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A NOTE ON PARTIALLY ORDERED COMPACTA

J. H. CARRUTH

In this note it is shown that each compact metric space
endowed with a closed partial order admits an equivalent radially
convex metric. It is also shown that certain functions from
subsets of a partially ordered compactum into the Hubert Cube
are extendable to order preserving homeomorphisms on the whole
space.

The notion of a radially convex metric on a partially ordered space
was introduced by Kock and McAuley in 1964 [l]. A metric d is
radially convex with respect to a partial order Γ on X if (x,y)eT,
{y,z)eY, and y Φ z imply d(x, y) < d(x, z). The natural question "Does
each partially ordered metric space admit a radially convex metric ?"
arises from [1] and [2]. This question is answered in the affirmative
for compact spaces. The topological closure of a set A c X will be
denoted by A*. The symbol • will denote the empty set. If Γ is
a partial order on X and A c X then

L(A) = {x I (x, a) eΓ for some a e A}

and

M(A) = {x I (α, x) eΓ for some aeA}.

THEOREM 1. If Γ is a closed partial order on the compact metric
space X, then there exists an equivalent metric on X which is radially
convex with respect to Γ.

Proof. Let ^ be a countable base for the topology of X and let
^ be the collection of finite unions of members of 3^. Then <%f is
countable as is

& = {(17, V) I U, Ve <%f and M(U*) ΓΊ L(V*) = Π} .

Let {(Ui9 Vi) I i = 1, 2, •} be an enumeration of ^ . For each i, the
function f defined by

fl if zeU?
UZ) (0 if zeVr

is continuous and order preserving. Hence, by a result of Nachbin
[3], fi is extendable to a continuous order preserving function ^ from
X into [0,1]. Let Φ be the product function Pg{ which takes Xinto
the Hubert Cube H. Again using results of [3], it is easy to verify
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that (x, y) e (X x X)\Γ if and only if there exists an integer i such that
fi(χ) > f%(y) It follows that Φ is an order preserving homeomorphism
from X into H whose inverse is also order preserving. Hence, we may
assume that X is a subspace of H and that Γ is the natural partial
order on H restricted to X. It is obvious that the usual metric on
H is radially convex with respect to the natural partial order. It is
also obvious that radial convexity is hereditary and the proof is com-
plete.

We note that included in the proof of Theorem 1 is the fact that
the Hubert Cube with the natural partial order is a universal partially
ordered compactum in the imbedding sense.

If X is partially ordered by Γ, the element x of X is maximal
(minimal) if M(x) = {x)(L(x) = {x}). The element {rj of the Hubert
Cube H will be called an interior point of H if 0 < r{ < 1 for each i.

THEOREM 2. Let Γ be a closed partial order on the compact
metric space X. Suppose x is maximal, z is minimal, x Φ z, and
Y — {y{: i — 1, 2, , n) is a finite chain (with respect to Γ) of points
of X which are neither maximal nor minimal. Let h be a one-to-
one order preserving function from Y into H such that h(y^ is an
interior point of H for each i. Then, there exists an order preserv-
ing homeomorphism Φ taking X into H whose restriction to Y is h
and with the property that Φ(x)ι = 1 and Φ(z)i = 0 for each integer i.

Proof. Let $̂ ~ be a countable base for the topology of X and
let ^/ be the collection of finite union of members of 5^". Assume
that yι <yi+1 for each i = 1, 2, , n — 1. Let έ%? be the collection
of n + 2 tuples (U, Vly , Vn9 W) satisfying the following properties:

( i ) U, Vι Vn, W G ̂ /
(ii) The sets M(U*), L(V,*) n M(V^), , L(V:) Π M(V*), and

L(W*) are pairwise disjoint.
(iii) x G U, y{ G Vi for each i, and z e W.

For each (U, Vu , Vn, W)i e ^ , define /, on

C7*U(U{F/:i = 1,2, --.,*&}) U W*

by

(Ί if ae [7*

f(a) = h(yj)i if ae V*

0 if aeW*.

As in the proof of Theorem 1, we extend /; to g{ taking X into [0,1]
and let Φ be the product of the g/s.

It is not difficult to show that the functions {#J separate points.
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This completes the proof.

Note. The inverse of the homeomorphism Φ in Theorem 2 need

not be order preserving. In fact, if L(x) Φ X, Φ~ι is not order pre-

serving.

The importance of the interiority of the points h(yi) should not

be overlooked. Indeed, if h(yi) is not an interior point of H for some

i, the conclusion of Theorem 2 may fail to hold. The following ex-

ample exhibits this fact.

EXAMPLE. Let X be the space consisting of the unit circle in

the plane along with the arc from (1,0) to (2,0). Define Γ by

((α, 6), (c, d)) e Γ if and only i f α g c and 0 ^ b . d. Then, Γ is a closed

partial order on the compact metric space X. Let z = ( — 1,0), y =

(1, 0), and x = (2, 0). Now let

_ (1 if i = 1
Ti ~ (0 if i Φ 1 .

No order preserving function 0 satisfying ^(z); = 0, Φ(y)i = r f, and

{̂ (x); = 1 for each i can be a homeomorphism.
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