NONLINEAR ELLIPTIC CONVOLUTION EQUATIONS OF WIENER-HOPF TYPE IN A BOUNDED REGION

Bui An Ton

Abstract

The existence of a solution of a nonlinear perturbation of an elliptic convolution equation of Wiener-Hopf type in a bounded region \mathbf{G} of \mathbf{R}^{n} is proved. More explicitly, let A be an elliptic convolution operator on G of order $\alpha, \alpha>0 ; A_{j}$ the principal part of A in a local coordinate system and $\widetilde{A}_{j}\left(x^{j}, \xi\right)$ be the symbol of A_{j} with a factorization with respect to ξ_{n} of the form: $\widetilde{A}_{j}\left(x^{j}, \xi\right)=\widetilde{A}_{j}^{+}\left(x^{j}, \xi\right) \widetilde{A}_{j}^{-}\left(x^{j}, \xi\right)$ for $x_{n}^{j}=0$. $\widetilde{A}_{j}^{+}, \widetilde{A}_{j}^{-}$are homogeneous of orders $0, \alpha$ in ξ respectively; the first admitting an analytic continuation in $\operatorname{Im} \xi_{n}>0$, the second in $\operatorname{Im} \xi_{n} \leqq 0$. Let $T_{k}, k=0, \cdots,[\alpha]-1$ be bounded linear operators from $H_{+}^{k}(G)$ into $L^{2}(G)$ where $H_{+}^{k}(G), k \geqq 0$ are the Sobolev-Slobo detskii spaces of generalized functions.

The purpose of the paper is to prove the solvability of: $A u_{+}+\lambda^{\alpha} u_{+}=f\left(x, T_{0} u_{+}, \cdots, T_{[\alpha]-1} u_{+}\right)$on $G ; u_{+}$in $H_{+}^{\alpha}(G)$ for large $|\lambda|$ and on a ray $\arg \lambda=\theta$ such that $\tilde{A}_{j}+\lambda^{\alpha} \neq 0$ for $|\xi|+|\lambda| \neq 0$ and for all $j . \quad f\left(x, \zeta_{0}, \cdots, \zeta_{\alpha-1}\right)$ has at most a linear growth in $\left(\zeta_{0}, \cdots, \zeta_{\alpha-1}\right)$ and is continuous in all the variables.

Linear elliptic convolution equations in a bounded region for arbitrary α and with symbols having the above type of factorization ($\lambda=0$) have been considered recently by Visik-Eskin [3]. Those equations are similar to integral equations since no boundary conditions are required.

The notation and terminology are those of Visik-Eskin and are given in §1. The theorems are proved in § 2.

1. Let s be an arbitrary real number and $H^{s}\left(R^{n}\right)$ be the SobolevSlobodetskii space of (generalized) functions f such that:

$$
\|f\|_{s}^{2}=\int_{E^{n}}\left(1+|\xi|^{2}\right)^{s}|\tilde{f}(\xi)|^{2} d \xi<+\infty
$$

where $\widetilde{f}(\xi)$ is the Fourier transform of f.
We denote by $H^{s}\left(R_{+}^{n}\right)$, the space consisting of functions defined on $R_{+}^{n}=\left\{x: x_{n}>0\right\}$ and which are the restrictions to R_{+}^{n} of functions in $H^{s}\left(R^{n}\right)$. Let $l f$ be an extension of f to R^{n}, then:

$$
\|f\|_{s}^{+}=\|f\|_{H^{s}\left(R_{+}^{n}\right)}=\inf \|l f\|_{s} .
$$

The infimum is taken over all extensions $l f$ of f.
The $\stackrel{\circ}{H}_{0}^{+}=\left\{f_{+} ; f_{+}(x)=f(x)\right.$ if $x_{n}>0, f \in L^{2}\left(R^{n}\right), f_{+}(x)=0$ if $\left.x_{n} \leqq 0\right\}$
and similarly for $\stackrel{\circ}{H}_{0}^{-}$.
We denote by H_{s}^{+}, the space of functions f_{+}with f_{+}in $\stackrel{\circ}{H}_{0}^{+}$and $f_{+} \in \underset{\circ}{H^{s}}\left(R_{+}^{n}\right)$ on R_{+}^{n}.
$\stackrel{\circ}{H_{s}^{+}}$is the subspace of $H^{s}\left(R^{n}\right)$ consisting of functions with supports in $\mathrm{cl}\left(R_{+}^{n}\right)$. $\widetilde{H}_{s}^{+}, \widetilde{H}_{s}, \tilde{\stackrel{H}{H}}_{s}^{+}$denote respectively the spaces which are the Fourier images of $H_{s}^{+}, H^{s}\left(R^{n}\right), \stackrel{\circ}{H}_{s}^{+}$.

Let $\widetilde{f}(\xi)$ be a smooth decreasing (i.e., $|\tilde{f}(\xi)| \leqq M\left|\xi_{n}\right|^{-1-\varepsilon}$ for large $\left|\xi_{n}\right|$ and for some $\varepsilon>0$) function. The operator Π^{+}is defined as:

$$
\Pi^{+} \widetilde{f}(\xi)=\frac{1}{2} \widetilde{f}(\xi)+i(2 \pi)^{-1} \text { v.p. } \int_{-\infty}^{\infty} \tilde{f}\left(\xi^{\prime}, \eta_{n}\right)\left(\xi_{n}-\eta_{n}\right)^{-1} d \eta_{n}
$$

where $\xi^{\prime}=\left(\xi_{1}, \cdots, \xi_{n-1}\right)$.
For any \tilde{f}, then the above relation is understood as the result of the closure of the operator Π^{+}defined on the set of smooth and decreasing functions.
Π^{+}is a bounded mapping from \widetilde{H}_{s} into $\tilde{\stackrel{ }{H}}_{s}^{+}$if $0 \leqq s<1 / 2$ and is a bounded mapping from \widetilde{H}_{s} into \widetilde{H}_{s}^{+}if $s \geqq 1 / 2$.

Set: $\xi_{-}=\xi_{n}-i\left|\xi^{\prime}\right| ;\left(\xi_{-}-i\right)^{s}$ is analytic for any s if $\operatorname{Im} \xi_{n} \leqq 0$ and:

$$
\|f\|_{s}^{+}=\left\|\Pi^{+}\left(\xi_{-}-i\right)^{s} l \tilde{f}(\xi)\right\|_{0}
$$

where $l f$ is any extension of f to R^{n} (Cf. [3], p. 93 relation (8.1)).
Let G be a bounded open set of R^{n} with a smooth boundary. $H^{s}(G)$ denotes the restriction to G of functions in $H^{s}\left(R^{n}\right)$ with the norm:

$$
\|u\|_{s}=\inf \|v\|_{H^{s}\left(R^{n}\right)} ; \quad v=u \text { on } G
$$

By $H_{+}^{s}(G)$, we denote the space of functions f defined on all of R^{n}, equal to 0 on $R^{n} / \mathrm{cl}(G)$ and coinciding in $\operatorname{cl} G$ with functions in $H^{s}(G)$.

Definition 1. $\widetilde{A}(\xi)$ is in 0_{α} if and only if:
(i) $\widetilde{A}(\xi)$ is a homogeneous function of order α in ξ.
(ii) \widetilde{A} is continuous for $\xi \neq 0$.

Definition 2. $\tilde{A}_{+}(\xi)$ is in 0_{α}^{+}if and only if:
(i) $\widetilde{A}_{+}(\xi)$ is in 0_{α}.
(ii) $\tilde{A}_{+}\left(\xi^{\prime}, \xi_{n}\right)$ has an analytic continuation with respect to ξ_{n} in the half-plane $\operatorname{Im} \xi_{n}>0$ for each ξ^{\prime}.

Similar definition for 0_{α}^{-}:
Definition 3. \widetilde{A} is in E_{α} if and only if:
(i) \widetilde{A} is in 0_{α}.
(ii) $\widetilde{A}(\xi) \neq 0$ for $\xi \neq 0$.
(iii) $\widetilde{A}(\xi)$ has, for $\xi^{\prime} \neq 0$, continuous first order derivatives, bounded if $|\xi|=1, \xi^{\prime} \neq 0$.

Definition 4. $\tilde{A}\left(x, \xi^{\prime}, \xi_{n}\right)$ is in D_{α}^{0} if and only if:
(i) $\widetilde{A}(x, \xi)$ is infinitely differentiable with respect to x and ξ; $\xi \neq 0$.
(ii) $\widetilde{A}(x, \xi)$ is in 0_{α} for x in R^{n}.
(iii) $\quad a_{k 2}(x)=\frac{\partial^{k}}{\left(\partial \xi^{\prime}\right)^{k}} \widetilde{A}(x, 0,-1)=(-1)^{k} \exp (-i \alpha \pi) \frac{\partial^{k}}{\left(\partial \xi^{\prime}\right)^{k}} \widetilde{A}(x, 0,1)$ x in $R^{n} ; 0 \leqq|k|<\infty ; k=\left(k_{1}, \cdots, k_{n}\right)$.

Definition 5. Let A be a bounded linear operator from H_{s}^{+}into $H^{s-\alpha}\left(R_{+}^{n}\right)$. Then any bounded linear operator T from H_{s-1}^{+}into $H^{s-\alpha}\left(R_{+}^{n}\right)$, (or from H_{s}^{+}into $H^{s-\alpha+1}\left(R_{+}^{n}\right)$) is called a right (left) smoothing operator with respect to A.
T is a smoothing operator with respect to A if it is both a left ane right smoothing operator.

Let $\widetilde{A}(\xi)$ be in 0_{α} for $\alpha>0$. For u_{+}in $H_{s}^{+}, s \geqq 0$, with support in $\operatorname{cl}\left(R_{+}^{n}\right)$, set: $A u_{+}=F^{-1}\left(\widetilde{A}(\xi) \widetilde{u}_{+}(\xi)\right)$ where F^{-1} is the inverse Fourier transform. It is well defined in the sense of generalized functions. A is a bounded linear operator from H_{s}^{+}into $H^{s-\alpha}\left(R^{n}\right)$.

Let $\widetilde{A}(x, \xi)$ be an element of E_{α} for each x in $\operatorname{cl} G$ and $\widetilde{A}(x, \xi)$ be infinitely differentiable with respect to x and ξ. Since G is a bounded set of R^{n}, we may assume that G is contained in a cube of side $2 p$ centered at 0 . We extend $\widetilde{A}(x, \xi)$ with respect to x to all of R^{n} by setting $\widetilde{A}(x, \xi)=0$ if $|x| \geqq p-\varepsilon$ for $\varepsilon>0$. We get a finite function, homogeneous of order α with respect to ξ.

We take the expansion into Fourier series of $\widetilde{A}(x, \xi)$:

$$
\widetilde{A}(x, \xi)=\sum_{k=-\infty}^{\infty} \psi_{0}(x) \exp [(i \pi k x) / p] \widetilde{L}_{k}(\xi) ; \quad k=\left(k_{1}, \cdots, k_{n}\right)
$$

where:

$$
\widetilde{L}_{k}(\xi)=(2 p)^{-n} \int_{-p}^{p} \exp [(-i \pi k x) / p] \widetilde{A}(x, \xi) d x
$$

$\psi_{0}(x)=1$ for $|x| \leqq p-\varepsilon ; \psi_{0}(x)=0$ for $|x| \geqq p ; \psi_{0}(x) \in C_{c}^{\infty}\left(R^{n}\right)$. We have: $\left|\widetilde{L}_{k}(\xi)\right| \leqq C|\xi|^{\alpha}(1+|k|)^{-M}$ for arbitrary positive M. Let u_{+}be in $H_{+}^{s}(G)$, we define:

$$
\begin{equation*}
A u_{+}=\sum_{-\infty}^{\infty} \psi_{0}(x)[\exp ((i k x \pi) / p)] L_{k} * u_{+} \tag{1.1}
\end{equation*}
$$

where $L_{k} * u_{+}=L_{k} u_{+}$is defined as before since $\widetilde{L}_{k}(\xi)$ is independent of x.

Denote by P^{+}, the restriction operator of functions defined on R^{n} to G. We consider an elliptic convolution equation of order α, on G of the form:

$$
\begin{equation*}
P^{+} A u_{+}=\sum_{j} P^{+} \varphi_{j} A \psi_{j} u_{+}+T u_{+} \tag{1.2}
\end{equation*}
$$

T is a smoothing operator. The φ_{j} is a finite partition of unity corresponding to a covering N_{j} of $\mathrm{cl} G$ with diam $\left(N_{j}\right)$ sufficiently small. The ψ_{j} are in $C_{c}^{\infty}\left(R^{n}\right)$ with $\varphi_{j} \psi_{j}=\varphi_{j}$ and $\operatorname{supp}\left(\psi_{j}\right) \subseteq N_{j}$.

Suppose $\widetilde{A} \in D_{\alpha}^{0}$, then the operator $\varphi_{j} A \psi_{j}$ taken in local coordinates may be written as:

$$
\varphi_{j} A \psi_{j}=\varphi_{j} A_{j} \psi_{j}+T_{j}
$$

where A_{j} is a convolution operator of the form (1.1) and T_{j} is a smoothing operator (Cf. [3] Appendix 2).
2. The main result of the paper is the following theorem:

Theorem 1. Let A be an elliptic convolution operator on G, of order $\alpha>0$, and of the form (1.2). Suppose that:
(i) $\widetilde{A}_{j}\left(x^{j}, \xi\right) \in E_{\alpha} \cap D_{\alpha}^{0}$.
(ii) $\widetilde{A}_{j}\left(x^{j}, \xi\right)$ has for $x_{n}^{j}=0$ a factorization of the form:

$$
\widetilde{A}_{j}\left(x^{j}, \xi\right)=\widetilde{A}_{j}^{+}\left(x^{j}, \xi\right) \widetilde{A}_{j}^{-}\left(x^{j}, \xi\right)
$$

where $\widetilde{A}_{j}^{+} \in 0_{0}^{+} ; \widetilde{A}_{j}^{-} \in 0_{\alpha}^{-}$for all $x^{j} \in N_{j} \cap G$.
(iii) There exists a ray $\arg \lambda=\theta$ such that $\widetilde{A}_{j}\left(x^{j}, \xi\right)+\lambda^{\alpha} \neq 0$ for $|\xi|+|\lambda| \neq 0, x^{j} \in N_{j} \cap G$.

Let $f\left(x, \zeta_{0}, \cdots, \zeta_{[\alpha]-1}\right)$ be a function measurable in x on G, continuous in all the other variables. Suppose there exists a positive constant M such that:

$$
\left|f\left(x, \zeta_{0}, \cdots, \zeta_{[\alpha]-1}\right)\right| \leqq M\left\{1+\sum_{j=0}^{[\alpha]-1}\left|\zeta_{j}\right|\right\}
$$

Let $T_{k} ; k=0, \cdots,[\alpha]-1$ be bounded, linear operators from $H_{+}^{k}(G)$ into $L^{2}(G)$. Then for $|\lambda| \geqq \lambda_{0}>0$; arg $\lambda=\theta$; there exists a solution u in $H_{+}^{\alpha}(G)$ of:

$$
P^{+}\left(A+\lambda^{\alpha}\right) u_{+}=f\left(x, T_{0} u_{+}, \cdots, T_{[\alpha]-1} u_{+}\right) \quad \text { on } G
$$

The solution is unique if f satisfies a Lipschitz condition in $\left(\zeta_{0}, \cdots, \zeta_{[\alpha]-1}\right)$.

To prove the theorem, we shall do as in [2]. First, following Visik-Agranovich [4], we establish an a priori estimate and show the existence and the uniqueness of a solution of a linear elliptic convolution
equation depending on a large parameter in a bounded region. Then we use the Leray-Schauder fixed point theorem to prove Theorem 1.

We have:
Theorem 2. Let A be an elliptic convolution operator, of order $\alpha>0$, of the form (1.2). Suppose that all the hypotheses of Theorem 1 are satisfied. Let $f \in L^{2}(G)$; then there exists a unique solution u_{+} in $H_{+}^{\alpha}(G)$ of:

$$
P^{+}\left(A+\lambda^{\alpha}\right) u_{+}=f \text { on } G ;|\lambda| \geqq \lambda_{0}>0 \quad \text { arg } \lambda=\theta .
$$

Moreover:

$$
\left\|u_{+}\right\|_{\alpha}+|\lambda|^{\alpha}\left\|u_{+}\right\|_{0} \leqq M\|f\|_{0}
$$

where M is independent of λ, u_{+}.
Proof of Theorem 1. Let v be an element of $H_{+}^{\alpha}(G)$ and $0 \leqq t \leqq 1$. Consider the linear elliptic convolution equation:

$$
P^{+}\left(A u_{+}+\lambda^{\alpha} u_{+}\right)=f\left(x, t T_{0} v, \cdots, t T_{[\alpha]-1} v\right) .
$$

With the hypotheses of the theorem, $f\left(x, t T_{0} v, \cdots, t T_{[\alpha]-1} v\right)$ is in $L^{2}(\mathrm{G})$. It follows from Theorem 2 that there exists a unique solution u_{+}in $H_{+}^{\alpha}(G)$ of the problem.

Let $\mathscr{A}(t)$ be the nonlinear mapping from $[0,1] \times H_{+}^{\alpha}(G)$ into $H_{+}^{\alpha}(G)$ defined by $\mathscr{A}(t) v=u_{+}$where u_{+}is the unique solution of the above problem.

The theorem is proved if we can show that $\mathscr{A}(1)$ has a fixed point.

Proposition 1. $\mathscr{A}(t)$ is a completely continuous mapping from $[0,1] \times H_{+}^{\alpha}(G)$ into $H_{+}^{\alpha}(G)$.

Proof. (i) $\mathscr{A}(t)$ is continuous. Suppose that $t_{n} \rightarrow t ; t_{n}, t$ in $[0,1] v_{n} \rightarrow v$ in $H_{+}^{\alpha}(G)$. Set: $u_{n}=\mathscr{A}\left(t_{n}\right) v_{n}$. Then from Theorem 2, we get:

$$
\begin{aligned}
\left\|u_{n}-u\right\|_{\alpha} \leqq M \| f\left(\cdot, t_{n} T_{0}\right. & \left.v_{n}, \cdots, t_{n} T_{[\alpha]-1} v_{n}\right) \\
& -f\left(\cdot, t T_{0} v, \cdots, t T_{[\alpha]-1} v\right) \|_{0} \cdot
\end{aligned}
$$

It follows from Lemmas 3.1 and 3.2 of [1] that $u_{n} \rightarrow u$ in $H_{+}^{\alpha}(G)$.
(ii) $\mathscr{A}(t)$ is compact. Suppose that $\left\|v_{n}\right\|_{\alpha} \leqq M$. Then from the weak compactness of the unit ball in a Hilbert space and from the generalized Sobolev imbedding theorem, we get:

$$
v_{n_{j}} \rightarrow v \text { weakly in } H_{+}^{\alpha}(G) \text { and strongly in } H_{+}^{\alpha-\varepsilon}(G) ; 0<\varepsilon, \alpha-\varepsilon \geqq 0 .
$$

Applying the argument of the first part, we get the compactness of $\mathscr{A}(t)$.

Proposition 2. $I-\mathscr{A}(0)$ is a homeomorphism of $H_{+}^{\alpha}(G)$ into itself. If $v=\mathscr{A}(t) v$, for $0<t \leqq 1$; then: $\|v\|_{\alpha} \leqq M$ where M is independent of t.

Proof. The first assertion is trivial.
Suppose that $v=\mathscr{A}(t) v$. It follows from Theorem 2 that:

$$
\begin{aligned}
\|v\|_{\alpha}+|\lambda|^{\alpha}\|v\|_{0} & \leqq M\left\|f\left(\cdot, t T_{0} v, \cdots, t T_{[\alpha]-1} v\right)\right\|_{0} \\
& \leqq M\left\{1+\|v\|_{[\alpha]-1}\right\} .
\end{aligned}
$$

It is well-known that:

$$
\|v\|_{[\alpha]-1} \leqq 1 / 2 M\|v\|_{\alpha}+C\|v\|_{0} .
$$

Taking $|\lambda|$ sufficiently large, we have: $\|v\|_{\alpha} \leqq M_{2} . \mathscr{A}(t)$ satisfies the hypotheses of the Leray-Schauder fixed point theorem (the uniform continutiy condition as in [2] is not necessary). So $\mathscr{A}(1)$ has a fixed point, i.e. $\mathscr{A}(1) u_{+}=u_{+}$.

The uniqueness of the solution in the case $f\left(x, \zeta_{0}, \cdots, \zeta_{[\alpha]-1}\right)$ satisfies a Lipschitz condition in ($\left.\zeta_{0}, \cdots, \zeta_{[\alpha]-1}\right)$ follows trivially from the estimate of Theorem 2. We shall not reproduce it.

Proof of Theorem 2. As usual, we consider first the case of the positive half-space R_{+}^{n} with the convolution operator A having a constant symbol.

Lemma 1. Let $\widetilde{A}(\tilde{\xi})$ be an element of $E_{\alpha},(\alpha>0)$. Suppose that: $\widetilde{A}(\xi)=\widetilde{A}_{+}(\xi) \tilde{A}_{-}(\xi)$ with $\widetilde{A}_{+}(\xi)$ in $0_{0}^{+}, \widetilde{A}_{-}(\xi)$ in 0_{α}^{-}. Let P^{+}be the restriction operator of functions in R^{n} to R_{+}^{n} and A be the convolution operator with symbol $\widetilde{A}(\xi)$. Suppose there exists a ray $\arg \lambda=0$ such that: $\widetilde{A}(\xi)+\lambda^{\alpha} \neq 0$ for $|\xi|+|\lambda| \neq 0$. If f is in $H^{0}\left(R_{+}^{n}\right)$, then there exists a unique solution u in H_{α}^{+}of:

$$
P^{+}\left(A+\lambda^{\alpha}\right) u_{+}=f \text { on } R_{+}^{n} ;|\lambda| \geqq \lambda_{0}>0 .
$$

Moreover:

$$
\left\|u_{+}\right\|_{\alpha}^{+}+|\lambda|^{\alpha}\left\|u_{+}\right\|_{0}^{+} \leqq M\|f\|_{0}^{+}
$$

where M is independent of λ, u_{+}, f.
Proof. Set $\widetilde{A}(\xi, \lambda)=\widetilde{A}(\xi)+\lambda^{\alpha}$. It is homogeneous of order α in (ξ, λ). Since $\widetilde{A}(\xi)$ is in E_{α}, we have the following factorization with respect to ξ_{n}, which is unique up to a constant multiplier:

$$
\widetilde{A}(\xi)=\widetilde{A}_{+}(\xi) \widetilde{A}_{-}(\xi)
$$

(Cf. Theorem 1.2 of [3], p. 95). The same proof with $\xi_{+}=\xi_{n}+i\left|\xi^{\prime}\right|$ replaced by $\xi_{+}^{2}=\xi_{n}+i\left(|\lambda|+\left|\xi^{\prime}\right|\right)$ and ξ_{-}replaced by:

$$
\xi_{-}^{2}=\xi_{n}-i\left(|\lambda|+\left|\xi^{\prime}\right|\right)
$$

gives:

$$
\tilde{A}(\xi, \lambda)=\tilde{A}_{+}(\xi, \lambda) \tilde{A}_{-}(\xi, \lambda) .
$$

Moreover:
If $\widetilde{A}_{+}(\xi)$ is in 0_{0}^{+}, then $\widetilde{A}_{+}(\xi, \lambda)$ is also in O_{0} (is homogeneous of order 0 in ($\xi, \lambda)$). Similarly for $\widetilde{A}_{-}(\xi, \lambda)$.

Let $l f(x)$ be an extension of f to R^{n}. Consider:

$$
\tilde{u}_{+}(\xi)=\left(\tilde{A}_{+}(\xi, \lambda)\right)^{-1} \Pi^{+} l \tilde{f}(\xi)\left(\tilde{A}_{-}(\xi, \lambda)\right)^{-1} .
$$

For $|\lambda| \neq 0, \tilde{u}_{+}(\xi)$ has an analytic continuation in $\operatorname{Im} \xi_{n}>0$ and:

$$
\int\left|\widetilde{u}_{+}\left(\xi^{\prime}, \xi_{n}+i \tau\right)\right|^{2} d \xi^{\prime} d \xi_{n} \leqq C,
$$

C is independent of $\tau>0 . \quad$ So: $\widetilde{u}_{+}(\xi) \in \stackrel{\tilde{H_{0}^{+}}}{0} . \quad$ (Cf. [3], p. 91).
We get:

$$
\begin{aligned}
\left\|u_{+}\right\|_{\alpha}^{+}= & \left\|\Pi^{+}\left(\xi_{-}-i\right)^{\alpha} \tilde{u}_{+}(\xi)\right\|_{0}^{+} \\
& \leqq\left\|\left(\xi_{-}-i\right)^{\alpha}\left(\tilde{A}_{+}(\xi, \lambda)\right)^{-1} \Pi^{+} l \tilde{f}(\xi)\left(\tilde{A}_{-}(\tilde{\xi}, \lambda)\right)^{-1}\right\|_{0} .
\end{aligned}
$$

Since $\widetilde{A}_{+}(\xi, \lambda)$ is homogeneous of order 0 in (ξ, λ), we have:

$$
\widetilde{A}_{+}(\xi, \lambda)=\widetilde{A}_{+}(\xi /(|\xi|+|\lambda|), \lambda /(|\xi|+|\lambda|)) .
$$

Let $c=\operatorname{Min}\left|\tilde{A}_{+}(\xi, \lambda)\right|$ for $|\xi|+|\lambda|=1, \arg \lambda=\theta . \quad$ Then $c>0$ and is independent of λ.

So:

$$
\begin{aligned}
\left\|u_{+}\right\|_{\dot{\alpha}}^{+} & \leqq c^{-1}\left\|\left(\xi_{-}-i\right)^{\alpha} \Pi^{+} l \tilde{f}(\xi)\left(\tilde{A}_{-}(\xi, \lambda)\right)^{-1}\right\|_{0} \\
& \leqq C\left\|l \tilde{f}(\xi)\left(\tilde{A}_{-}(\xi, \lambda)\right)^{-1}\right\|_{\alpha} .
\end{aligned}
$$

We may write:

$$
\tilde{A}_{-}(\xi, \lambda)=(|\xi|+|\lambda|)^{\alpha} \tilde{A}_{-}(\xi /(|\xi|+|\lambda|), \lambda /(|\xi|+|\lambda|)) .
$$

Let $C=\operatorname{Min}\left|\widetilde{A}_{-}(\xi, \lambda)\right|$ for $|\xi|+|\lambda|=1, \arg \lambda=\theta$. Then $C>0$ and is independent of λ.

We obtain:

$$
\left\|u_{+}\right\|_{\alpha}^{+} \leqq C\|l \widetilde{f}(\xi)\|_{0} \leqq C_{2}\|f\|_{0}^{+} .
$$

A similar argument gives:

$$
\left\|u_{+}\right\|_{0}^{+} \leqq C|\lambda|^{-\alpha}\|f\|_{0}^{+} .
$$

So:

$$
\left\|u_{+}\right\|_{\alpha}^{+}+|\lambda|^{\alpha}\left\|u_{+}\right\|_{0}^{+} \leqq C\|f\|_{0}^{+} .
$$

C is independent of λ, f, u_{+}.
A direct verification shows that u_{+}is a solution of the equation. It remains to show that the solution is unique. Let v_{+}be an element of H_{α}^{+}. Suppose that v_{+}is also a solution of the equation. Then as in [3], $\widetilde{v}_{+}(\xi)$, its Fourier transform is given by an expression of the same form as $\tilde{u}_{+}(\xi)$ with $\widetilde{l f}(\xi)$ replaced by $\widetilde{l_{1} f(\xi)}$. $l_{1} f$ being an extension of f to R^{n}.

Set $l_{2} f=l f-l_{1} f . \quad$ Then $l_{2} f \in H_{0}^{-}$, so $\widetilde{l_{2} f \in \widetilde{H_{0}^{-}} . \widetilde{l_{2} f(\xi)}\left(\widetilde{A_{-}}(\xi, \lambda)\right)^{-1}, ~}$ is analytic in $\operatorname{Im} \xi_{n} \leqq 0$ for $|\lambda| \neq 0$ and moreover:

$$
\int \mid \widetilde{\left.l_{2} f\left(\xi^{\prime}, \xi_{n}+i \tau\right)\right|^{2}\left|\widetilde{A}_{-}\left(\xi^{\prime}, \xi_{n}+i \tau\right)\right|^{-2} d \xi^{\prime} d \xi_{n} \leqq C}
$$

where C is independent of $\tau \leqq 0$.
Hence $\widetilde{l_{2} f(\xi)}\left(\widetilde{A}_{-}(\xi, \lambda)\right)^{-1}$ is in $\widetilde{H_{0}^{-}}$(Cf. [3], p. 91), so:

$$
\left.\left.\Pi^{+} \widetilde{l_{2} f(\xi)}\left(\widetilde{A}_{-}(\xi, \lambda)\right)^{-1}\right)\right)=0 .
$$

Therefore: $\widetilde{A}_{+}(\xi, \lambda)\left(\widetilde{u}_{+}(\xi)-\widetilde{v}_{+}(\xi)\right)=0$.
But $\tilde{A}_{+}(\xi, \lambda) \neq 0$ for $|\lambda| \neq 0$, we get $\tilde{u}_{+}=\tilde{v}_{+}$. Q.E.D.

Set:

$$
\begin{aligned}
& A_{1} u=\sum_{k=-\infty}^{\infty} \psi r_{0}(x) \exp [(i k \pi x) / p] L_{k} * u \\
& A_{0} u=\sum_{k=-\infty}^{\infty} \psi_{0}\left(x_{0}\right) \exp [(i k \pi) / p] L_{k} * u
\end{aligned}
$$

where L_{k}, ψ_{0} are as in $\S 1$.
Lemma 2. Let A_{1}, A_{0} be as above and $\psi(x)$ be in $C_{c}^{\infty}\left(R^{n}\right)$ with $\psi(x)=0$ for $\left|x-x_{0}\right|>\delta ;|\psi(x)| \leqq K$ where K is independent of δ. Then:

$$
\left\|\psi\left(A_{1}-A_{0}\right) u\right\|_{s-\alpha}^{+} \leqq C \delta\|u\|_{s}^{+}+C(\delta)\|u\|_{s-1}^{+}
$$

for all u in $H_{s}^{+}, s \geqq 0$.
Proof. Cf. Lemma 4.7 of [3], p. 119.

Proof of Theorem 2 (continued). (1) First, we establish an a priori estimate of the solutions.

Consider:

$$
P^{+} \varphi_{j} A \psi_{j} u_{+}+\lambda^{\alpha} P^{+}\left(\varphi_{j} u_{+}\right)=P^{+}\left(\varphi_{j} f\right)-T u_{+}
$$

where T is a smoothing operator with respect to $\varphi_{j} A \psi_{j}$.
It has been shown in [3] (Appendix 2) that in a local coordinates system, the operator $\varphi_{j} A \psi_{j}$ becomes: $\varphi_{j} A_{j} \psi_{j}+T_{j}$ where A_{j} has for symbol $\widetilde{A}_{j}\left(x^{j}, \xi\right)$ and T_{j} is a smoothing operator.

So, we have:

$$
P^{+} \varphi_{j} A_{j}\left(\psi_{j} u_{+}\right)+\lambda^{\alpha} P^{+}\left(\varphi_{j} u_{+}\right)=P^{+}\left(\varphi_{j} f\right)+T_{j}^{2} u_{+}
$$

where T_{j}^{2} is again a smoothing operator.
Let $A_{j 0}$ be the convolution operator with symbol $\widetilde{A}_{j}\left(x_{0}^{j}, \xi\right)$ evaluted at the point x_{0}^{j}. We write:

$$
\begin{aligned}
P^{+} \varphi_{j} A_{j 0}\left(\psi_{j} u_{+}\right)+\lambda^{\alpha} P^{+} & \left(\varphi_{j} u_{+}\right)=P^{+}\left(\varphi_{j} f\right) \\
& +T_{j}^{2} u_{+}+P^{+} \varphi_{j}\left(A_{j 0}-A_{j}\right) \psi_{j} u^{+} .
\end{aligned}
$$

Applying Lemma 4.D. 1 of [3] (p. 145), we have:

$$
P^{+} \varphi_{j} A_{j 0}\left(\psi_{j} u_{+}\right)=P^{+} A_{j 0}\left(\varphi_{j} u_{+}\right)+T_{j}^{3} u_{+}
$$

where T_{j}^{3} is a smoothing operator.
Therefore:

$$
\left(A_{j 0}+\lambda^{\alpha}\right) \varphi_{j} u_{+}=\varphi_{j} f+T_{j}^{4} u_{+}+\varphi_{j}\left(A_{j 0}-A_{j}\right)\left(\psi_{j} u_{+}\right)
$$

The symbols $\widetilde{A}_{j 0}$ satisfy the hypotheses of Lemma 1. Applying Lemma 1; 2, we obtain:

$$
\begin{aligned}
&\left\|\varphi_{j} u_{+}\right\|_{\alpha}^{+}+|\lambda|^{\alpha}\left\|\varphi_{j} u_{+}\right\|_{0}^{+} \leqq M\left\{\left\|\varphi_{j} f\right\|_{0}^{+}+\left\|u_{+}\right\|_{0}\right. \\
&\left.+1 / 2 M\left\|u_{+}\right\|_{\alpha}+\left\|\psi_{j} u_{+}\right\|_{\alpha}^{+}+\left\|\varphi_{j} u_{+}\right\|_{0}^{+}\right\}
\end{aligned}
$$

where we have used the well-known inequality:

$$
\left\|u_{+}\right\|_{\alpha-1} \leqq \varepsilon\left\|u_{+}\right\|_{\alpha}+C(\varepsilon)\left\|u_{+}\right\|_{0} .
$$

On the other hand: $\left\|\psi_{j} u_{+}\right\|_{\alpha}^{+} \leqq M\left\|u_{+}\right\|_{\alpha}$. Summing with respect to j, we get:

$$
\begin{aligned}
\left\|u_{+}\right\|_{\alpha} & +|\lambda|^{\alpha}\left\|u_{+}\right\|_{0} \leqq M\left\{\|f\|_{0}+1 / 2 M\left\|u_{+}\right\|_{\alpha}\right. \\
& \left.+\delta\left\|u_{+}\right\|_{\alpha}+K\left\|u_{+}\right\|_{0}\right\}
\end{aligned}
$$

Taking δ small and $|\lambda|$ sufficiently large, we have:

$$
\left\|u_{+}\right\|_{\alpha}+|\lambda|^{\alpha}\left\|u_{+}\right\|_{0} \leqq M\|f\|_{0}
$$

So, if there exists a solution, then the solution is unique.
(2) It remains to show the existence of a solution. From Lemma 1, we know that $P^{+}\left(A_{j 0}+\lambda^{\alpha}\right)$ has an inverse $R_{j 0}$. Let $\hat{R}_{j 0}$ be the operator $R_{j 0}$ expressed in the global system of coordinates of G. Consider:

$$
R f=\sum_{j} \varphi_{j} \hat{R}_{j 0}\left(\psi_{j} f\right)
$$

R is a bounded linear mapping from $L^{2}(G)$ into $H_{+}^{\alpha}(G)$.
We show that: $\mathscr{A} R f=P^{+}\left(A+\lambda^{\alpha}\right) R f=f+\mathscr{C} f$ with $\|\mathscr{C}\| \leqq 1 / 2$.
We have:

$$
\mathscr{A} R f=\sum_{j} P^{+}\left(A+\lambda^{\alpha}\right) \varphi_{j} \psi_{j} \hat{R}_{j 0}\left(\psi_{j} f\right)
$$

Applying Lemma 4.D.1. of [3], we may write:

$$
\mathscr{A} R f=\sum_{j} P^{+} \varphi_{j}\left(A+\lambda^{\alpha}\right) \psi_{j} \hat{R}_{j 0}\left(\psi_{j} f\right)+T R f
$$

where T is a smoothing operator.
We express $\varphi_{j}\left(A+\lambda^{\alpha}\right) \psi_{j} \hat{R}_{j 0}\left(\psi_{j} f\right)$ in local coordinates. We get:

$$
\varphi_{j}\left(A_{j 0}+\lambda^{\alpha}\right) \psi_{j} R_{j 0}\left(\psi_{j} f\right)+\varphi_{j}\left(A_{j}-A_{j 0}\right) \psi_{j} R_{j 0}\left(\psi_{j} f\right)+T_{j}^{1} R_{j 0}\left(\psi_{j} f\right)
$$

Using Lemma 4.D. 1 of [3] again, we obtain:

$$
\begin{aligned}
& \varphi_{j}\left(A_{j 0}+\lambda^{\alpha}\right) R_{j 0}\left(\psi_{j} f\right)+\varphi_{j}\left(A_{j}-A_{j 0}\right) \psi_{j} R_{j 0}\left(\psi_{j} f\right)+T_{j}^{2} R_{j 0}\left(\psi_{j} f\right) \\
= & T_{j}^{2} R_{j 0}\left(\psi_{j} f\right)+\varphi_{j} f+\varphi_{j}\left(A_{j}-A_{j 0}\right) \psi_{j} R_{j 0}\left(\psi_{j} f\right)=\varphi_{j} f+\mathscr{C}_{j}\left(\psi_{j} f\right) .
\end{aligned}
$$

The T_{j} are all smoothing operators.
Applying Lemma 1 , we have:

$$
\left\|T_{j}^{2} R_{j 0}\left(\psi_{j} f\right)\right\|_{0}^{+} \leqq C\left\|R_{j 0}\left(\psi_{j} f\right)\right\|_{\alpha-1}^{+} \leqq \varepsilon\|f\|_{0}+C|\lambda|^{-\alpha}\|f\|_{0}
$$

From Lemmas 1 and 2, we get:

$$
\begin{aligned}
\left\|\varphi_{j}\left(A_{j}-A_{j 0}\right) \psi_{j} R_{j 0}\left(\psi_{j} f\right)\right\|_{0}^{+} \leqq & \delta\left\|\psi_{j} R_{j 0}\left(\psi_{j} f\right)\right\|_{\alpha}^{+} \\
& +C(\delta)\left\|\psi_{j} R_{j 0}\left(\psi_{j} f\right)\right\|_{\alpha-1}^{+} \\
\leqq & \delta\|f\|_{0}+C(\delta)\left\|\hat{R}_{j 0}\left(\psi_{j} f\right)\right\|_{\alpha-1} \\
\leqq & \delta\|f\|_{0}+\varepsilon C(\delta)\left\|R_{j 0}\left(\psi_{j} f\right)\right\|_{\alpha} \\
& +C(\delta) M(\varepsilon)\left\|\hat{R}_{j 0}\left(\psi_{j} f\right)\right\|_{0} \\
\leqq & \{\delta+\varepsilon C(\delta)\}\|f\|_{0} \\
& +|\lambda|^{-\alpha} M(\varepsilon) C(\delta)\|f\|_{0} .
\end{aligned}
$$

Taking ε, δ small, $|\lambda|$ large enough, we have:

$$
\left\|\mathscr{C}_{j}\left(\psi_{j} f\right)\right\|_{0}^{+} \leqq \frac{1}{4 N}\|f\|_{0}
$$

We obtain:

$$
R f=f+T R f+\sum_{j} \hat{\mathscr{C}}_{j}\left(\psi_{j} f\right)=f+\mathscr{C} f
$$

where $\hat{\mathscr{C}}_{j}$ is the operator \mathscr{C}_{j} expressed in the global coordinates system of G. We obtain: $\|\mathscr{C} f\|_{0} \leqq 1 / 4\|f\|_{0}+1 / 4\|f\|_{0}$ for large $|\lambda|$.

Hence $\|\mathscr{C}\| \leqq 1 / 2$; therefore $(I+\mathscr{C})^{-1}$ exists. We define:

$$
\mathscr{A}^{-1}=R(I+\mathscr{C})^{-1}
$$

The writer wishes to thank the referee for his remarks.

Bibliography

1. F. E. Browder, Nonlinear elliptic boundary value problems II, Trans. Amer. Math. Soc. 117 (1965), 530-550.
2. B. A. Ton, On nonlinear elliptic boundary value problems, Bull. Amer. Math. Soc. 72 (1966), 307-313.
3. M. I. Visik and G. I. Eskin, Equations in convolution in a bounded region, Uspehi Mat. Nauk. 20 (1965), No. 3, 90-153; Russian Math. Surveys 20 (1965), 85-157.
4. M. I. Visik and M. S. Agranovich, Elliptic problems with a parameter and parabolic problems of general type, Uspehi Mat. Nauk. 19 (1964), 53-161; Russian Math. Surveys, No. 3 (1964), 53-157.

Received March 20, 1967.
University of British Columbia
Vancouver, Canada

