EQUIVALENT DECOMPOSITION OF R^{3}

Steve Armentrout, Lloyd L. Lininger
and Donald V. Meyer

If G is any monotone decomposition of R^{3}, let H_{G} denote the union of the nondegenerate elements of G, and let P_{G} denote the projection map from R^{3} onto the decomposition space R^{3} / G associated with G. Suppose that F and G are monotone decompositions of R^{3} such that each of $\mathbf{C l}\left(P_{F}\left[H_{F}\right]\right)$ and $\mathrm{Cl}\left(P_{G}\left[H_{G}\right]\right)$ is compact and 0 -dimensional. Then F and G are equivalent decompositions of R^{3} if and only if there is a homeomorphism h from R^{3} / F onto R^{3} / G such that

$$
h\left[\mathbf{C l}\left(P_{F}\left[H_{F}\right]\right)\right]=\mathbf{C l}\left(P_{G}\left[H_{G}\right]\right) .
$$

A necessary and sufficient condition for two decompositions to be equivalent is given. It is shown that there is a decomposition with only a countable number of nondegenerate elements which is equivalent to the dogbone decomposition, and several related results are obtained.

By introducing the idea of equivalent decompositions of R^{3}, we are able to analyze in a precise way, a process that seems quite natural in the study of monotone decompositions of R^{3} of the type we are considering. If F is a monotone decomposition of R^{3}, the stipulation that $\mathrm{Cl} P_{F}\left[H_{F}\right]$ be a compact 0 -dimensional set is equivalent to the following condition: There is a sequence $M_{1}, M_{2}, M_{3}, \cdots$ of compact 3-manifolds-with-boundary in R^{3} such that for each positive integer $j, M_{j+1} \subset \operatorname{Int} M_{j}$ and g is a nondegenerate element of F if and only if g is a nondegenerate component of $\bigcap_{j=1}^{\infty} M_{j}$.

A process one finds useful in certain situations is one that involves a sequence $f_{1}, f_{2}, f_{3}, \cdots$ of homeomorphisms from R^{3} onto R^{3} such that (1) f_{1} shrinks or stretches M_{1}, (2) f_{2} agrees with f_{1} on $R^{3}-M_{1}$ and shrinks or stretches M_{2}, (3) f_{3} agrees with f_{2} on $R^{3}-M_{2}$ and shrinks or stretches M_{3}, and so on. The "new" decomposition has as its nondegenerate elements the nondegenerate components of

$$
f_{1}\left[M_{1}\right] \cap f_{2}\left[M_{2}\right] \cap f_{3}\left[M_{3}\right] \cap \cdots
$$

We are able to show that under fairly mild restrictions, there exists such a sequence of homeomorphisms if and only if the original decomposition and the "new" one are equivalent in the sense of this paper.

We indicate some examples that illustrate these concepts. The first two examples give instances of previous applications of the ideas of this paper. The remaining ones are described in detail in the
present paper.
Example 1. Meyer proved [10] that if C is a 3 -cell in R^{3} such that $\mathrm{Bd} C$ is locally polyhedral except at points of an arc α on $\mathrm{Bd} C$, then R^{3} / C is homeomorphic to R^{3} / α.

Example 2. Bing described [6] a 2 -sphere S in R^{3} such that S is locally wild at each point of S and S bounds a 3 -cell B in R^{3}. Armentrout proved [1] that there is a 3-cell B^{\prime} in R^{3} such that $\mathrm{Bd} B^{\prime}$ is locally polyhedral except on a Cantor set on $\mathrm{Bd} B^{\prime}$ and R^{3} / B is homeomorphic to R^{3} / B^{\prime}.

Example 3. Suppose G is a monotone decomposition of R^{3} such that there is a sequence $M_{1}, M_{2}, M_{3}, \cdots$ of compact 3-manifolds-withboundary as described above. Suppose further that each component of each M_{i} is a 3 -cell-with-handles. Then G is equivalent to a decomposition into 1 -dimensional continua and one-point sets; see $\S 7$.

Example 4. Bing's dogbone decomposition [5] is equivalent to a decomposition into one-point sets and at most countably many nondegenerate continua; see $\S 4$.

Example 5. In §3 of [7], Bing described a point-like decomposition G of R^{3} with only countably many nondegenerate elements such that R^{3} / G is not homeomorphic to R^{3}. There exists a decomposition F of R^{3} such that F is equivalent to G and F has uncountably many nondegenerate elements; see $\S 5$.
2. Notation and terminology. The statement that G is a monotone decomposition of R^{3} means that G is an upper semi-continuous decomposition of R^{3} into compact continua. A compact continuum K in R^{3} is point-like if and only if $R^{3}-K$ is homeomorphic to the complement, in R^{3}, of a one-point set. A set M in R^{3} is cellular if and only if there is a sequence $C_{1}, C_{2}, C_{3}, \cdots$ of 3 -cells in R^{3} such that for each $i, C_{i+1} \subset \operatorname{Int} C_{i}$ and $M=\bigcap_{i=1}^{\infty} C_{i}$. For compact continua in R^{3}, "point-like" and "cellular" are equivalent [12]. The statement that G is a point-like decomposition of R^{3} means that G is a monotone decomposition of R^{3} into point-like sets.

We shal use the notation and terminology introduced in the introduction.

If M is a 3 -manifold-with-boundary, M need not be connected, and $\mathrm{Bd} M$ and Int M denote the boundary and interior, respectively, of M.

The statement that the subset K of R^{3} is a 3 -cell-with-handles means that there is a finite collection C, C_{1}, C_{2}, \cdots, and C_{n} of 3-cells such that if $i=1,2, \cdots$, or $n, C_{i} \cap C$ is the union of two disjoint discs, and $C_{i} \cap C=\left(\mathrm{Bd} C_{i}\right) \cap(\mathrm{Bd} C)$, and if i and j are distinct, C_{i} and C_{j} are disjoint. Such a collection C, C_{1}, C_{2}, \cdots, and C_{n} of 3-cells will be called a standard decomposition of K.

We shall use Cl to denote topological closure. If X is a subset of R^{3} and ε is a positive number, then $V(X, \varepsilon)$ denotes the ε-neighborhood of X in R^{3}.

Suppose G is a monotone decomposition of R^{3}. Then $M_{1}, M_{2}, M_{3}, \ldots$ is a defining sequence for G if and only if $M_{1}, M_{2}, M_{3}, \ldots$ is a sequence such that (1) for each positive integer i, M_{i} is a compact 3 -manifold-with-boundary such that $M_{i+1} \subset \operatorname{Int} M_{i}$ and (2) g is a nondegenerate element of G if and only if g is a nondegenerate component of $\bigcap_{i=1}^{\infty} M_{i}$. G has a defining sequence if and only if $\mathrm{Cl} P_{G}\left[H_{G}\right]$ is a compact 0-dimensional set. G is definable by 3-cells-with-handles if and only if G has a defining sequence $M_{1}, M_{2}, M_{3}, \ldots$ such that for each positive integer i, each component of M_{i} is a 3 -cell-with-handles. G is a toroidal decomposition of R^{3} if and only if G has a defining sequence $M_{1}, M_{2}, M_{3}, \cdots$ such that for each positive integer i, each component of M_{i} is a solid torus (3-cell with one handle).
3. The existence of sequences of homeomorphisms. In this section we establish, under fairly weak conditions on the decompositions involved, the equivalence of two decompositions with the existence of a sequence of homeomorphisms $h_{1}, h_{2}, h_{3}, \cdots$ from R^{3} to R^{3} as indicated in the introduction.

A compact continuum M in R^{3} is semi-cellular if and only if for each open set U in R^{3} containing M, there is an open set V lying in U and containing M and such that each simple closed curve in V is null-homotopic in U. Every point-like compact continuum in R^{3} is semi-cellular, since each such set is cellular. Each compact absolute retract in R^{3} is semi-cellular. Since there exist noncellular arcs in R^{3}, the two categories above are not identical. An example of a semi-cellular compact continuum in R^{3} neither cellular nor an absolute retract may be obtained as follows: Let $T_{1}, T_{2}, T_{3}, \cdots$ be a sequence of solid tori (3-cells with one handle) in R^{3} such that for each i, $T_{i+1} \subset$ Int T_{i}, T_{2} lies in T_{1} as shown in Figure 1, T_{3} lies in T_{2} as T_{2} lies in T_{1}, and for each i, T_{i+1} lies in T_{i} as T_{i} lies in T_{i-1}. Then $\bigcap_{i=1}^{\infty} T_{i}$ is a continuum with the desired properties.

Lemma 1. Suppose that F and G are monotone decompositions of R^{3} such that $\mathrm{Cl} P_{F}\left[H_{F}\right]$ and $\mathrm{Cl} P_{G}\left[H_{G}\right]$ are compact 0-dimensional

Figure 1.
sets. Suppose that M is a compact polyhedral 3-manifold-withboundary, each component of which is a 3-cell-with-handles, such that $\mathrm{Cl} H_{F} \subset \operatorname{Int} M$. Suppose that each element of G is semi-cellular. Suppose that there is a homeomorphism h from R^{3} / F onto R^{3} / G such that $h\left[\mathrm{Cl} P_{F}\left[H_{F}\right]\right]=\mathrm{Cl} P_{G}\left[H_{G}\right]$. Let φ be the function from $R^{3}-\mathrm{Cl} H_{F}$ onto $R^{3}-\mathrm{Cl} H_{G}$ such that if $x \in\left(R^{3}-\mathrm{Cl} H_{F}\right), \varphi(x)=P_{G}^{-1} h P_{F}(x)$. Then there is a homeomorphism from R^{3} onto R^{3} such that
(1) if $x \in R^{3}-\operatorname{Int} M, f(x)=\varphi(x)$ and
(2) $f[M]=P_{G}^{-1} h P_{F}[M]$, and each component of $f[M]$ is a 3-cell-with-handles.

Proof. Let M_{1}, M_{2}, \cdots, and M_{n} be the components of M. If $i=1,2, \cdots$, or $n, \varphi \mid \operatorname{Bd} M_{i}$ is a homeomorphism, and thus $\varphi\left[\operatorname{Bd} M_{i}\right]$ is a compact tame 2-manifold-with-boundary and $\varphi\left[\operatorname{Bd} M_{i}\right]$ bounds a compact 3-manifold-with-boundary N_{i} in R^{3}. Since $\bigcup_{i=1}^{n} \mathrm{Bd} N_{i}$ is the boundary of the connected 3 -manifold-with-boundary $\varphi\left[R^{3}\right.$ - Int $\left.M\right]$, the sets N_{1}, N_{2}, \cdots, and N_{n} are mutually disjoint. Let N denote $\bigcup_{i=1}^{n} N_{i}$. It is not hard to see that N contains $\mathrm{Cl} H_{G}, \varphi$ takes $R^{3}-\operatorname{Int} M$ homeomorphically onto $R^{3}-\operatorname{Int} N$, and $\varphi[\operatorname{Bd} M]=\operatorname{Bd} N$. Therefore, in order to describe f, it is sufficient to construct, for each i, an extension of $\varphi \mid \operatorname{Bd} M_{i}$ to M_{i}.

Suppose then that $i=1,2, \cdots$, or n. Since M_{i} is a 3 -cell-with-
handles, there is a finite set $\left\{D_{i 1}, D_{i 2}, \cdots, D_{i m_{i}}\right\}$ of mutually disjoint polyhedral discs such that (1) if $j=1,2, \cdots$, or $m_{i}, \operatorname{Bd} D_{i j} \subset \operatorname{Bd} M_{i}$ and Int $D_{i j} \subset \operatorname{Int} M_{i}$ and (2) the closures of the components of

$$
M-\bigcup_{i=1}^{m_{i}} D_{i j}, \quad C_{i 1}, C_{i 2}, \cdots, C_{i k_{i}}
$$

are polyhedral 3-cells such that if $t=1,2, \cdots$, or $k_{i}, \operatorname{Bd} C_{i t}$ is the union of a punctured disc $A_{i t}$ and certain ones of the discs $D_{i 1}, D_{i 2}, \cdots$, and $D_{i m_{i}}$ such that if $D_{i j}$ and $A_{i t}$ intersect, $D_{i j} \cap A_{i t}=\operatorname{Bd} D_{i j}$ and is also a boundary curve of $A_{i t}$. If $t=1,2, \cdots$, or k_{i}, let $S_{i t}$ denote $\mathrm{Bd} C_{i t}$.

If $j=1,2, \cdots$, or m_{i}, there is a polyhedral subdisc $D_{i j}^{\prime}$ of $D_{i j}$ such that $D_{i j}^{\prime} \subset \operatorname{Int} D_{i j}$ and $\left(\mathrm{Cl} H_{F}\right) \cap D_{i j} \subset \operatorname{Int} D_{i j}^{\prime}$. Let $B_{i j}$ denote the annulus $D_{i j}$ - Int $D_{i j}^{\prime}$.

Now $P_{G}^{-1} h P_{F}\left[\left(\mathrm{Cl} H_{F}\right) \cap \mathrm{D}_{i j}\right]$ is compact and lies in Int N_{i}. Since each element of G is semi-cellular, there exists a finite collection $\left\{\left(U_{1}, V_{1}\right),\left(U_{2}, V_{2}\right), \cdots,\left(U_{r}, V_{r}\right)\right\}$ of pairs of open sets in R^{3} such that
(1) if $t=1,2, \cdots$, or $r, V_{t} \subset U_{t}, U_{t} \subset \operatorname{Int} N_{i}$, each simple closed curve in V_{t} is null-homotopic in U_{t}, and V_{t} is a union of elements of G, and
(2) each element of G that intersects $P_{G}^{-1} h P_{F}\left[D_{i j}\right]$ lies in some one of V_{1}, V_{2}, \cdots, and V_{r}.

There is a triangulation T of $D_{i j}^{\prime}$ such that if σ is any 2 -simplex of T, then for some $t, P_{G}^{-1} h P_{F}[\sigma] \subset V_{t}$. Let $\sigma_{1}, \sigma_{2}, \cdots$, and σ_{q} denote the 2 -simplexes of T.

Let $\left\langle x_{10} x_{11} x_{12}\right\rangle$ denote the 2 -simplex σ_{1}. Let y_{10}, y_{11}, and y_{12} be points of $P_{G}^{-1} h P_{F}\left(x_{10}\right), P_{G}^{-1} h P_{F}\left(x_{11}\right)$, and $P_{G}^{-1} h P_{F}\left(x_{12}\right)$, respectively. Since G is monotone, $P_{G}^{-1} h P_{F}\left[\left\langle x_{10} x_{11}\right\rangle\right]$ is a compact continuum and near it we can choose a polygonal arc $\left\langle y_{10} y_{11}\right\rangle$ such that if σ is any 2 -simplex of T having $\left\langle x_{10} x_{11}\right\rangle$ as an edge and $P_{G}^{-1} h P_{F}\left[\left\langle x_{10} x_{11}\right\rangle\right] \subset V_{s}$, then $\left\langle y_{10} y_{11}\right\rangle \subset V_{s}$. It is to be true that if $\left\langle x_{10} x_{11}\right\rangle$ misses $\mathrm{Cl} H_{F}$ then $\left\langle y_{10} y_{11}\right\rangle=P_{G}^{-1} h P_{F}\left[\left\langle x_{10} x_{11}\right\rangle\right]$. In a similar manner we choose polygonal arcs $\left\langle y_{11} y_{12}\right\rangle$ and $\left\langle y_{10} y_{12}\right\rangle$. We adjust these slightly near $\mathrm{Cl} H_{G}$ so that if $\gamma_{1}=\left\langle y_{10} y_{11}\right\rangle \cup\left\langle y_{11} y_{12}\right\rangle \cup\left\langle y_{10} y_{12}\right\rangle$, then γ_{1} is a simple closed curve. Now for some $t_{1}, P_{G}^{-1} h P_{F}\left[\sigma_{1}\right] \subset V_{t_{1}}$ and by construction $\gamma_{1} \subset V_{t_{1}}$. Hence there is a polygonal singular disc τ_{1} in $U_{t_{1}}$ and bounded by γ_{1}.

Corresponding to σ_{2}, we construct γ_{2} and τ_{2} such that for some t_{1}, τ_{2} is a polyhedral singular disc in $U_{t_{1}}$. It is to be the case that if a vertex of σ_{2} belongs to σ_{1}, we make the same choice for that vertex of σ_{2} as was made for σ_{1}, and similarly if an edge of σ_{2} lies in σ_{1}. In addition, if either a vertex or edge of σ_{2} misses $\mathrm{Cl} H_{F}$, then for the corresponding set in γ_{2}, we use its image under φ and do not move it in adjusting to obtain γ_{2}.

Continue this process. There result polyhedral singular discs
$\tau_{1}, \tau_{2}, \cdots$, and τ_{q} in Int N_{i} such that $\bigcup_{t=1}^{q} \tau_{t}$ is a singular dise whose boundary is $\varphi\left[\operatorname{Bd} D_{i j}^{\prime}\right]$ and which lies in Int N_{i}. By applying Dehn's lemma [10] to the polyhedral singular disc $\varphi\left[B_{i j}\right] \cup\left(\bigcup_{t=1}^{q} \tau_{t}\right)$, we see that there is a disc $\Delta_{i j}^{\prime}$ such that $\mathrm{Bd} \Delta_{i j}^{\prime}=\varphi\left[\mathrm{Bd} D_{i j}\right]$ and Int $\Delta_{i j}^{\prime} \subset \operatorname{Int} N_{i}$.

By well-known techniques it may be shown that there exist mutually disjoint discs $\Delta_{i 1}, \Delta_{i 2}, \cdots$, and $\Delta_{i m_{1}}$ such that for each j, $\mathrm{Bd} \Delta_{i j}=\varphi\left[\mathrm{Bd} D_{i j}\right]$ and Int $\Delta_{i j} \subset \operatorname{Int} N_{i}$.

Recall that if $t=1,2, \cdots$, or $k_{i}, C_{i t}$ is a 3-cell contained in $M_{i}, S_{i t}=\operatorname{Bd} C_{i t}$, and $A_{i t}$ is the punctured disc $S_{i t}-\bigcup_{j=1}^{m_{i}}$ Int $D_{i j}$. It is clear that if $D_{i j_{1}}, D_{i j_{2}}, \cdots$, and $D_{i j_{w_{t}}}$ are those discs of $D_{i 1}, D_{i 2}, \cdots$, and $D_{i m_{i}}$ whose boundaries are contained in $A_{i t}$, then $\varphi\left[A_{i t}\right] \cup\left(\bigcup_{p=1}^{w_{t}} \Delta_{i j_{p}}\right)$ is a tame 2 -sphere $S_{i t}^{\prime}$.

We can easily show that if s and t are distinct, then int $S_{i t}^{\prime \prime}$ and int $S_{i s}^{\prime}$ are disjoint, where "int" denotes the interior, in E^{3}, of a 2 -sphere. Both int $S_{i t}^{\prime}$ and int $S_{i s}^{\prime}$ are contained in Int N_{i}. If $S_{i t}^{\prime}$ and int $S_{i t}^{\prime}$ intersect, then some point of either $\varphi\left[A_{i t}\right]$ or $\varphi\left[A_{i s}\right]$ lies in Int N_{i}. This is a contradiction, so int $S_{i t}^{\prime}$ and int $S_{i s}^{\prime}$ are disjoint.

There is a homeomorphism $\theta_{i 1}$ from $S_{i 1}$ onto $S_{i 1}^{\prime}$ such that (1) $\theta_{i 1}\left|A_{i 1}=\varphi\right| A_{i 1}$ and (2) if $D_{i j} \subset S_{i 1}$, then $\theta_{i 1}\left[D_{i j}\right]=\Delta_{i j}$. There is a homeomorphism $\theta_{i 2}$ from $S_{i 2}$ onto $S_{i 2}^{\prime}$ such that (1) $\theta_{i 2}\left|A_{i 2}=\varphi\right| A_{i 2}$, (2) if $D_{i j} \subset S_{i 1} \cap S_{i 2}$, then $\theta_{i 2}\left|D_{i j}=\theta_{i 1}\right| D_{i j}$, and (3) if $D_{i j} \subset S_{i 2}, \theta_{i 2}\left[D_{i j}\right]=$ $\Delta_{i j}$. If $t=3,4, \cdots$, or k_{i}, there is a homeomorphism $\theta_{i t}$ from $S_{i t}$ onto $S_{i t}^{\prime \prime}$ such that (1) $\theta_{i t}\left|A_{i t}=\varphi\right| A_{i t}$, (2) if $s=1,2, \cdots$, or ($t-1$) and $\Delta_{i j} \subset S_{i t} \cap S_{i s}$, then $\theta_{i t}\left|\Delta_{i j}=\theta_{i j}\right| \Delta_{i j}$, and (3) if $D_{i j} \subset S_{i t}, \theta_{i t}\left[D_{i j}\right]=\Delta_{i j}$.

If $t=1,2, \cdots$, or k_{i}, there is a homeomorphism $\theta_{i t}^{*}$ from $C_{i t}$ onto $\left(S_{i j}^{\prime} \cup \operatorname{int} S_{i j}^{\prime}\right)$ such that $\theta_{i t}^{*} \mid S_{i t}=\theta_{i t}$. Now let φ_{i} be the function from M_{i} onto N_{i} defined as follows: If $x \in M_{i}$, let t be an integer such that $x \in C_{i t}$, and let $\varphi_{i}(x)$ be $\theta_{i t}^{*}(x)$. The function φ_{i} is welldefined because if $x \in C_{i t} \cap C_{i s}$, then $\theta_{i t}^{*}(x)=\theta_{i s}^{*}(x)$. It is easy to see that φ_{i} is a homeomorphism from M_{i} onto N_{i} and that $\varphi_{i} \mid \operatorname{Bd} M_{i}=$ $\varphi \mid \operatorname{Bd} M_{i}$.

Now we are ready to define f. If $x \in R^{3}$ - Int M, then define $f(x)$ to be $\varphi(x)$. If $x \in M$, let i be the integer such that $x \in M_{i}$. Then define $f(x)$ to be $\varphi_{i}(x)$. It is easily seen that f is a homeomorphism from R^{3} onto R^{3} satisfying the conclusion of Lemma 1.

Theorem 1. Suppose that F and G are monotone decompositions of E^{3} such that $\mathrm{Cl} P_{F}\left[H_{F}\right]$ and $\mathrm{Cl} P_{G}\left[H_{G}\right]$ are compact 0-dimensional sets. Suppose that F is definable by 3 -cells-with-handles M_{1}, M_{2}, \ldots Suppose each element of G is semi-cellular. Then if F and G are equivalent decompositions, there exists a sequence $f_{1}, f_{2}, f_{3}, \cdots$ of homeomorphisms from R^{3} onto R^{3} such that (1) for each

$$
i, f_{i+1}\left|\left(R^{3}-\operatorname{Int} M_{i}\right)=f_{i}\right|\left(R^{3}-\operatorname{Int} M_{i}\right)
$$

and (2) $f_{1}\left[M_{1}\right], f_{2}\left[M_{2}\right], f_{3}\left[M_{3}\right], \cdots$ is a defining sequence for G.

Proof. Since F and G are equivalent, there is a homeomorphism h from R^{3} / F onto R^{3} / G such that $h\left[\mathrm{Cl} P_{F}\left[H_{F}\right]\right]=\mathrm{Cl} P_{G}\left[H_{G}\right]$. Let φ be the function from $R^{3}-\mathrm{Cl} H_{F}$ onto $R^{3}-\mathrm{Cl} H_{G}$ such that if

$$
x \in\left(R^{3}-\mathrm{Cl} H_{F}\right), \quad \varphi(x)=P_{G}^{-1} h P_{F}(x) .
$$

Since F is definable by 3 -cells-with-handles, there exists a defining sequence $M_{1}, M_{2}, M_{3}, \ldots$ for F such that for each positive integer i, each component of M_{i} is a 3-cell-with-handles. By Lemma 1 , if i is any positive integer, there is a homeomorphism f_{i} from R^{3} onto R^{3} such that if $x \in E^{3}-\operatorname{Int} M_{i}, f_{i}(x)=\varphi(x)$. We will show that the sequence $f_{1}, f_{2}, f_{3}, \cdots$ satisfies the conclusion of Theorem 1.

Suppose i is any positive integer. Then $M_{i+1} \subset \operatorname{Int} M_{i}$ since $M_{1}, M_{2}, M_{3}, \cdots$ is a defining sequence for H_{F}. Since

$$
\left.f_{i+1} \mid R^{3}-\operatorname{Int} M_{i+1}\right)=\varphi \mid\left(R^{3}-\operatorname{Int} M_{i+1}\right)
$$

then

$$
f_{i+1}\left|\left(R^{3}-\operatorname{Int} M_{i}\right)=\varphi\right|\left(R^{3}-\operatorname{Int} M_{i}\right) .
$$

Since $f_{i}!\left(R^{3}-M_{i}\right)=\varnothing \mid\left(R^{3}-\operatorname{Int} M_{i}\right)$, it follows that

$$
f_{i+1}\left|\left(R^{3}-\operatorname{Int} M_{i}\right)=f_{i}\right|\left(R^{3}-\operatorname{Int} M_{i}\right)
$$

Suppose U is an open set in R^{3} containing $\mathrm{Cl} H_{G}$. Then $P_{F}^{-1} h^{-1} P_{G}[U]$ is open in R^{3} and contains $\mathrm{Cl} H_{F}$. Hence there is a positive integer n such that $M_{n} \subset P_{F}^{-1} h^{-1} P_{G}[U]$, and it follows that $P_{G}^{-1} h P_{F}\left[M_{n}\right] \subset U$. Since $f_{n}\left[M_{n}\right]=P_{G}^{-1} h P_{F}\left[M_{n}\right], f_{n}\left[M_{n}\right] \subset U$. It is clear that for any $i,\left(\mathrm{Cl} H_{G}\right) \subset f_{i}\left[M_{i}\right]$. Consequently, $f_{1}\left[M_{i}\right], f_{2}\left[M_{2}\right], f_{3}\left[M_{3}\right], \cdots$ is a defining sequence for G. Hence Theorem 1 holds.

Corollary. 1. If F and G satisfy the hypothesis of Theorem 1, then G is definable by 3-cells-with-handles. If F is toroidal, so is G.

Proof. We use the notation of Theorem 1. By Theorem 1, $f_{1}\left[M_{1}\right], f_{2}\left[M_{2}\right], f_{3}\left[M_{3}\right], \cdots$ is a defining sequence for G. By Lemma 1, for each positive integer i, each component of $f_{i}\left[M_{i}\right]$ is a 3-cell-withhandles. Hence G is definable by 3 -cells-with-handles. It is clear that if for each positive integer i, M_{i} is a solid torus, so is $f_{i}\left[M_{i}\right]$. Therefore, if F is toroidal, so is G.

Theorem 2. Suppose that F and G are monotone decompositions of R^{3} such that $\mathrm{Cl} P_{F}\left[H_{F}\right]$ and $\mathrm{Cl} P_{G}\left[H_{G}\right]$ are compact 0-dimensional sets. Suppose that F has a defining sequence $M_{1}, M_{2}, M_{3}, \cdots$ and
there exists a sequence $f_{1}, f_{2} f_{3}, \cdots$ of homeomorphisms from R^{3} onto R^{3} such that (1) for each $i, f_{i+1}\left|\left(R^{3}-\operatorname{Int} M_{i}\right)=f_{i}\right|\left(R^{3}-\operatorname{Int} M_{i}\right)$, and (2) $f_{1}\left[M_{1}\right], f_{2}\left[M_{2}\right], f_{3}\left[M_{3}\right], \cdots$ is a defining sequence for G. Then F and G are equivalent.

Proof. We shall define a homeomorphism h from R^{3} / F onto R^{3} / G such that $h\left[\mathrm{Cl} P_{F}\left[H_{F}\right]\right]=\mathrm{Cl} P_{G}\left[H_{G}\right]$.

Suppose x is a point of R^{3} / F. Consider first the case where $x \notin \mathrm{Cl} P_{F}\left[H_{F}\right]$. Then $P_{F}^{-1}(x)$ is a one-point set and so there is a point y of R^{3} such that $P_{F}(y)=x$. Further, $y \notin \mathrm{Cl} H_{F}$. Hence for some n_{y}, if $i>n_{y}, f_{i}(y)=f_{n_{y}}(y)$. Then define $h(x)$ to be the point $P_{G} f_{n_{y}}(y)$ of R^{3} / G.

Suppose $x \in \mathrm{Cl} P_{F}\left[H_{F}\right]$. Then there is a sequence $M_{1 j_{1}}, M_{2 j_{2}}, M_{3 j_{3}}, \ldots$ such that for each $k, M_{k j_{k}}$ is the component of M_{k} containing $P_{F}^{-1}(x)$. It is true, further, that $P_{F}^{-1}(x)=\bigcup_{k=1}^{\infty} M_{k j_{k}}$. Since $f_{1}\left[M_{1}\right], f_{2}\left[M_{2}\right], f_{3}\left[M_{3}\right], \cdots$ is a defining sequence for H_{G}, then $\bigcap_{k=1}^{\infty} f_{k}\left[M_{k j_{k}}\right]$ is an element g_{x} of G. Define $h(x)$ to be the point z of R^{3} / G such that $P_{G}\left[g_{x}\right]=\{z\}$.

It is not hard to show, using the hypothesis, that h is a homeomorphism from R^{3} / F onto R^{3} / G such that $h\left[\mathrm{Cl} P_{F}\left[H_{F}\right]\right]=\mathrm{Cl} P_{G}\left[H_{G}\right]$.

Theorem 3. Suppose F and G are monotone decompositions of R^{3} such that $\mathrm{Cl} P_{F}\left[H_{F}\right]$ and $\mathrm{Cl} P_{G}\left[H_{G}\right]$ are compact 0 -dimensional sets. Suppose F is definable by 3-cells-with-handles and each element of G is semi-cellular. Then F and G are equivalent if and only if there exists a defining sequence M_{1}, M_{2}, \cdots for F and a sequence $f_{1}, f_{2}, f_{3}, \cdots$ of homeomorphisms from R^{3} onto R^{3} such that (1) for each i,

$$
f_{i+1}\left|\left(R^{3}-\operatorname{Int} M_{i}\right)=f_{i}\right|\left(R^{3}-\operatorname{Int} M_{i}\right) \text { and (2) } f_{1}\left[M_{1}\right], f_{2}\left[M_{2}\right], f_{3}\left[M_{3}\right], \cdots
$$

is a defining sequence for G.
Theorem 3 is a corollary of Theorems 1 and 2.
We shall indicate now some conditions under which a monotone decomposition F of R^{3} satisfies the hypothesis of Theorem 3 for F.

Lemma 2. Suppose that F is a monotone decomposition of R^{3} such that $\mathrm{Cl} P_{F}\left[H_{F}\right]$ is a compact 0-dimensional set. Then F is definable by 3-cells-with-handles provided it is true that if g is any element of F, g_{0} is any subcontinuum of g embeddable in R^{2}, and h is any embedding of g_{0} in R^{2}, then $h\left[g_{0}\right]$ does not separate R^{2}. In particular, the condition stated holds provided g satisfies any one of the following:
(1) g is tree-chainable (see [3] for definition).
(2) g is snake-like (see [3] for definition).
(3) g is a dendron.
(4) g is an arc.

Lemma 2 may be established by the methods of [2].
4. The dogbone space. In this section it is proved that there is a decomposition F which is equivalent to the dogbone decomposition and such that F has only countably many nondegenerate elements. The notation and terminology of [5] will be used in this section.

Lemma 3. Suppose f is a homeomorphism of A into $R^{3}, B=$ $f[A], B_{i}=f\left[A_{i}\right], P_{1}, P_{2}, P_{3}, \cdots$, and P_{m} are disjoint horizontal planes in R^{3}, there exist positive integers j and k such that $1 \leqq j \leqq k \leqq m$ and B intersects only P_{j}, P_{j+1}, \cdots, and P_{k}, and for each positive integer $i, 1 \leqq i \leqq m$, each component of $B \cap P_{i}$ is a tame disc, $B \cap\left(\bigcup_{s<i} P_{s}\right)$ is contained in some component of $B-P_{i}, B \cap\left(\bigcup_{s>i} P_{s}\right)$ is contained in some component of $B-P_{i}$, and $B \cap P_{i}$ is contained in some component of $B-\bigcup_{s \neq i} P_{s}$. Then there exists a homeomorphims h of R^{3} onto itself such that (1) h is point-wise fixed outside of B, (2) $h\left[B_{1}\right]$ intersects P_{j}, P_{j+1}, \cdots, and P_{k}, (3) each of $h\left[B_{2}\right], h\left[B_{3}\right]$, and $h\left[B_{4}\right]$ intersects at most $k-j$ of the $P_{i}^{\prime} s$, and (4) for $i=1,2,3$, or $4, h\left[B_{i}\right] \cap\left(\bigcup_{t=1}^{m} P_{t}\right)$ has the same properties as $B \cap\left(\bigcup_{t=1}^{m} P_{t}\right)$.

Proof. Adjust $\bigcup_{i=1}^{4} f^{-1}\left[B_{i}\right]=\bigcup_{i=1}^{4} A_{i}$ by a homeomorphism g of A onto itself such that g is fixed on the boundary and g carries $\bigcup_{i=1}^{4} A_{i}$ to the positions indicated in Figure 2. Let h be $f g f^{-1}$. It can be assumed that $h\left[B_{i}\right]$ has small cross sectional diameter, $\bigcup_{i=1}^{4} h\left[B_{i}\right]$

Figure 2.
and $\bigcup_{i=1}^{m} P_{i}$ are in relative general position, and each component of $\left(\bigcup_{i=1}^{4} h\left[B_{i}\right]\right) \cap\left(\bigcup_{i=1}^{m} P_{i}\right)$ is a disc.

We will now construct the decomposition F. Let P_{1}, P_{2}, \cdots, and P_{r} be horizontal planes which intersect A as shown in Figure 3. Apply Lemma 3 to A and P_{1}, P_{2}, \cdots, and P_{r} to obtain a homeomorphism h_{1}, and let $B_{i}=h_{1}\left[A_{i}\right]$. See Figure 3. Apply Lemma 3 to B_{i} and P_{1}, \cdots, and P_{r} to obtain a homeomorphism h_{2}^{i}. Let $h_{2}=$ $h_{2}^{3} h_{2}^{2} h_{2}^{3} h_{2}^{4} h_{1}$ and let $B_{i j}=h_{2}\left[A_{i j}\right]$. This process is continued until $B_{i j \cdots m}$ intersects at most one of the $P_{i}^{\prime} s$. When $B_{i j \cdots m}$ intersects only P_{s}, then discs are added to the collection of discs $B_{i j \ldots m} \cap P_{s}$ so that the total collection cuts $B_{i j \cdots m}$ in the same manner as P_{1}, \cdots, and P_{r} cut up A, and so that each component of $B_{i j \ldots m}$ in the complement of the collection of discs has diameter less than one half the diameter of B. A modified version of Lemma 3 is now applied to $B_{i j \cdots m}$ and the collection of disjoint discs.

Figure 3.
F is the decomposition whose nondegenerate elements are the nondegenerate components of $A \cap\left(\cap B_{i}\right) \cap\left(\cup B_{i j}\right) \cap\left(\cup B_{i j k}\right) \cup \cdots$. It is clear, using Theorem 2, that F is equivalent to the dogbone decomposition.

Theorem 4. F has only countably many nondegenerate elements.
Proof. There is a one to one correspondence between the components of $A \cap\left(\cup B_{i}\right) \cap\left(\cap B_{i j}\right) \cap \cdots$ and the set of all sequences into $\{1,2,3,4\}$, where the sequence t corresponds to $A \cap B_{t(1)} \cap B_{t(1) t(2)} \cap \cdots$. It will next be shown that f is a nondegenerate element of F if and only if the sequence corresponding to f converges to 1 .

Suppose t is a sequence into $\{1,2,3,4\}, t$ converges to 1 , and f corresponds to t. Then there exist disjoint discs E_{1} and E_{2} and an

Figure 5.
integer m such that if $n \geqq m$, then $B_{t(1) t(2) \cdots t(n)}$ intersects E_{1} and E_{2}. Hence f is a nondegenerate element.

Suppose t is a sequence into $\{1,2,3,4\}$ which does not converge to 1. Let $\left\{q_{i}\right\}$ be an increasing sequence such that for each $i, t\left(q_{i}\right) \neq 1$. Then $B_{t(1) t(2) \cdots t\left(q_{r}\right)}$ intersects at most one of P_{1}, P_{2}, \cdots, and P_{r}. For some $n, B_{t(1) \ldots t\left(q_{n}\right)}$ intersects at most one of the dises used to define the homeomorphism $h_{t\left(q_{r}\right)^{\prime}+1}$. Hence $\lim _{n \rightarrow \infty}\left(\operatorname{diam} B_{t(1) \cdots t(n)}\right)$ is zero.

Example 6. There exists a point-like decomposition F such that if K is any point-like decomposition equivalent to F, then K has uncountably many nondegenerate elements. Let A be a solid double torus and let $A_{1}, A_{2}, \cdots, A_{7}$, and A_{8} be solid double tori embedded in A as shown in Figure 4. Inside each of the A_{i} 's eight double tori are embedded like the A_{i} 's are in A, etc. Suppose K is equivalent to F and let $A_{i j \ldots m}^{\prime}$ correspond to $A_{i j \cdots m}$. Let D_{1}^{\prime} and D_{2}^{\prime} be disjoint discs in A^{\prime} which are embedded in A^{\prime} in the same manner as D_{1} and D_{2} are embedded in A. See Figure 4. It follows from the arguments in [5] that two of the $A_{i}^{\prime \prime}$ s intersect both D_{i}^{\prime} and D_{2}^{\prime}, and inside each of those two of the $A_{i j}$'s interset both D_{1}^{\prime} and D_{2}^{\prime}, etc. It follows that K has uncountably many nondegenerate elements.
5. A decomposition not equivalent to the dogbone. In this section G will denote the point-like decomposition of R^{3} described by Bing in [7], and the notation and terminology of that paper will be used. It will be proved that any point-like decomposition equivalent to G has at least one nondegenerate element which is not locally connected. Let T_{0} denote a round solid torus in R^{3}. Let T_{00} and T_{01} be disjoint solid tori embedded in the interior of T_{0} as shown in Figure 5. Inside each $T_{0 i}$ two tori are embedded, etc. G is the decomposition of R^{3} whose nondegenerate elements are the nondegenerate components of $T_{0} \cap\left(\cup T_{0 i}\right) \cap\left(\cup T_{0 i j}\right) \cap \cdots . G$ has countably many nondegenerate elements, each of which is indecomposable.

Property P. Suppose T is a solid torus. A disc D has Property P with respect to T if and only if D is a polyhedral disc in general position with respect to T and $\mathrm{Bd} D$ is a simple closed curve on $\mathrm{Bd} T$ which circles $\mathrm{Bd} T$ meridianally.

Property A. A collection of sets $\left\{T, D_{1}, \cdots, D_{n}\right\}$ has Property A if and only if (1) T is a solid torus, (2) for $1 \leqq i \leqq n, D_{i}$ is a disc which has Property P with respect to T and no proper subdisc of D_{i} has Property P with respect to T, (3) if $i \neq j$ then D_{i} and D_{j} are disjoint, and (4) if C is a longitudinal curve on Bd T which intersects

Figure 5.
each $\mathrm{Bd} D_{i}$ in a single point q_{i}, then the ordering of the q_{i} 's on C is $q_{1} q_{2} \cdots q_{n} q_{1}$.

Suppose $\left\{T, D_{1}, \cdots, D_{n}\right\}$ has Property A. A collection $\left(Q_{1}, \cdots, Q_{n}\right\}$ is a division of T determined by $\left\{T, D_{1}, \cdots, D_{n}\right\}$ if and only if for each $i, 1 \leqq i<n$, if D_{i}^{\prime} denotes the component of $D_{i}-\left(R^{3}-T\right)$ which contains $\mathrm{Bd} D_{i}$, for $1 \leqq i<n, Q_{i}^{\prime}$ denotes the component of $T-\left(\cup D_{i}^{\prime}\right)$ whose closure intersects both D_{i}^{\prime} and $D_{(i+1)}^{\prime}, Q_{i}=\bar{Q}_{i}^{\prime}$, and Q_{n} is the closure of the component of $T-\left(D_{1}^{\prime} \cup D_{n}^{\prime}\right)$ which is disjoint from Q_{1}^{\prime}.

Lemma 4. If $\left\{T_{0}, D_{1}, \cdots, D_{n}\right\}$ has Property A and $\left\{Q_{1}, \cdots, Q_{n}\right\}$ is a division of T_{0} determined by $\left\{T_{0}, D_{1}, \cdots, D_{n}\right\}$, then there exist an integer i and discs E_{1}, E_{2}, \cdots, and E_{m} such that (1) $i=0$ or 1, (2) $\left\{T_{0 i}, E_{1}, \cdots, E_{m}\right\}$ has Property A, (3) if $\left\{R_{1}, \cdots, R_{m}\right\}$ is the division of $T_{0 i}$ determined by $\left\{T_{0 i}, E_{1}, \cdots, E_{m}\right\}$, then there exists integers i_{1}, i_{2}, \cdots, and $i_{2 n}$, such that $1 \leqq i_{1}<i_{2}<\cdots<i_{2 n} \leqq m$ and for some

$$
\begin{aligned}
& t, 1 \leqq t \leqq n, R_{i_{1}} \subset Q_{t}, R_{i_{2}} \subset Q_{t-1}, \cdots, R_{i_{t}} \subset Q_{1}, R_{i_{t+1}} \subset Q_{n}, \cdots, R_{i_{n}} \\
& \quad \subset Q_{t+1}, R_{i_{n+1}} \subset Q_{t+1}, \cdots, R_{i_{2 n}} \subset Q_{t}
\end{aligned}
$$

and (4) if $R_{i_{k}} \subset Q_{j}$, then $E_{i_{k}}$ is contained in one of D_{j} and D_{j+1} and $E_{i_{k}+1}$ is contained in the other.

Proof. Consider the universal covering space for T_{0}. It is represented by Figure 6 where it appears that T_{0} has been rolled out onto a cylinder. It follows from the proof of [7, Th. 5] that for some k, either each center for T_{00} intersects two adjacent copies of D_{k} in the universal covering space, or each center for T_{01} intersects two adjacent copies of D_{k} in the universal covering space. Assume each center for T_{00} intersects two adjacent copies of D_{k} in the universal covering space and let $i=0$. Let C be a center for T_{00} such that $C \cap\left(\cup D_{j}\right)$ is a finite set, and if C^{\prime} is a center for T_{00}, then $C^{\prime} \cap\left(\cup D_{j}\right)$ contains at least as many elements as $C \cap\left(\cup D_{j}\right)$. This last condition implies that if $r \in C \cap D_{j}$, then there is a subdisk E of D_{j} which has Property P with respect to T_{00} and $E \cap C=r$. It can be assumed without loss of generality that T_{00} is polyhedral and $\mathrm{Bd} T_{00}$ and $\cup D_{j}$ are in relative general position.

Figure 6.
Let C^{\prime} denote one of the copies of C in the universal covering space as shown in Figure 6. Assume that one of the copies of D_{j}, say D_{j}^{\prime}, is the rightmost one of the copies of the D_{k} 's that intersect C^{\prime}. Let $D_{j}^{\prime \prime}$ be the first copy of D_{j} to the left of D_{j}^{\prime} and let D_{k}^{\prime} be the first copy of D_{k} to the right of $D_{j}^{\prime \prime}$. Let t be $j-1$ if $2 k \leqq j \leqq n$ or t be n if $j=1$. Let k_{1} be a point in C^{\prime} to the right of D_{j}^{\prime} and let k_{2} be a point in C^{\prime} to the left of $D_{j}^{\prime \prime}$. Let A be an arc in C^{\prime} from k_{1} to k_{2} and B be the arc in C^{\prime} from k_{2} to k_{1} which intersects A only in the end points. Let r_{2}^{\prime} be the first point of A in D_{j-1}^{\prime} and let r_{1}^{\prime} be the last point of $A \cap D_{j}^{\prime}$ preceding r_{2}^{\prime}. Let r_{4}^{\prime} be the first point of A in D_{j-2}^{\prime} and let r_{3}^{\prime} be the last point of $A \cap D_{j_{-1}}^{\prime}$ preceding r_{4}^{\prime}. Continue this procedure to obtain points $r_{5}^{\prime}, r_{6}^{\prime}, \cdots, r_{2 n-1}^{\prime}$, and $r_{2 n}^{\prime}$. Let $r_{2 n+2}^{\prime}$ be the first point of B in D_{j+1}^{\prime} and let $r_{2 n+1}^{\prime}$ be the last point of $B \cap D_{j}^{\prime \prime}$ preceding $r_{2 n+2}^{\prime}$. Continue this to get $r_{1}^{\prime}, r_{2}^{\prime}, \cdots, r_{4 n-1}^{\prime}$ and $r_{4 n}^{\prime}$. Let r_{i} be the point in C corresponding to r_{i}^{\prime}.

The r_{i} 's have the ordering $r_{1} r_{2} \cdots r_{4 n} r_{1}$ on C, and determine disks E_{1}, \cdots, and $E_{4 n}$ on T_{00}. It can be assumed that each of the E_{i} 's is a subdisk of $\cup D_{k}$, each has property P with respect to T_{00}, no proper subdisk of E_{i} has property P with respect to T_{00}, if $r_{i}=r_{i+1}$ then $E_{i}=E_{i+1}$, otherwise the E_{i} 's form a disjoint collection, and finally
$E_{j} \cap C=r_{j}$. If the collection $\left\{E_{1}, \cdots, E_{4 n}\right\}$ is reindexed to give a disjoint collection $\left\{E_{1}, \cdots, E_{m}\right\}$ then clearly $m \geqq 2 n$ and there exist integers i_{1}, \cdots, and $i_{2 n}$ which satisfy the conclusion of the lemma.

Theorem 5. If F is a point-like decomposition equivalent to G, then some nondegenerate element of F is not locally connected.

Proof. By Theorem 1 and Corollary 1, F is a toroidal decomposition of R^{3} and there exists a sequence of homeomorphisms $\left\{h_{i}\right\}_{i=0}^{\infty}$ of homeomorphisms such that h_{i} is from R^{3} onto R^{3}, if $j>k$, then $h_{j} \mid R^{3}-\cup T_{0 i_{1} \cdots i_{k}}=h_{k}$, and the nondegenerate elements of F are the nondegenerate components of $h_{0}\left[T_{0}\right] \cap h_{\mathrm{a}}\left[\cup T_{0 i}\right] \cap \cdots$.

Let D_{1} and D_{2} be disjoint discs, each of which has Property P with respect to $h_{0}\left[T_{0}\right]$, and such that no proper subdisc of either D_{1} or D_{2} has property P with respect to $h_{0}\left[T_{0}\right]$. Then $h_{1}^{-1}\left[D_{1}\right]$ and $h_{1}^{-1}\left[D_{2}\right]$ are discs, each of which has Property P with respect to T_{0}, and no proper subdisc of either has Property P with respect to T_{0}. Let R_{1} and R_{2} be the division of T_{0} determined by $\left\{T_{0}, h_{1}^{-1}\left[D_{1}\right], h_{1}^{-1}\left[D_{2}\right]\right\}$.

By Lemma 4, there exist an integer t_{1} in $\{0,1\}$ and disks E_{11}, E_{12}, \cdots, and $E_{1 m(1)}$ such that, $\left\{T_{0 t_{1}}, E_{11}, \cdots, E_{1 m(1)}\right\}$ has Property A, and if $\left\{R_{11}, \cdots, R_{1 m(1)}\right\}$ is a division of $T_{0 t_{1}}$ determined by $\left\{T_{o t_{1}}, E_{11}, \cdots, E_{1 m(1)}\right\}$, then there exist integers j_{11} and $j_{12}, j_{11}<j_{12}$, such that, $R_{1 j_{11}}$ and $R_{1 j_{1} 2}$ are contained in $R_{1}, E_{1 j_{1}}$ and $E_{1 j_{2}}$ are contained in one of $h^{-1}\left[D_{1}\right]$ and $h_{1}^{-1}\left[D_{2}\right]$, and $E_{1\left(j_{1}+1\right)}$ and $E_{1\left(j_{2}+1\right) \bmod m(1)}$ are contained in the other. Then $\left\{T_{o t_{1}}, h_{2}^{-1} h_{1}\left[E_{11}\right], \cdots, h_{2}^{-1} h_{1}\left[E_{1 m(1)}\right]\right\}$ has Property A, and by applying Lemma 4 again, there exist an integer t_{2} in $\{0,1\}$ and discs E_{21}, \cdots, and $E_{2 m(2)}$ such that $\left\{T_{o t_{1} t_{2}}, E_{21}, \cdots, E_{2 m(2)}\right\}$ has Property A, and if $\left\{R_{21}, \cdots, R_{2 m(2)}\right\}$ is a division determined by $\left\{T_{0 t_{1} t_{2}}, E_{21}, \cdots, E_{2 m(2)}\right\}$, then there exist integers $j_{21}<j_{22}<j_{23}<j_{24}$ such that

$$
R_{2 j_{21}} \subset R_{1 j_{11}}, R_{2 j_{22}} \subset R_{2 j_{12}}, R_{2 j_{23}} \subset R_{1 j_{12}}, \quad \text { and } \quad R_{2 j_{24}} \subset R_{1 j_{11}} .
$$

Continuing this process by induction it follows that

$$
\left(h_{0}\left[T_{0}\right] \cap h_{1}\left[T_{o_{1}}\right] \cap h_{2}\left[T_{o t_{1} t_{2}}\right] \cap \cdots\right)-\left(D_{1} \cup D_{2}\right)
$$

has an infinite number of components, each of which intersects both D_{1} and D_{2}, and hence is not locally connected.

In fact, countably many of the nondegenerate elements fail to be locally connected. To see this let v_{i} denote $\left(t_{i}+1\right) \bmod 2$. Let D_{21} and D_{22} be disjoint discs which have Property P with respect to $h_{1}\left[T_{o_{1}}\right]$ and repeat the above argument. Similarly for each of $h_{2}\left[T_{o t_{1}}\right], h_{s}\left[T_{o t_{1} t_{2} v_{3}}\right] h_{s}\left[T_{o t_{1} t_{2} t_{5} v_{4}}\right]$, etc.

Corollary 2. There does not exist a point-like decomposition
F equivalent to G such that each nondegenerate element of F is an arc.

Corollary 3. The decomposition G is not equivalent to the dogbone decomposition.

Example 7. There does exist a decomposition F equivalent to G such that some nondegenerate element of F is an arc.

Construction of F. Let T_{00} and T_{01} be embedded in T_{0} as shown in Figure 7. If this pattern is used at each stage, then $T_{01} \cap T_{011} \cap T_{011} \cap \cdots$ is an arc.

Figure 7.

Figure 8.

Example 8. There exists a decomposition F equivalent to G such that F has uncountably many nondegenerate elements and each is an indecomposable continuum.

Construction of F. Let T_{00} and T_{01} be embedded in T_{0} as shown in Figure 8. This pattern is used at each stage.
6. Tamely finnable 3-cells. In this section we show that if a 3 -cell C in R^{3} is tamely finnable, then there is a 3 -cell C^{\prime} in R^{3} with a flat spot on its boundary such that the decomposition of R^{3} whose only nondegenerate element is C is equivalent to the decomposition of R^{3} whose only nondegenerate element is C^{\prime}. A 3-cell C in R^{3} is tamely finnable if and only if there exists a tame disc D in R^{3} such that $D \cap C$ is an arc α and $\alpha \subset(\operatorname{Bd} D) \cap(\mathrm{Bd} C)$. The statement that $\mathrm{Bd} C$ has a flat spot means that $\mathrm{Bd} C$ contains a polyhedral
disc. We begin by describing several sets and functions which will be used in the proof.

Let R be the 3 -cell $\{(x, y, z):|x| \leqq 1,|y| \leqq 2,|z| \leqq 1\}$, R^{+}be ($R \cap\{(x, y, z): y \geqq 0\}$), and R^{-}be $(R \cap\{(x, y, z): y \leqq 0\}$). For each subset X of R, let X^{+}denote $X \cap R^{+}$and X^{-}denote $X \cap R^{-}$.

If P and Q are points in R^{3}, let $[P, Q]$ denote the straight line interval from P to Q Let D_{1} be $\left\{(x, y, z): x^{2}+y^{2} \leqq 1\right\}, D_{2}$ be

$$
\bigcup\left\{[(x, 0,0),(x, y, 1)]: x^{2}+y^{2}=1\right\}
$$

D_{3} be

$$
\bigcup\left\{[(x, y, 0),(x, y, 1)]: x^{2}+y^{2}=1\right\},
$$

D_{4} be

$$
\bigcup\left\{[(x, y, 0),(x, 0,-1)]: x^{2}+y^{2}=1\right\}
$$

and D^{5} be $\left\{(x, y, 0): x^{2}+y^{2} \leqq 1\right\}$.
Let K be the 3 -cell bounded by $D_{1} \cup D_{2}, L$ be $\mathrm{Cl}(R-K), M$ be the 3-cell bounded by $D_{1} \cup D_{3} \cup D_{4}$, and N be $\mathrm{Cl}(R-M)$; see Figure 9.

Let g_{1} be a homeomorphism of L^{+}onto N^{+}such that g_{1} is fixed on $\mathrm{Bd} L^{+} \cap \mathrm{Bd} R, g_{1}[\{(x, 0,0):-1 \leqq x \leqq 1\}]$ is $\left\{(x, y, 0): x^{2}+y^{2}=1, y \geqq 0\right\}$ and g_{1} moves points only along lines parallel to the y-axis. Let g_{2} be a homeomorphism of L^{-}onto N^{-}such that g_{2} is fixed on

$$
\mathrm{Bd} L^{-} \cap \operatorname{Bd} R, \quad g_{2}[\{(x, 0,0):-1 \leqq x \leqq 1\}]
$$

is $\left\{(x, y, 0): x^{2}+y^{2}=1, y \leqq 0\right\}$ and g_{2} moves points only along lines parallel to the y-axis.

Let M^{\prime} be $M \cap\{(x, y, z): z \geqq 0\}$ and let g_{3} be a continuous function from M^{\prime} onto K such that $g_{3}\left[D_{5}\right]=\{(x, 0,0):-1 \leqq x \leqq 1\}, g_{3}$ is the identity on $D_{1}, g_{3}\left|D_{3}^{+}=g_{1}^{-1}, g_{3}\right| D_{3}^{-}=g_{2}^{-1}$, and g_{3} is a homeomorphism on ($M^{\prime}-D_{5}$)

Theorem 6. Let C be a 3-cell in R^{3} such that C is tamely finnable. Then there exists a 3-cell C^{\prime} in R^{3} such that C^{\prime} has a flat spot and the decomposition of R^{3} whose only nondegenerate element is C is equivalent to the decomposition of R^{3} whose only nondegenerate element is C^{\prime}.

Proof. Let C be the 3 -cell and D be a tame disc such that $D \cap C$ is an arc α lying on $\operatorname{Bd} D \cap \operatorname{Bd} C$. There exists a homeomorphism h of R^{3} onto itself such that (1) $h[\alpha]=\{(x, 0,0):-1 \leqq x \leqq 1\}$, (2) $h[D]=\{(x, 0, z):|x| \leqq 1,0 \leqq z \leqq 1\}$, and (3) $h[\operatorname{Bd} C-\alpha]$ and $K \cup\left(R^{+} \cap R^{-}\right)$ are disjoint.

Let F be a homeomorphism from $R-\left(K \cup\left(R^{+} \cap R^{-}\right)\right)$onto $R-M$

Figure 9.
such that if $x \in\left[R-\left(K \cup\left(R^{+} \cap R^{-}\right)\right)\right]^{+}, F(x)=g_{1}(x)$, and if $x \in[R-$ $\left.\left(K U\left(R^{+} \cap R^{-}\right)\right)\right]^{-}, F(x)=g_{2}(x)$. Extend F to $R^{3}-R$ such that if $x \in\left(R^{3}-R\right), F(x)=x$. Let S be $D_{5} \cup F h[\operatorname{Bd} C-\alpha]$.

It is easily seen that S is a 2 -sphere in R^{3} which bounds a 3 -cell C^{\prime} and $\mathrm{Bd} C^{\prime}$ has a flat spot, the disk D_{5}. It remains to show that the decomposition of R^{3} corresponding to C and C^{\prime} respectively are equivalent.

We will define a function Φ from R^{3} onto itself such that $\mid \Phi\left[C^{\prime}\right]$ $=h[C]$ and $\Phi \mid \operatorname{Ext} C^{\prime}$ is a homeomorphism. If $P \in R^{3}-M, \Phi(P)=F^{-1}(P)$. If $P \in M^{\prime}, \Phi(P)=g_{3}(P)$. If $P \in M \cap\{(x, y, z): z \leqq 0\}$ and $P=(x, y, z)$, let $\Phi(P)$
be $(x, 0, z)$.
Now the function $h^{-1} \Phi$ is a continuous function from R^{3} onto itself which maps C^{\prime} onto C and is a homeomorphism outside C^{\prime}. It follows that the corresponding decompositions are equivalent.

Corollary 4. If C is a 3-cell in R^{3} and C is tamely finnable, then there exists a disc D in R^{3} such that the decomposition of R^{3} whose only nondegenerate element is C is equivalent to the decomposition of R^{3} whose only nongenerate element is D.

Proof. This follows from Theorem 3 of [10].
The statement that K is a crumpled cube means that K is homeomorphic to the union of a 2 -sphere and its interior in R^{3}.

Theorem 7. If K is a crumpled cube in R^{3}, there exists a 3 -cell C in R^{3} such that the decomposition of R^{3} whose only nondegenerate element is K is equivalent to the decomposition of R^{3} whose only nondegenerate element is C.

Proof. Apply Theorem 2 of [8].
7. Improving elements of decompositions. Suppose K is a 3-cell-with-n-handles in R^{3} and $C, C_{1}, C_{2}, C_{3}, \cdots$, and C_{n} is a standard decomposition of K. If i is a positive integer less than or equal to n, let $D_{i, 1}$ and $D_{i, 2}$ be the two components of $C \cap C_{i}$. Let p be an element of Int C, and if i and j are integers, $1 \leqq i \leqq n, 1 \leqq j \leqq 2$, let $p_{i, j}$ be an element of Int $D_{i, j}$. Let T be $\left\{(x, y, z) \in R^{3}: x^{2}+y^{2} \leqq 1,|z| \leqq 1\right\}$. If i is a positive integer less than or equal to n, there is a homeomorphism f_{i} of C_{i} onto T such that $f_{i}\left[D_{i, 1}\right]=\left\{(x, y, z): x^{2}+y^{2} \leqq 1, z=\right.$ $1\}, f_{i}\left[D_{i, 2}\right]=\left\{(x, y, z): x^{2}+y^{2} \leqq 1, z=-1\right\}, f_{i}\left(p_{i, 1}\right)=(0,0,1)$ and $f_{i}\left(p_{i, 2}\right)=$ $(0,0,-1)$. Let α_{i} be $f_{i}^{-1}[\{(0,0, z):|z| \leqq 1\}]$.

Let f be a homeomorphism of C onto the unit ball $\left\{(x, y, z): x^{2}+\right.$ $\left.y^{2}+z^{2} \leqq 1\right\}$ such that $f(p)=(0,0,0)$. If i and j are integers, $1 \leqq$ $i \leqq n, 1 \leqq j \leqq 2$, let $b_{i j}$ be the straight line interval from $f\left(p_{i, j}\right)$ to $f(p)$, and let $\beta_{i, j}$ be $f^{-1}\left[b_{i, j}\right]$. Let S be $\left(\bigcup_{i=1}^{n} \alpha_{i}\right) \cup\left(\bigcup_{i=1}^{n} \alpha_{j=1}^{2} \beta_{i, j}\right)$. We will call S a special spine of K.

A partition of K is a finite collection \mathscr{P} of subsets of K such that (1) if $Q \in \mathscr{P}, Q$ is a 3-cell, (2) if $Q \in \mathscr{P}$ and $Q \subset C$, then $Q=C$, (3) if $Q \in \mathscr{P}$ and there is a positive integer i less than or equal to n such that $Q \subset C_{i}$, then there exist real numbers a and b such that $-1 \leqq a \leqq b \leqq 1$ and $f_{i}[Q]=\{(x, y, z): a \leqq z \leqq b\} \cap T$, (4) if $Q_{1} \in \mathscr{P}$, $Q_{2} \in \mathscr{P}, Q_{1} \neq Q_{2}$, and $Q_{1} \cap Q_{2} \neq \varnothing$, then $Q_{1} \cap Q_{2}$ is a disc on $\mathrm{Bd} Q_{1} \cap$ $\mathrm{Bd} Q_{2}$, and (5) $\cup\{Q: Q \in \mathscr{P}\}=K$.

If K is a polyhedral cell with handles in R^{3}, S is a special spine
of K, and $\varepsilon>0$, there is clearly a homeomorphism h of R^{3} onto itself and a partition \mathscr{P} of K such that (1) if $x \in\left(R^{3}-V(K, \in)\right), h(x)=x$, (2) $h[K] \subset V(S, \epsilon)$, and (3) if $Q \in \mathscr{P},(\operatorname{diam} h[Q])<\epsilon$.

Theorem 8. Suppose F is an upper semi-continuous decomposition of R^{3} and F is definable by 3-cells-with-handles. Then there exists an upper semi-continuous decomposition G of R^{3} such that F is equivalent to G and each nondegenerate element of G is one dimentional.

Proof. Since F is definable by 3-cells-with-handles, there exists a defining sequence $M_{1}, M_{2}, M_{3}, \cdots$ for F such that for each positive integer k, each component of M_{k} is a 3 -cell-with-handles. Let $C_{k, 1}, C_{k, 2}$, $\cdots, C_{k, n_{k}}$ be the 3 -cells-with-handles which are the components of M_{k}, and if j is a positive integer less than or equal to n_{k}, let $S_{k, j}$ be a special spine of $C_{k, j}$.

Let ε_{1} be a positive number such that $\varepsilon_{1}<1$ and $V\left(C_{1,1}, \varepsilon_{1}\right)$, $V\left(C_{1,2}, \varepsilon_{1}\right), \cdots$, and $V\left(C_{1, n_{1}}, \varepsilon_{1}\right)$ are mutually disjoint sets. For each positive integer j less than or equal to n_{1}, there exist a partition $P_{1, j}$ of $C_{1, j}$ and a homeomorphism $h_{1, j}$ of $V\left(\mathrm{C}_{1, j}, \varepsilon_{1}\right)$ onto itself such that (1) if $x \in V\left(C_{1, j}, \varepsilon_{1}\right)-V\left(C_{1, j}, \varepsilon_{1} / 2\right), h_{1, j}(x)=x$, (2) $h_{1, j}\left[C_{1, j}\right] \subset V\left(S_{1, j}, \varepsilon_{1}\right)$, and (3) if $Q \in \mathscr{\mathscr { P }}_{1, j}$, $\left(\operatorname{diam} h_{1, j}[Q]\right)<\varepsilon_{1}$. Let h_{1} be a homeomorphism of R^{3} onto itself such that if $x \notin \bigcup_{i=1}^{n_{1}} V\left(C_{1, i}, \varepsilon_{1}\right), h_{1}(x)=x$, and if i is a positive integer less than or equal to n_{1} and $x \in V\left(C_{1, i}, \varepsilon_{1}\right), h_{1}(x)=h_{1, i}(x)$.

Let δ_{1} be $\min \left\{\left(\operatorname{diam} h_{1}[Q]\right): Q \in\left(\bigcup_{i=1}^{n_{1}} P_{1, i}\right)\right\}$ and let ε_{2} be a positive number such that $\varepsilon_{2}<\min \left\{\delta_{1} / 2,1 / 2\right\}$ and $V\left(h_{1}\left[C_{2,1}\right], \varepsilon_{2}\right), V\left(h_{1}\left[C_{2,2}\right], \varepsilon_{2}\right)$, \cdots, and $V\left(h_{1}\left[C_{2, n_{2}}\right], \varepsilon_{2}\right)$ are mutually disjoint sets each one of which is contained in $h_{1}\left[V\left(M_{1}, 1 / 2\right)\right]$. For each positive integer j less than or equal to n_{2}, there exist a partition $\mathscr{P}_{2, j}$ of $C_{2, j}$ and a homeomorphism $h_{2, j}$ of $V\left(h_{1}\left[C_{2, j}\right], \varepsilon_{2}\right)$ onto itself such that (1) if

$$
x \in V\left(h_{1}\left[C_{2, j}\right], \varepsilon_{2}\right)-V\left(h_{1}\left[C_{2, j}\right], \varepsilon_{2} / 2\right), h_{2, j}(x)=x,
$$

(2) $h_{2, j}\left[h_{1}\left[C_{2, j}\right]\right] \subset V\left(h_{1}\left[S_{2, j}\right], \varepsilon_{2}\right)$, (3) if $Q_{1} \in \mathscr{P}_{2, j}$, there exists an element Q_{2} of $\bigcup_{i=1}^{n_{1}} \mathscr{P}_{1, i}$ such that $h_{2, j} h_{1}\left[Q_{1}\right] \subset h_{1}\left[Q_{2}\right]$, and (4) if

$$
Q \in \mathscr{P}_{2, j},\left(\operatorname{diam} h_{2, j} h_{1}[Q]\right)<\varepsilon_{2} .
$$

Let h_{2} be a homeomorphism of R^{3} onto itself such that if

$$
x \notin \bigcup_{i=1}^{n_{2}} V\left(h_{1}\left[C_{2, i}\right], \varepsilon_{2}\right), h_{2}(x)=x
$$

and if i is a positive integer less than or equal to n_{2} and

$$
x \in V\left(h_{1}\left[C_{2, i}\right], \varepsilon_{2}\right), h_{2}(x)=h_{2, i}(x)
$$

Continue in this manner obtaining a sequence $h_{1}, h_{2}, h_{3}, \cdots$ of homeomorphisms of E^{3} onto itself. Let h be $\lim _{n \rightarrow \infty}\left(h_{n} h_{n-1} \cdots h_{1}\right)$, and let G be $\{h[f]: f \in F\}$. It is easily seen that G is an upper semi-continuous decomposition of E^{3} such that F and G are equivalent. The fact that each nondegenerate element g of G is one-dimensional can be seen by noticing that g intersects the boundaries of the images of the elements of the partitions in a 0-dimensional set.

Theorem 9. Let G be a monotone upper semi-continuous decomposition of R^{3} such that G has only countably many nondegenerate elements, and each nondegenerate element is tame (relative to the usual triangulation of R^{3}). Then there exists a homeomorphism h of R^{3} onto itself such that if $g \in G, h[g]$ is polyhedral.

Proof. Let $g_{1}, g_{2}, g_{3}, \cdots$ denote the nondegenerate elements of G. Let ε_{1} be a positive number such that $\varepsilon_{1}<1 / 2$. Since g_{1} is tame, it follows from Theorem 9 of [4] that there exists a homeomorphism h_{1} of R^{3} onto itself such that if $x \in R^{3}-V\left(g_{1}, \varepsilon_{1} / 4\right), h_{1}(x)=x$, if $x \in R^{3}$, $d\left(x, h_{1}(x)\right)<\varepsilon_{1} / 4$, and $h_{1}\left[g_{1}\right]$ is polyhedral.

Let ε_{2} be a positive number such that

$$
\varepsilon_{2}<\left(\varepsilon_{1} / 2\right), V\left(h_{1}\left[g_{2} \mid, \varepsilon_{2}\right) \subset h_{1}\left[V\left(g_{2}, 1 / 2^{2}\right)\right]\right.
$$

and $V\left(h_{1}\left[g_{2}\right], \varepsilon_{2}\right) \cap h_{1}\left[g_{1}\right]=\varnothing$. There exists a homeomorphism h_{2} of R^{3} onto itself such that if $x \in R^{3}-V\left(h_{1}\left[g_{2}\right], \varepsilon_{2} / 4\right), h_{2}(x)=x$, if $x \in R^{3}$ then $d\left(h_{2}(x), x\right)<\varepsilon_{2} / 4$, and $h_{2} h_{1}\left[g_{2}\right]$ is polyhedral.

If n is a positive integer and h_{1}, h_{2}, \cdots, and h_{n-1} are chosen, let ε_{n} be a positive number such that

$$
\varepsilon_{n}<1 / 2^{n}, V\left(h_{n-1} \cdots h_{1}\left[g_{n}\right], \varepsilon_{n}\right) \subset h_{n-1} \cdots h_{1}\left[V\left(g_{n}, 1 / 2^{n}\right)\right]
$$

and

$$
V\left(h_{n-1} \cdots h_{1}\left[g_{n}\right], \varepsilon_{n}\right) \cap\left(\bigcup_{i=1}^{n-1} h_{n-1} \cdots h_{1}\left[g_{i}\right]\right)=\varnothing .
$$

There exists a homeomorphism h_{n} of R^{3} onto itself such that if

$$
x \in R^{3}-V\left(h_{n-1} \cdots h_{1}\left[g_{n}\right], \varepsilon_{n} / 4\right)
$$

then $h_{n}(x)=x$, if $x \in R^{3}$ then $d\left(h_{n}(x), x\right)<\varepsilon_{n} / 4$, and $h_{n} \cdots h_{1}\left[g_{n}\right]$ is polyhedral.

Let h be $\lim _{n \rightarrow \infty} h_{n} h_{n-1} \cdots h_{1}$. $\quad h$ is the uniform limit of continuous functions, thus h is continuous. It follows from Theorem C_{2} of [9] that h is onto R^{3}.

To show that h is one-to-one, let x and y be distinct points of R^{3}. If x and y belong to the same element of G, then clearly $h(x) \neq h(y)$.

Suppose $x \in g_{x}$ and $y \in g_{y}$ and $g_{x} \neq g_{y}$ where g_{x} and g_{y} are elements of G.
Since G is upper semi-continuous, there exists a positive integer N such that if n is an integer greater than N and $x \in V\left(g_{n}, 1 / 2^{n}\right)$, then $y \notin V\left(g_{n}, 1 / 2^{n}\right)$, and if n is an integer greater than N and $y \in V\left(g_{n}, 1 / 2^{n}\right)$, then $x \notin V\left(g_{n}, 1 / 2^{n}\right)$.

Now for each positive integer n, let U_{n} be

$$
\left(h_{n-1} \cdots h_{1}\right)^{-1}\left[V\left(h_{n-1} \cdots h_{1}\right)\left[g_{n}\right], \varepsilon_{n} / 4\right]
$$

Then $U_{n} \subset V\left(g_{n}, 1 / 2^{n}\right)$. If for each positive integer n neither x nor y belongs to U_{n}, then

$$
h(x)=h_{N} \cdots h_{1}(x), h(y)=h_{N} \cdots h_{1}(y)
$$

and

$$
h(y) \neq h(x) .
$$

Suppose there exists a positive integer n such that $n>N$ and $x \in U_{n}$. Then

$$
x \in V\left(g_{n}, 1 / 2^{n}\right), y \in V\left(g_{n}, 1 / 2^{n}\right)
$$

and

$$
h_{n-1} \cdots h_{1}(x) \in V\left(h_{n-1} \cdots h_{1}\left[g_{n}\right], \varepsilon_{n} / 4\right)
$$

Since

$$
\begin{aligned}
V\left(h_{n-1} \cdots h_{1}\left[g_{n}\right], \varepsilon_{n}\right) & \subset h_{n-1} \cdots h_{1}\left[V\left(g_{n}, 1 / 2^{n}\right)\right], \\
& h_{n-1} \cdots h_{1}(y) \notin h_{n-1} \cdots h_{1}\left[V\left(g_{n}, 1 / 2^{n}\right)\right]
\end{aligned}
$$

and

$$
d\left(h_{-1}^{n} \cdots h_{1}(y), h_{n-1} \cdots h_{1}(x)\right) \geqq \varepsilon_{n} .
$$

Then

$$
d\left(h(x), h_{n-1} \cdots h_{1}(x)\right) \leqq \varepsilon_{n} / 2, d\left(h(y), h_{n-1} \cdots h_{1}(y)\right) \leqq \varepsilon_{n+1} / 2<\varepsilon_{n} / 2
$$

and

$$
d(h(x), h(y)) \neq 0
$$

Thus $h(x) \neq h(y)$. Hence h is one-to-one.
To show that h^{-1} is continuous, suppose there exists a sequence $x_{n} \rightarrow x$ such that $h^{-1}(x) \nrightarrow h^{-1}(x)$. Picking a subsequence if necessary, it can be assumed that there exists a positive number ε such that for each $i, h^{-1}\left(x_{i}\right) \notin V\left(h^{-1}(x), \varepsilon\right)$.

Since h is bounded, $\left\{h^{-1}\left(x_{i}\right): i \in J\right\}$ is bounded and $\mathrm{Cl}\left\{h^{-1}\left(x_{i}\right): i \in J\right\}$ and $\left\{h^{-1}(x)\right\}$ are disjoint compact sets. Hence for some

$$
\delta>0, d\left(h\left[\mathrm{Cl}\left\{h^{-1}\left(x_{i}\right): i \in J\right\}\right], h h^{-1}(x)\right)>\delta .
$$

Then for each positive integer $i, d\left(x_{i}, x\right)>\delta$. This is a contradiction. Thus h^{-1} is continuous.

Corollary 5. If F is an upper semi-continuous decomposition of R^{3} into tame 3-cells and points, then there exists an upper semicontinuous G into polyhedral 3 -cells and points such that F is equivalent to G.

Biblography

1. S. Armentrout, Concerning a wild 3-cell described by Bing, Duke Math. J. 13 (1966) 689-704.
2. ——, Decompositions of E^{3} with a compact 0-dimensional set of nondegenerate elements (to appear).
3. R. H. Bing, Snake-like continua, Duke Math. J. 18 (1951), 653-663.
4. -, Locally tame sets are tame, Ann. of Math. 59 (1954), 145-158.
5. -, A decomposition of E^{3} into points and tame arcs such that the decomposition space is topologically different from E^{3}, Ann. of Math. 65 (1957), 484-500.
6. ——, A wild surface each of whose arcs is tame, Duke Math. J. 28 (1961), 1-15. 7. —, Point-like decompositions of E^{3}, Fund. Math. 50 (1962), 431-453.
7. L. Lininger, Some results on crumpled cubes, Trans. Amer. Math. Soc. 118 (1965), 534-549.
8. L. McAuley, Some upper semi-continuous decompositions of E^{3} into E^{3}, Ann. of Math. 73 (1961), 437-457.
9. D. Meyer, E^{3} modulo a 3-cell, Pacific J. Math. 13 (1963), 193-196.
10. C. Papakyriakopulus, On Dehn's lemma and the asphericity of knots, Ann. of Math. 66 (1957), 1-26.
11. D. Stewart, Cellular subsets of the 3-spheres, Trans. Amer. Math. Soc. 114 (1965), 10-22.

Received April 6, 1966, and in revised form April 21, 1967. Supported by National Science Foundation Grant No. GP-4508 and by National Science Foundation Academic Year Extension.

University of Iowa
University of Missouri
Central College

