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THE RATIONAL HOMOTOPY OF A WEDGE

ALLAN CLARK AND LARRY SMITH

The rational homotopy of a wedge J v Y is given in terms
of the rational homotopy of X and Y.

Let X be a pathwise connected and simply connected space with
base point ez, which is a neighborhood deformation retract in X.
(See [5].) We shall say that X is a nicely pointed space. The
rational homotopy of X is the connected graded Lie algebra over
Q, £fϊ(X), defined by setting j ^ ( X ) - πn+1(X, ex) <g) Q, with the Lie
product induced by the Whitehead product on homotopy groups.

The purpose of this note is to show that the functor Sf* preserves
coproducts. More precisely we show:

THEOREM 1, Let X and Y be nicely pointed spaces which are
pathwise connected and simply connected and whose rational homotopy
has finite type. Then there is a natural isomorphism of graded Lie
algebras

φ{X, Y): 3f*{X V Y) ~ J^*(X) JL

where _L denotes the coproduct in the category of connected graded
Lie algebras over Q (defined below).

The result follows easily from the natural isomorphism of £
with H*(ΩX; Q), the Lie algebra of primitive elements of the Hopf
algebra H*(ΩX; Q). This isomorphism was discovered by Cartan and
Serre; a revised statement [4, page 263] is due to John Moore to
whom we are indebted for many useful conversations. Due to this
isomorphism we may view ^% as the composition of four functors:
£f* = ^H^^ where

1. ^ is the functor which assigns to a pathwise and simply
connected space the connected differential graded Q-coalgebra formed
by its simply connected singular chain complex over Q;

2. ^ is the cobar construction;
3. H is the homology functor;
4. & is the functor which assigns to a connected graded Hopf

algebra over Q the associated connected graded Lie algebra of primitive
elements.

The idea of the proof is to show that each of the required
categories has coproducts preserved by the four functors involved.

This result has long been a part of the folk literature, but to
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the best of our knowledge no proof appears in print. This result
extends and compliments results of Hilton, and Porter on the integral
homotopy of a wedge.

1* Coproducts* A category <& has coproducts if to every pair
of objects A and B of ^ , there is assigned a diagram in &

with the property that for any morphisms /*\ A —> C and g:B~*C of
^ , there is a unique morphism/ J_ g: A J_ B—>C such that

c
is a diagram in ^ . ("Diagram in ^ " means a commutative diagram
of objects and morphisms of <£>.)

If ± is a coproduct on <g% then as an immediate consequence
of the definition, there are natural ^-isomorphisms i 1 ΰ ^ ΰ l i
and A ± (B ± C) ^ (A ± B) ± C.

EXAMPLE 1. The wedge V or one point union is a coproduct on
the category of pointed spaces ^ ^ .

In the remaining examples K will be a commutative ring with
unit.

EXAMPLE 2. cέ? — the category of connected graded K-modules.
For each object A of, we have Ao ^ K. The coproduct is defined by
(A JL B)n = An@Bn for n > 0.

EXAMPLE 3. <& = the category of connected graded K-algebras.1

For A e c<^ we define a graded if-module A by An = An for ^ > 0
and Λ = 0._ Then T(A) = K@ Σn=i ( 4 ® (w) ® l ) , ίfeβ ίe^sor
algebra of A, is an object of ^ and there is a canonical homomor-
phism T(A) —> A in ^ , the kernel of which we denote I (A). A
coproduct is defined by A 1 B = Γ(A φΰ)/(/(A), /(5)) where the
denominator denotes the ideal of Γ ( A φ 5) generated by I(A) and
I(B). It is routine to verify that 1 is indeed a coproduct. A simple
diagram chase shows that T(A) _L T(B) = Γ ( i φ B ) .

EXAMPLE 4. ^ = ί/̂ β category of connected graded Lie algebras
over Q. Each 4 e ^ is a graded iϊΓ-module with Ao = 0. We set

1 The word 'algebra' means 'associative algebra with unit'.
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U(A) — T(A)/J where J is the ideal generated by all elements x ® y —
( — l)pqy §§ x — [x, y] with xeAp, yeAq. Then U(A) is a connected
graded Q-algebra, called the universal enveloping algebra of A. There
is a canonical morphism A —* U(A) such that if /*\ A —* C is a map
of A into a connected graded Q-algebra, such that /\x, y] — [fx, /y\,
then there is a unique map of algebras U(/)\ U(A)—+C such that
the following diagram is commutative:

A > U(A)

To form the coproduct _L in ^ we begin by forming U(A) _L U(B)
as in Example 2. We define A _L B to be the sub Lie algebra of (the
associated Lie algebra of) U(A) _L U(B) generated by the images of
A and B. Thus we have a diagram

A > 4 i ΰ < > B

U(A) > U(A) 1 U(B) < U(B)

It is routine to check the universal property. We note that unique-
ness implies U(A _L B) w U(A) _]_ U(B) as graded Q-algebras.

EXAMPLE 5. ^ — the category of connected graded Hopf algebras
over K. Since each object of ^ is a graded connected iΓ-algebra,
we may form the coproduct as in Example 2. Then we need to check
that A _L B is still a Hopf algebra. In the category of graded
connected algebras we have the diagram:

A—ii—> ALB ^B—B

ΔA\ \ΔALB \ΔB

%A

In other words ΔALB — (iA 0 iA)ΔA L (iB ® ^B)ΔB is a morphism of graded
connected algebras and A i_ B is a Hopf algebra. The required
universal property is easily verified.

EXAMPLE 6. ^ = £/ιβ category of connected differential graded
K-coalgebras. The coproduct here is defined as in Example 2 it is
only necessary to check that the differential and comultiplication
behave well.
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EXAMPLE 7. ^ = the category of connected differential graded
K-algebras. The coproduct is defined as in Example 3, and the
differential extends naturally.

EXAMPLE 8. ^ = the category of connected differential graded
Hopf algebras over K. The coproduct is defined as in Example 5 and
the differential extends naturally.

2* Functors which preserve coproducts* Let J^"*1 denote the
category of nicely pointed 1-connected spaces. Let ^X for X e ^ * 1

denote the normalized singular chains of X with all edges at the
base point ex. In other words ^X = CN(E2(X, ex)), the normalized
chain complex of E2(X, ez), the second Eilenberg subcomplex. [3; p.
430.] Then ^ is a functor with range the category of 1-connected
differential graded coalgebras over Z, which we denote CιDGCO. c^
does not preserve coproducts. However there is a diagram in CιDGCO:

ί f(X V Y)

where /* and j? are induced by the inclusions into X \J Y. An
elementary argument shows that / _L j> induces a homology isomor-
phism of coalgebras.

The cobar construction ^ is a functor with domain CιDGCO
and range C^DGAl, the category of connected differential graded
algebras. We want to show that

2.1. PROPOSITION. J?~ preserves coproducts.

Proof. Let C, and C2 belong to C'DGCO. Then J ^ induces
maps ^(Ci) —> ̂ ~(CX ± C2). Consequently we have in C°DGAl:

γ L C2)

Let % denote the functors which forget the differentials in various
categories. Then ^{C\ = T(Q) so that

φf. T(Cχ) 1 T{Cn) >T(C l sφC 2 ί)

is an isomorphism. Since # is faithful, φ is an isomorphism.
Next we restrict our attention to algebras over the rational field
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Q and consider the homology functor H*: C°DGAl/Q-> C°GAl/Q, the
category of connected graded Q-algebras.

2.2. PROPOSITION. H*(A LB)** H*(A) J_ H*{B).

Proof. We can readily construct a diagram in C°DGAl/Q

H(A)

/ \

H(A) 1 H(B) -?-> H(A 1 B) .
\ /

\ /
H(B)

The additive isomorphisms
• and

H(A) 1 H{B)

= (H(A)

together with the Kunneth Theorem implies that φ is an isomorphism.

3. Proof of Theorem I* In the notation above we have iso-
morphisms of graded Q-algebras

JL * ( ) *(

- ^ H^^i^X ±<έ?Y))-^-> H*(J^^(X V Y)) .

By a theorem of Adams, for any path wise and simply connected
space Z, there is a natural isomorphism of algebras, H*(ΩZ; Q) —>
H^(^^Z). Consequently the morphism of Hopf algebras

H*(ΩX; Q) ± H*(ΩY; Q) > H*(Ω{X V Y); Q)

is an isomorphism of algebras, and hence of Hopf algebras. Moore's
statement says H*(ΩX; Q) = U(JZ%(X)) so we have

V Y))

and since PU is the identity, £f*(X) ± £f*{Y) ** ̂ AX V Y).

REMARK. It is apparent from the above argument and the
theorem of Adams that

H*(ΩX; k) 1 H*(ΩY; k) > H*{Ω{X V Y); k)

is an isomorphism of Hopf algebras for any field k.
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This has been proved by Berstein in [2] by slightly differei
methods.

REMARK. The calculation of the Poincare Series of the coprodu<
of two Lie algebras is a difficult number theoretic problem involvin
Witt numbers.
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