leq F_2(H)$ and $F_2(H) \leq F_2(G)$, this completes the proof of the theorem.

4. Proof of Theorem 1.1. Let σ denote the fixed-point-free automorphism of order 2^n . If $n \leq 2$, then the result is a known one [3]. Consequently, we assume that $n \geq 3$ and proceed by induction on the order of G.

Now if G has two distinct minimal σ -admissible normal subgroups H_1 and H_2 , then by induction, $(G/H_1) \times (G/H_2)$ has nilpotent length at most 2n - 2. Since G is isomorphic to a subgroup of $(G/H_1) \times (G/H_2)$, the theorem would follow immediately.

Therefore we may assume that G has a unique minimal σ -admissible normal subgroup. This implies that $F_1(G)$ is a p-group for some p. Then we may consider $H = \langle \sigma \rangle G/F_1(G)$ as a linear group operating on V where V is $F_1(G)/D(F_1(G))$ written additively. Now p cannot be 2 and $(\sigma - 1)$ must be nonsingular on V. Thus σ must be exceptional and we obtain from Theorem 1.2 that $\sigma^{2^{n-1}} \in F_2(H)$.

This implies that $\sigma^{2^{n-1}}$ centralizes $F_3(G)/F_2(G)$ which in turn implies that $\sigma^{2^{n-1}}$ centralizes $G/F_2(G)$ [8, Lemma 4]. Thus, by induction, the nilpotent length of $G/F_2(G)$ is at most Max $\{2n - 4, n - 1\}$. Since we are assuming that $n \ge 3$, this implies that G has nilpotent length at most 2n - 2.

References

1. E. Dade, Seminar Notes, Calif. Inst. of Technology, 1964.

2. W. Feit and J. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963), 775-1029.

3. D. Gorenstein and I. Herstein, Finite groups admitting a fixed-point-free automorphism of order 4, Amer. J. Math. 83 (1961), 71-78.

4. F. Gross, The 2-length of a finite solvable group, Pacific J. Math 15 (1965), 1221-1237.

5. ____, The 2-length of groups whose Sylow 2-groups are of exponent 4, J. Algebra 2 (1965), 312-314.

6. ____, Solvable groups admitting a fixed-point-free automorphism of prime power order, Proc. Amer. Math. Soc. 17 (1966), 1440-1446.

7. P. Hall and G. Higman, On the p-length of p-soluble groups and reduction theorems for Burnside's problem, Proc. London Math. Soc. (3) 6 (1956), 1-42.

8. F. Hoffman, Nilpotent height of finite groups admitting fixed-point-free automorphisms, Math. Z. 85 (1964), 260-267.

9. B. Huppert, Subnormale untergruppen und Sylowgruppen, Acta Szeged. 22 (1961), 46-61.

10. E. Shult, On groups admitting fixed-point-free abelian groups, Illinois J. Math. 9 (1965), 701-720.

Received July 5, 1967. Research supported in part by a grant from the National Research Council of Canada.

UNIVERSITY OF ALBERTA, EDMONTON NOW AT THE UNIVERSITY OF UTAH