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SEMIGROUP ALGEBRAS THAT ARE
GROUP ALGEBRAS

D. B. COLEMAN

If S is a finite semigroup, and if K is a field, under what
conditions is there a group G such that the semigroup algebra
KS is isomorphic to the group algebra KGΊ

The following theorems are proved:
1. Let S have odd order nf and let K be either a real

number field or GF(q), where q is a prime less than any prime
divisor of n. If KS = KG for a group G, then S is a group.

2. Let K be a cyclotomic field over the rationale, and let
G be an abelian group. Then KG = KS for a semigroup S
that is not a group if and only if for some prime p and some
positive integer k, K contains all pkth roots of unity and the
cyclic group of order pk is a direct factor of G.

3. Let S be a commutative semigroup of order n, and
let K — GF(p), where p is a prime not exceeding the smallest
prime dividing n. If KS = KG for a group G, then S is a
group.

The semigroup ring of a semilattice is also considered.

1* Preliminary remarks. The basic definitions and concepts

involving semigroups that are used here can be found in [2].
For related literature, see [5], [6], [7], [9], [10], and § 5.2 in [2].
Let S be a finite semigroup and let K be a field. The semigroup

algebra KS is the free algebra on S; that is S forms a iΓ-basis for
KS and multiplication in KS is induced by that in S.

If S has a zero element z, let KQS denote the contracted semi-
group algebra of S. We see that KQS is an algebra that has the
nonzero members of S as a basis, with multiplication o determined by

sot = st i f st Φ z a n d s o ί = 0 i f st = z te S\{z} .

If J is an ideal in S, let S/J denote the Rees quotient semigroup
of S modulo J.

It is easy to verify that if J is an ideal in S, then the factor
algebra KS/KJ is isomorphic to the contracted algebra of S/J.
Also, if S has a zero, then K0S/K0J ~ KQ(S/J). [2, p. 160].

If A is an algebra over K, we denote by Ak the algebra of
k x k matrices over A, where k is a positive integer.

By a nongroup we mean a semigroup that is not a group.
GF(q) denotes the Galois field with q elements.

2* Odd order semigroups* Let S be a finite semigroup, and
let 0 c Jx c J2 c c J*. = S be a principal series for S. Suppose
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t h a t K is a field such t h a t KS is semisimple. Then by [2, pp. 161-

162], each /;/</;_! is 0-simple, i = 2, •••, k, and

KS ~ KJ, 0 ϋΓo(Wi) θ Θ KQ(Jk/Jk^) .

According to M. Teissier (see [2, p. 165]), Jλ is a group. Also, for
each i = 2, . , k, there is a group Hi such that ϋΓo W«/»-i) = (KHi)k.y

the algebra of &; x &,- matrices over ϋΓi^, for some positive integer &,-.
This is due to W. D. Munn; see [2, p. 162], Each KHi9 being semi-
simple, has K as a direct summand. It follows that each KoiJJJi^)
has Kk. as a simple direct summand. It is well known that the group
algebra KG is semisimple if and only if the characteristic of K does
not divide the order of G. Thus we have

THEOREM 2.1. Let G be a finite group of order n, and let K be
a field whose characteristic does not divide n. Suppose that KG =
^ θ Σ U ί A ) ^ where each Dι is a division algebra properly con-
taining K. If S is a semigroup such that KS = KG, then S is a
group.

If n is odd, and if K contains no n-th. roots of unity except 1,
then it follows from [1] that the hypothesis of the theorem holds.
Hence we have the following special case.

COROLLARY 2.2. Let K be a field of real numbers, and let S
be a semigroup of odd order. If KS ~ KG for some group G, then
S is itself a group.

COROLLARY 2.3. Let S be a semigroup of order n, and let
K = GF(pm), where p is a prime such that no prime divisor of n
divides p(pm — 1). If KS = KG for some group G, then S is a group.

A CONSTRUCTION 2.4. Suppose that A is an algebra over K such
that A ^ Λ Θ Λ Θ Θ Λ , for ideals At. Suppose further that
Ao = KSo for a semigroup So, and that for each i = 1, , ί, A{ is
either KSi or KQS'i for a semigroup Si or a semigroup SI = Si U 0
with zero, respectively.

Let S = So U {x + eQ: x e \J =1 SJ, where eQ is an idempotent in SQ.
Since AiA5 = (0) for i Φ j , we see that S is a semigroup. Since
So U Si U U St is a basis for A, we have that A = KS. Since So

is an ideal in S, S is not a group.
This construction follows that in the proof of Theorem 5.30 in [2].

In that case SQ = K} and A{ is a full matrix algebra, for i > 0.
We now see that the hypothesis that n is odd is needed in 2.2.

For let D denote the dihedral group of order 8, and let K be a field
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of characteristic Φ2. Then KD ^ K® KQ) K® Kφ K2. By 2.4
there is a nongroup S such that KS = KD. If K has characteristic
2, there is no such S. In fact, if G is a p-group, if K is a field of
characteristic p, and if KS ~ KG, then S is a group. For in this case
KG has no idempotents except 0 and 1; thus KG = ifS forces S to
have exactly one idempotent which must be an identity. (Notice
that a zero element in S is not the zero of KS). Thus the finite
semigroup S is a group.

Another example is of interest here. Let G = S3, the symmetric
group on 3 letters, and let K have characteristic ^ 3 . Then KG ~
KC 0 K2, where C is the group of order 2. Thus, as before, KG = KS
for some nongroup S.

In examining examples we use the fact that the matrix algebra
Km is a contracted semigroup algebra. This raises the question:
What are the semigroups S such that K0S = Kmt From Theorem
5.19 and Corollary 3.12 in [2] we get the following answer.

Let P be a nonsingular m x m matrix over if all of whose
entries are either 0 or 1. Let {Eiό} be the usual m2 matrix units;
EijEkτ — 8jkEir. Let U(P) denote the multiplicative semigroup of
matrices consisting of the zero matrix and all matrices of the form
PEiά\ 1 ^ i, j ^ m. If S is a semigroup with zero, then K0S = iΓm

if and only if S ~ U{P) for some such nonsingular P. Moreover,
U(P) = U(Pf) if and only if P and P' have the same number of
entries equal to one. We see that there are exactly m2 — 2m + 2
nonisomorphic semigroups U(P). Note also that U(P) = Ϊ7(P') if and
only if there is a nonsingular matrix T such that T~1U(P)T = U{Pf).

3* Commutative semigroup algebras* Let G be an abelian
group of order n, and let K be a field whose characteristic does not
divide n. Then according to [8], we have

(1) KG = @ΣadK(ζd);

summation is over divisors of n, ζd is a primitive d-th root of unity,
and adK(ζd) indicates K(ζd) as a direct summand ad times. Further
ad = ^ / ^ where wd is the number of elements of order d in G and
vd = deg(K(ζd)/K).

If there are groups Gu •• ,Gm, with m > 1, such that KG —
KGλ φ 0 KGm, then by 2.4 there is a nongroup S such that
KS ~ KG. By Theorem 5.21 in [2], we see that the converse holds.

Thus given the abelian group G, the semigroups S such that
KS ~ KG are precisely those commutative semigroups S such that

(i) S is the disjoint union of groups, Glf •••, Gs; and
(ii)
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By Theorem 4.11 in [2] all semigroups satisfying (i) can be deter-
mined. Also, since all finite groups of order less than n, and their
corresponding numbers nd, can be determined, we can use formula
(1) to check condition (ii).

Note that if K contains a primitive pk-th. root of unity, and if
the cyclic group C(pk) of order pk is a direct factor of G, then con-
dition (ii) holds. For in this case KC(pk) = pkK, so that

K(C(pk) x H) = KC(pk) ®KH= pkK(H) .

In the following case the converse holds.
Let Q denote the rational field. To avoid trivialities, when we

write K(ζd) we assume that d is either odd or divisible by 4.

THEOREM 3.1. Let K = Q(ζ), where ζ is a primitive m-th root
of unity, and let G be an abelian group. There is a nongroup S
such that KS = KG if and only if there is a prime p and a positive
integer k such that K contains all the pk-th roots of unity and
C(pk) is a direct factor of G.

Proof. We just observed the sufficiency of the condition.
Suppose conversely that

(2) ϊ G s ϊ f t e θ ί e , , s>l.

Assume that each group algebra KGi is indecomposable as a direct
sum of group algebras. Then for each ΐ, either G< = 1, or KGi is
the direct sum of fields K(ζd), not all equal to K.

Suppose that q is a prime dividing the order of Gi) then q divides
the order n of G. For there is some power qa of q such that
K < K(ζqa) = K(ζd) for a divisor d of n. (Otherwise, using the
remarks preceding the theorem, KGi would be decomposable.) Thus
K < Q(ζt) = K(ζqa) = K(ζd), where t = [m, qa] = [m, d], the least
common multiple. Since qa does not divide m, we have that q
divides d.

Suppose now that our condition fails, and let p19 , pr be the
distinct prime divisors of n. Then for each i, there is a positive
integer wf such that ptι does not divide m and C(pp) is a subgroup
of every nontrivial cyclic direct factor of the prSylow subgroup of G.
Choose each n{ to be the smallest such integer. We may assume
without loss of generality that pp*1 divides m.

In (2), think of KG and each KGi being expressed as in (1).
Now delete all fields K(ζd) for which ([m, d], n) exceeds pΐ1 pn

r

τ.
On the left of (2) we have left the group algebra of a subgroup of
G whose ivSylow subgroup is of type (p?*, •• ,p?ί) On the right,
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after possibly some further decomposition, we have a like situation.
We may thus assume that for each ί, the p rSylow subgroup Pi of
G is of type (p?% •••,#•*)» with say kt factors; and for each G3 , the
Pi-Sylow subgroup P/ of Gό is either trivial or of type {pt\ , #**),
with say kid factors. Take ki3- = 0 in case P/ = 1.

Using (1), we have that

( 3 ) KP.-a.Kφb.Kiζ,),

where d = pp, a,, = pi**-1***, and

h = (p**k* - pp-vyδi δt = deg (K(ζd)/K) .

Similarly

( 4 ) KP/£Za

where aiό = ̂ n«-1 ) f cίi and

For some pair α, /S we have Λα > kaβ. Otherwise some G3 would
be isomorphic to G.

Now use formulas (3) and (4) and the fact that K(A x B) =
KA (g) KB to count the number of summands on each side of (2)
that are isomorphic to K. We obtain

( 5 ) Π pfi-^i = Σ Π p?*-1** .
i j ii=x

Let / = pla; use (3) and (4) to count all summands on each side
of (2) isomorphic to K(ζf). Then add the terms in (5) to each side of
the resulting equation, getting

( 6 ) Π pίw<-1)fc*.p;«fc« = Σ Π pfi-Vii-pi*""*.
3=1

Multiplying (5) by Πi=iP<S w e have

( 7 ) Π Pniiki = Σ Π p?ikV + ki-kH .
i-i i=i t=i

Multiplying (6) by I L ^ P S we have

(8) Π P7iki - Σ Π pVkii-P>k°t.

But ka > kaβi so that (7) and (8) cannot both hold. This con-
tradiction completes the proof.
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COROLLARY 3.2. Let G be a finite abelian group such that
QG = QS for a nongroup S. Then C(2) is a direct factor of G.

REMARK 3.3. Let S be a commutative semigroup of order 2m, where
m is odd. If QS ~ QG for a group G, then either S = G or S is the
disjoint union of two copies of the group H, where G = C(2) x H.

Proof. Suppose that QS ~ QG. Let G = C(2) x H, where H has
order m. According to [8], QG completely determines G. Hence if
S is a group, then S ~ G.

QG has two simple direct summands isomorphic to Q. Thus if
S is not a group, QS ~ QGX 0 QG2 for groups Gx and G2. It is clear
that the orders of Gx and G2 have the same prime divisors, and
those are the prime divisors of m. Let p be one of these primes,
and let P, P1 and P2 be the p-Sylow subgroups of H, Gx and G2,
respectively. Then we have

( 9 ) Q(C(2) x P) ~ QPX 0 QP* .

This leads to an equation 2pa = pb + p°, which implies b = c = α.
Thus P, Pi and P2 all have the same order pa. By induction on the
exponent pe of P we see that P = P, = P2. If e = 1, then P, Px and
P2 are all elementary abelian of the same order, hence isomorphic.
Suppose e > 1. Deleting direct summands Q(ζpe) from both sides of
(9) we have

Q(C(2) x P') = QP; 0 QPl ,

where P ' = {x e P: xpe = 1}. As before, P', P/ and P2' have the same
order; and by induction P ' ^ P[ ~ P 2. From (9), and the fact that
P, Px and P2 have the same order, the three groups have the same
number of elements of order pe. Thus P = Pι~ P2.

Theorem 3.1 fails for arbitrary finite extensions of Q. For let
K = Q(VΊΓ), and let G = C(12). Notice that

K(ζ3) = K(ζ4) = K(ζ6) = K(ζ12) =

Using this we see that

KG ^ KG, 0 KG, ,

where Gx = C(3) and G2 - C(3) x C(3).
Theorem 3.1 also fails for the prime fields GF(p), p a prime.

To see this, let K = GF(5). Then KC(8) ~ KC(2) 0 KC(6). Here
K(ζ4) = K and K(ζ3) = K(Q =

THEOREM 3.4. Let K be a field of characteristic p Φ 0; let
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G = P x H, where P is a p-group and H is an abelian group of
order prime to p. Then KG = KS for a nongroup S if and only
if KH ~ KT for a nongroup T.

Proof. If KH ~ KT, and if T is a nongroup, then S = P x T
is a nongroup, and KG = KS.

Conversely, suppose that S is a nongroup and that R = KS = KG.
Let KH = Kx φ φ Kr for fields Kt. Then R = Rγ φ . . φ Rky

where Rt = ϋ^ ® KP. The R{ are the indecomposable components
of R. As a ring, i^ is isomorphic with K{P. Thus every element
in Ri is either nilpotent or a unit. Let 7ΓX, - *,πk be the projections
of R onto the #, . Let X = {1, , A}.

Let Zi = {i e X: π<(s) is a unit in ^ for all s e S}. Then X,Φ 0;
otherwise the element sγ-s2 sn, the product of all members of S,
would be the zero element of R. Let Gλ = {s e S: πd(s) = 0 for j 1 g XJ.
Then Gx is a group, KGλ is an ideal in R, and ift^ = Σ R* (ί e -Xi).
Also β - ίΓGi φ Xoϊ/, where U = {p^s): seS,s£ GJ; ft = Σ ^ ( i ί -Xi).
Fix i g X :, and choose ί e S such that πά(t) is a unit in Rό. There
is such an element; for if not, Rd would be nilpotent. Let X2 =
{i e X: i & X1 and π^t) is a unit in iϋj . Suppose X ^ JCj. U X2. Let
^ = Σ Ki (i e X2) and ft = Σ ^i ( i ί ^ i U X2), and let Ĝ  = {η(s): sgG1

and ft(s) = 0} and G'z = {ft(s): s g Gx and ρ2(s) φ 0} U {0}. Note that

We have R = KG, φ iΓ0G2 φ

(i G X2), and if0G^ = Σ Ri N ί U X2).
We continue this procedure until we have

R = KG, φ iΓ0G2 φ φ K,G'm ,

with m > 1, where the set X is partitioned into disjoint subsets
Xί9 , Xm; K0G'q = Σ # i 0" e x , ) a n d f o r e a c h Q ^ !» e i t h e r Gί - G, U 0
for a group Gg, or KjG'q = Rό for some j , and Ĝ  is not a group with
zero. Suppose that the former holds for q = 1, •••, w, and that Xq

is a singleton for q > w. Let JV be the radical of R, and for each
g, let Nq be the radical of K0Gq. If q > w, then KQGq/Ng = K. For
since ϋΓ0G^ = R3 has no nontrivial idempotents, it follows that Gq has
at most two idempotents. If Gq has only one idempotent, then Rj is
nilpotent. This is not the case. Thus Gq has exactly two idempotents,
the 0 and 1 in R3. Thus Gq is the disjoint union of a nilpotent semi-
group Z and a group V. Clearly K0ZczNq. Thus there is a homo-
morphism μ of KV ~ KQGq/K0Z onto K3 ~ JS/Rad Rό. The normalized
units of finite order in K3 0 ίΓP have order a power of p. Thus F is a
p-group (perhaps trivial). Thus the kernel of μ is the radical of
KV and K5 s iΓ.
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According to Deskins [4], R/N = KH and KGJNq = KHq for
q ^ w, where Hq is the p-complement of Gq. Thus

'^® KHW 0 K® 0 K .

This completes the proof.

COROLLARY 3.5. Let S be a commutative semigroup of order n,
and let K — GF(p), where p is the smallest prime dividing n. If
KS = KG for a group G, then S is a group.

COROLLARY 3.6. Let K = GF(2). If S is a commutative semi-
group, and if KS ~ KG for some group G, then S is a group.

Note that GF(2) and transcendental extensions of GF(2) are the
only fields K for which Corollary 3.6 will hold. For if K contains
GF(2t), and if G is the cyclic group of order 2* - 1, then KG = Σ%-
If K has characteristic Φ2, then KC(2) = K(&K.

THEOREM 3.7. Let K be the real number field, and let S be a
commutative nongroup of order n. Then there is a group G such
that KS = KG if and only if the following conditions hold:

( i ) n is even;
(ii) S is the disjoint union of group Gu •••, Gm;
(iii) If 2H is the number of elements x in Gι such that x2 = 1,

then ΣS=i 2ei is a power of 2 dividing n.

Proof. The necessity of the conditions follows from the fact that
if G is an abelian group, then GK ~ aK 0 bL, where a — 1 is the
number of elements of G of order 2, and L is the complex field.

Conversely, suppose the conditions hold, and let Σ&i ^H — 2e.
Let n = 2e-2f-m, with m odd; let G = C(2) x x C(2) x C(2/+1) x H,
where there are e — 1 factors C(2) and H is any abelian group of
order m. Then clearly KS = KG.

4* Semilattices* A semigroup in which every element is idem-
potent is called a band. A commutative band is a (lower) semilattice
under the ordering: e ^ / if e = ef. Conversely, any semilattice is a
commutative band under the operation e f = e A f.

If S is a semilattice, and if R is a commutative ring with identity,
then the semigroup ring RS has an identity. ([6, Th. 7.5]). Corre-
sponding to Theorem 5.27 in [5] we have

THEOREM 4.1. Let S be a semilattice of order n. Then RS is
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the direct sum of n copies of R and R0S is the direct sum ofn — 1
copies of R.

Proof. The theorem is trivial for n = 1. If n = 2, and S = {z, e},
with ez = ze = z, then R0S = Re and i?S = Rz 0 fl(β — «), so the theorem
holds.

Suppose that w > 2 and proceed inductively. Choose f e S such
that / is neither the zero of S nor the identity of S, in case there
is one. Let J = Sf. Then ES - (RS)fφRS(l - /) = RJ®R0(S/J).
Since both J and S/J are semilattices of order less than n, we have
by induction that RJ and RQ(S/J) are direct sums of copies of R, and
hence so is RS.

Similarly RQS ~ RQJ 0 RQ(S/J) and induction gives R0S as a sum
of copies of R.

As a partial converse we have

THEOREM 4.2. Let S be a semigroup of order n, and let R be
an integral domain such that no prime p <̂  n is a unit in R. If
RS is the direct sum of copies of R, then S is a semilattice.

Proof. Let RS = R 0 0 R, and let K be the quotient field
of R. Then KS = K 0 - - 0 K, so that KS is semisimple. Hence
by [2, Cor. 5.15] S is a semisimple commutative semigroup. Thus S
has a principal series ώ < St < S2 < < Sk = S such that the kernel
Si = Gί is a group and SJS^ is a group with zero Gζ U 0 for i =
2, ...,&. Thus RS ~ RG, 0 0 #(?,. By [3] each RG{ is inde-
composable; but by hypothesis each is the direct sum of copies of R.
Thus each G{ is trivial, so that S is a semilattice.

Using Theorem 4.2 and the results of § 3, we have

PROPOSITION 4.3. Let S be a semilattice, let T be a commutative
semigroup of the same order, and let if be a field of characteristic 0.
Then KS = KT if and only if T is the disjoint union of groups
Gi U \J Gk such that if G{ has exponent mί? then K contains the
m r t h roots of unity.

Using Theorem 4.2 and the fact that for a band S, KS is semi-
simple if and only if S is commutative [2, p. 169], we see

PROPOSITION 4.4. Let S be a band, and let G be a group of the
same order n. Let if be a field whose characteristic does not divide n.
Then KS = KG if and only if S and G are commutative and F contains
the m-th roots of unity, where m is the exponent of G.

Let R = GF{2). Using the fact that RS ~ R 0 @R for a
finite semilattice S, we may derive the following well known result:
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Every semilattice S of order n can be embedded in the lattice 2n <
subsets of the set {1,2, • ••,?&}. In fact, S can be considered as
linearly independent subset of 2%, where 2n is viewed as R x x 1

The author thanks W. E. Deskins for suggesting this problem.
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