GROUPS ADMITTING A FIXED-POINT-FREE AUTOMORPHISM OF ORDER 2^{n}

Fletcher Gross

Let G be a finite solvable group which admits a fixed-point-free automorphism of order 2^{n}. The main result of this paper is that the nilpotent length of G is at most $2 n-2$ for $n \geqq 2$. This is an improvement on earlier results in that no assumptions are made regarding the Sylow subgroups of G.

Suppose G is a finite solvable group which admits a fixed-pointfree automorphism of order p^{n} where p is a prime. Then it is known that the nilpotent length of G is at most n provided that $p \neq 2$ ([8], [10], [6]). This result also holds for $p=2$ if the Sylow q subgroups of G are abelian for all Mersenne primes q ([8], [10]). The purpose of the present paper is to obtain an upper bound on the nilpotent length in the case $p=2$ without imposing any restrictions on the Sylow subgroups of G. Our result is

Theorem 1.1. If G is a finite group admitting a fixed-pointfree automorphism of order 2^{n}, then G is solvable and has nilpotent length at most $\operatorname{Max}\{2 n-2, n\}$.

Here it should be noted that if G admits a 2 -group as a fixed-point-free operator group then G must have odd order and thus must be solvable from [2].

The usual methods employed to prove results about solvable groups admitting a fixed-point-free automorphism of order p^{n} are so similar to the methods used by Hall and Higman [7] to find upper bounds on the p-length that it seems natural to ask whether both types of results might follow from some general theorem about linear groups. If $p=2$ this can be done and the theorem is the following:

Theorem 1.2. Let G be a finite solvable linear group over a field K such that the order of $F_{1}(G)$ is divisible by neither 2 nor the characteristic of K. Assume that g is an element of order 2^{n} in G such that the minimal polynomial of g has degree $<2^{n}$. Then $g^{2 n-1}$ must belong to $F_{2}(G)$.

Here $F_{1}(G)$ is the greatest normal nilpotent subgroup of G and $F_{2}(G)=F_{1}\left(G \bmod F_{1}(G)\right)$. In addition to implying Theorem 1.1, Theorem 1.2 also immediately implies Theorem B of [4] which in turn implies that $l_{2}(G) \leqq \operatorname{Max}\left\{2 e_{2}(G)-2, e_{2}(G)\right\}$ for any solvable group G ([4], [5]).
2. Preliminary results. For the rest of this paper we adopt the convention that all groups referred to are assumed to be finite. If G is a linear group operating on V and U is a G-invariant subspace, then $\{G \mid U\}$ denotes the restriction of G to U. If g is an element of a linear group such that the minimal polynomial of g has degree less than the order of g, then g is said to be exceptional. The rest of the notation used agrees with that of [2].

Before proceeding to the proof of Theorem 1.2, some preliminary results are needed.

Lemma 2.1. Let Q be an extra-special q-group which is operated upon by an automorphism g of order p^{n} where p is a prime distinct from q. Assume that $\left[Q^{\prime}, g\right]=1$ and let K be an algebraically closed field of characteristic different from q. Then, if M is any irreducible $K-Q\langle g\rangle$ module which represents Q faithfully, it follows that M is an irreducible $K-Q$ module.

This follows from either [1, Th. 1.30] or [7, Lemma 2.2.3] depending on whether the characteristic of K differs from or is equal to p, respectively. Next we need a generalization of Theorem 2.5.4 of [7].

Theorem 2.2. Suppose that
(i) Q is an extra-special q-group which admits an automorphism g of order p^{n} where p is a prime distinct from q.
(ii) $\left[Q^{\prime}, g\right]=1$.
(iii) K is a field of characteristic different from q.
(iv) M is a faithful, irreducible $K-Q\langle g\rangle$ module.
(v) g is exceptional on M.

Then the following must hold:
(a) $p^{n}-1=q^{d}$.
(b) If Q_{1} / Q^{\prime} is a subgroup of Q / Q^{\prime} that is transformed faithfully and irreducibly by $\langle g\rangle$, then $\left|Q_{1} / Q^{\prime}\right|=q^{2 d}$ and $[Q, g] \leqq Q_{1}$.
(c) The minimal polynomial of g on M has degree $p^{n}-1$.

Proof. First we show that K may be taken to be algebraically closed. Let L be an algebraically closed extension of K and let N be an irreducible $L-Q\langle g\rangle$ submodule of $M \otimes_{K} L$. Now if c generates Q^{\prime}, then, since $c \in Z(Q\langle g\rangle), c$ has no nonzero fixed vectors in M. It immediately follows from this that c is not the identity on N. Since any nontrivial normal subgroup of $Q\langle g\rangle$ must contain c, this implies that N is a faithful $L-Q\langle g\rangle$ module.

Thus in proving the theorem we may as well assume that K is algebraically closed. The lemma now implies that M is an irreducible $K-Q$ module. If char $(K)=p$, then the theorem follows from

Theorems 2.5.1. and 2.5.4 of [7]. Hence we now suppose that char $(K) \neq p$.
Q / Q^{\prime} is the direct product of groups transformed irreducibly by g. Thus there is a subgroup Q_{1} / Q^{\prime} such that g transforms Q_{1} / Q^{\prime} irreducibly according to some automorphism of order p^{n}. Now if Q_{1} were abelian, then, since $g^{p^{n-1}}$ does not centralize Q_{1} and M is a completely reducible $K-Q_{1}$ module, it would follow easily that the minimal polynomial of g would have degree p^{n}. Hence Q_{1} is not abelian and so must be extra-special. This implies that $\left|Q_{1}\right|=q^{2 d+1}$ for some d.

Now if N is an irreducible $K-Q_{1}\langle g\rangle$ submodule of M, N must faithfully represent Q_{1} since c is represented by a scalar matrix. Hence N is an irreducible $K-Q_{1}$ module.

Since g is exceptional, there is at least one p^{n}-th root of unity in K which is not an eigenvalue of g. The argument given in [10, pp. 706-707] now implies that $p^{n}-1=q^{d}$ and exactly ($p^{n}-1$) p^{n}-th roots of unity occur as eigenvalues of g. Thus it only remains to show that $[Q, g] \leqq Q_{1}$ to complete the proof of the theorem. If $Q_{1}=Q$, this is trivial. Therefore assume that $Q \neq Q_{1}$. Then if $Q_{2}=C_{Q}\left(Q_{1}\right)$ we find that Q_{2} admits g and Q is the central product of Q_{1} and Q_{2}.

We now use the construction given in [7, p. 21] to construct linear groups H_{1}, H_{2} where $H_{i}=Q_{i}\left\langle g_{i}\right\rangle$ and g_{i} is a p-element which transforms Q_{i} in the same way as g. In the Kronecker product of H_{1} and H_{2}, the product of Q_{1} and Q_{2} becomes identified with Q. Since M is an irreducible $K-Q$ module, it follows that $g_{1} \otimes g_{2}$ differs from g only by a scalar factor. Since g is of order p^{n}, we find that

$$
g=\alpha\left(g_{1} \otimes g_{2}\right)
$$

where $\alpha^{p^{n}}=1$. Now if $\left[Q_{2}, g\right] \neq 1$, then g_{2} has at least two distinct eigenvalues β, γ. But g_{1} has $p^{n}-1$ distinct eigenvalues. Thus if λ is any p^{n}-th root of unity then at least one of $\lambda / \alpha \beta$ and $\lambda / \alpha \gamma$ must be an eigenvalue of g_{1}. But this would imply that λ would be an eigenvalue of g. Since g is exceptional, we must have that $\left[Q_{2}, g\right]=1$.

Corollary 2.3. Under the hypothesis of the theorem let V be Q / Q^{\prime} written additively and consider V as a $G F(q)-\langle g\rangle$ module. Then the minimal polynomial of g on V is of degree at most $2 d+1$.

Proof. This follows immediately from (b).
Theorem 2.4. Let $G=P Q$ be a linear group over a field K where Q is a q-group normal in $G(q \neq 2)$ and P is cyclic of order $2^{n}>2$ generated by an element g such that $\left[Q, g^{2 n-1}\right] \neq 1$. Assume that char $(K) \neq q$ and that the minimal polynomial of g is of degree at most 3 . Then we must have $q=3$ and $n=2$.

Proof. Extending K affects neither hypothesis nor conclusion so we may as well assume that K is algebraically closed. Now let S be a subgroup of Q which is minimal with respect to being normalized by g but not centralized by h where $h=g^{2 n-1}$. Then S is a special q-group.

If V is the space on which G operates, then $V=V_{1} \oplus V_{2} \oplus \cdots$ where the V_{i} are the homogeneous $K-S$ submodules of V. Without loss of generality we may assume that $[S, h]$ is not the identity on V_{1}. But if $g^{2 m}$ is the first power of g fixing V_{1}, then the minimal polynomial of g has degree at least 2^{m} times the degree of the minimal polynomial of $\left\{g^{2 m} \mid V_{1}\right\}$. This implies that g must fix V_{1}

Now let U be an irreducible $K-P S$ submodule of V_{1}. [$\left.S, h\right]$ is not the identity on U but $Z\{S \mid U\}$ must be cyclic generated by a scalar matrix. Thus we conclude that $\{S \mid U\}$ is an extra special q group whose center is centralized by $\{g \mid U\}$. From Theorem 2.2 we now obtain that $2^{n}=q^{d}+1$ and the minimal polynomial of $\{g \mid U\}$ has degree $2^{n}-1$. This implies that $n=2$ and $q=3$.
3. Proof of Theorem 1.2. Neither the hypothesis nor the conclusion of the theorem is affected by extending the field K. Thus we may assume without loss of generality that K is algebraically closed. Now if $n=1$, then, since g is exceptional, g would have to be a scalar matrix which would imply that $g \in Z(G)$. Hence we assume that $n>1$ and let $h=g^{2 n-2}$.

If Q is any normal nilpotent subgroup of G, then char $(K) \nmid|Q|$ and so V, the space on which G operates, is a completely reducible $K-Q$ module. Therefore $V=V_{1} \oplus V_{2} \oplus \cdots$ where the V_{i} are the homogeneous $K-Q$ submodules. G must permute the V_{i} since $Q \triangleleft G$. Now if h^{2} did not fix each V_{i}, then it would follow that the minimal polynomial of g would be of degree 2^{n} which is a contradiction. Let H be the set of all elements in G which fix each minimal characteristic $K-Q$ submodule of V for each normal nilpotent $\operatorname{subgroup} Q$ in G. Clearly $H \triangleleft G$. Hence $F_{i}(H) \leqq F_{i}(G)$ for $i=1,2$. Also we have shown that $h^{2} \in H$.

It follows from [4, Lemmas 3.2 and 3.3] that $[Q, H]=1$ if Q is any normal abelian subgroup of G and that $F_{1}(H)$ is of class 2. $F_{1}(H)=$ $Q_{1} \times Q_{2} \times \cdots$ where Q_{i} is the Sylow q_{i}-subgroup of $F_{1}(H)$ and q_{i} is an odd prime. Since Q_{i} is of class at most $2, Q_{i}$ is a regular q_{i}-group. Then the elements of order at most q_{i} form a subgroup R_{i} in Q_{i}. If $R=R_{1} \times R_{2} \times \cdots$, then $C_{H}(R) \leqq F_{1}(H)$ [9, Hilfssatz 1.5].

The proof now divides into two parts. First we will show that h^{2} induces the identity automorphism on any 2^{\prime}-subgroup of $F_{2}(H) / F_{1}(H)$. In the second part we consider how h^{2} operates on a 2 -subgroup of $F_{2}(H) / F_{1}(H)$.

Part I. Suppose that p is an odd prime which divides

$$
\left|F_{2}(H) / F_{1}(H)\right|
$$

It is easy to show that there is a Sylow p-subgroup P of $F_{2}(H)$ which is normalized by g. We now proceed to prove that

$$
\left[P, h^{2}\right] \leqq F_{1}(H)
$$

To do this we first note that, since $P \not \equiv F_{1}(H), C_{P}\left(O_{P},\left(F_{1}(H)\right)\right)=$ $P \cap F_{1}(H)$. Now let $N=P \cap F_{1}(H)$ and suppose that $\left[P, h^{2}\right] \not \equiv N$.

Since $C_{P}\left(O_{P},\left(F_{1}(H)\right)\right)=N$, there is a $q_{i} \neq p$ such that $\left[h^{2}, P, R_{i}\right] \neq$ 1. Now let U be a minimal characteristic $K-R_{i}$ submodule of V on which $\left[h^{2}, P, R_{i}\right]$ is not the identity. Let $q=q_{i}, S=\{P \mid U\}$, and $Q=\left\{R_{j} \mid U\right\} . \quad h^{2}$ must fix U but cannot be a scalar matrix on U since $\left\{\left[h^{2}, P, R_{i}\right] \mid U\right\} \neq 1$. Let $g^{2 n-m}$ be the first power of g to fix U and let g_{1} be the restriction of $g^{2 n-m}$ to U. But if g_{1} were not exceptional then g could not be exceptional. Hence g_{1} is exceptional and so m must be >1. Now let $h_{1}=g_{1}^{2 m-2}$.

Then $\left[h_{1}^{2}, S, Q\right] \neq 1$. Since U is the sum of isomorphic, irreducible $K-Q$ modules, $Z(Q)$ must be cyclic generated by a scalar matrix. Therefore $\left[Z(Q), S\left\langle g_{1}\right\rangle\right]=1$ and, since Q is a homomorphic image of a class 2 group of exponent q, Q must be an extra-special q-group.

Next let U_{1} be an irreducible $K-Q\left\langle g_{1}\right\rangle$ submodule of U. Lemma 2.1 implies that U_{1} is an irreducible $K-Q$ module and so U is the sum of $K-Q$ modules isomorphic to U_{1}. From Theorem 2.2 we obtain that $2^{m}-1=q^{d}$ and $\left[Q: C_{Q}\left(g_{1}\right)\right]=q^{2 d}$. Then q must be a Mersenne prime and $d=1$.

Now let W be Q / Q^{\prime} written additively and consider W as a $G F(q)-S\left\langle g_{1}\right\rangle$ module. The minimal polynomial of g_{1} on W has degree at most 3 from Corollary 2.3. Since $\left[h_{1}^{2}, S\right]$ is not the identity on W, Theorem 2.4 now implies that $m=2$ and $p=3$ which contradicts

$$
p \neq q=2^{m}-1
$$

Thus we have shown that h^{2} induces the identity automorphism on any 2^{\prime}-subgroup of $F_{2}(H) / F_{1}(H)$.

Part II. The 2-subgroups of $F_{2}(H) / F_{1}(H)$ have to be handled differently and we apply the method of [4, pp. 1224-1228]. Accordingly, let $V=V_{i 1} \oplus V_{i 2} \oplus \cdots$ where the $V_{i j}$ are the homogeneous $K-R_{i}$ submodules of V. For each i and j, let

$$
C_{i j}=\left\{x \mid x \in H \text { and }\left\{\left[R_{i} x\right] \mid V_{i j}\right\}=1\right\}
$$

Next let H_{1} be the intersection of all the $C_{i j}$ which contain h^{2}. If h^{2} belongs to no $C_{i j}$ then set H_{1} equal to H. In any event $H_{1} \triangleleft H$,
$h^{2} \in H_{1}$, and g normalizes H_{1}.
Now choose P to be a Sylow 2-subgroup of $F_{2}\left(H_{1}\right)$ such that $P\langle g\rangle$ is a 2-group. If $x \in P$, we now assert that $\left[h^{2}, x\right]=[h, x]^{2}$. The proof of this is identical with the proof of Lemma 3.4 in [4] and, for this reason, is omitted.

Now from the above we see that $\left[h^{2}, P\right] \leqq D(P)$. This combined with our result proved in Part I implies that $\left[h^{2}, F_{2}\left(H_{1}\right)\right] \leqq D\left(F_{2}\left(H_{1}\right)\right.$ $\bmod F_{1}\left(H_{1}\right)$). But this implies that $h^{2} \in F_{2}\left(H_{1}\right)$. Since $F_{2}\left(H_{1}\right) \leqq F_{2}(H)$ and $F_{2}(H) \leqq F_{2}(G)$, this completes the proof of the theorem.
4. Proof of Theorem 1.1. Let σ denote the fixed-point-free automorphism of order 2^{n}. If $n \leqq 2$, then the result is a known one [3]. Consequently, we assume that $n \geqq 3$ and proceed by induction on the order of G.

Now if G has two distinct minimal σ-admissible normal subgroups H_{1} and H_{2}, then by induction, $\left(G / H_{1}\right) \times\left(G / H_{2}\right)$ has nilpotent length at most $2 n-2$. Since G is isomorphic to a subgroup of $\left(G / H_{1}\right) \times\left(G / H_{2}\right)$, the theorem would follow immediately.

Therefore we may assume that G has a unique minimal σ-admissible normal subgroup. This implies that $F_{1}(G)$ is a p-group for some p. Then we may consider $H=\langle\sigma\rangle G / F_{1}(G)$ as a linear group operating on V where V is $F_{1}(G) / D\left(F_{1}(G)\right)$ written additively. Now p cannot be 2 and ($\sigma-1$) must be nonsingular on V. Thus σ must be exceptional and we obtain from Theorem 1.2 that $\sigma^{2 n-1} \in F_{2}(H)$.

This implies that $\sigma^{2 n-1}$ centralizes $F_{3}(G) / F_{2}(G)$ which in turn implies that $\sigma^{2^{n-1}}$ centralizes $G / F_{2}(G)$ [8, Lemma 4]. Thus, by induction, the nilpotent length of $G / F_{2}(G)$ is at $\operatorname{most} \operatorname{Max}\{2 n-4, n-1\}$. Since we are assuming that $n \geqq 3$, this implies that G has nilpotent length at most $2 n-2$.

References

1. E. Dade, Seminar Notes, Calif. Inst. of Technology, 1964.
2. W. Feit and J. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963), 775-1029.
3. D. Gorenstein and I. Herstein, Finite groups admitting a fixed-point-free automorphism of order 4, Amer. J. Math. 83 (1961), 71-78.
4. F. Gross, The 2-length of a finite solvable group, Pacific J. Math 15 (1965), 12211237.
5. -, The 2-length of groups whose Sylow 2-groups are of exponent 4, J. Algebra 2 (1965), 312-314.
6. -, Solvable groups admitting a fixed-point-free automorphism of prime power order, Proc. Amer. Math. Soc. 17 (1966), 1440-1446.
7. P. Hall and G. Higman, On the p-length of p-soluble groups and reduction theorems for Burnside's problem, Proc. London Math. Soc. (3) 6 (1956), 1-42.
8. F. Hoffman, Nilpotent height of finite groups admitting fixed-point-free automorphisms, Math. Z. 85 (1964), 260-267.
9. B. Huppert, Subnormale untergruppen und Sylowgruppen, Acta Szeged. 22 (1961), 46-61.
10. E. Shult, On groups admitting fixed-point-free abelian groups, Illinois J. Math. 9 (1965), 701-720.

Received July 5, 1967. Research supported in part by a grant from the National Research Council of Canada.

University of Alberta, Edmonton
Now at the University of Utah

