NONLINEAR ELLIPTIC CONVOLUTION EQUATIONS OF WIENER-HOPF TYPE IN A BOUNDED REGION

Bui An Ton

The existence of a solution of a nonlinear perturbation of an elliptic convolution equation of Wiener-Hopf type in a bounded region G of \mathbb{R}^n is proved. More explicitly, let A be an elliptic convolution operator on G of order $\alpha, \alpha > 0$; A_j the principal part of A in a local coordinate system and $\widetilde{A}_j(x^j,\xi)$ be the symbol of A_j with a factorization with respect to ξ_n of the form: $\widetilde{A}_j(x^j,\xi) = \widetilde{A}_j^+(x^j,\xi)\widetilde{A}_j^-(x^j,\xi)$ for $x_n^j = 0$. $\widetilde{A}_j^+,\widetilde{A}_j^-$ are homogeneous of orders $0,\alpha$ in ξ respectively; the first admitting an analytic continuation in $\mathrm{Im}\ \xi_n > 0$, the second in $\mathrm{Im}\ \xi_n \le 0$. Let $T_k,\ k = 0, \cdots, [\alpha] - 1$ be bounded linear operators from $H_+^k(G)$ into $L^2(G)$ where $H_+^k(G),\ k \ge 0$ are the Sobolev-Slobo detskii spaces of generalized functions.

The purpose of the paper is to prove the solvability of: $Au_+ + \lambda^{\alpha}u_+ = f(x, T_0u_+, \cdots, T_{\lfloor\alpha\rfloor-1}u_+)$ on G; u_+ in $H^{\alpha}_+(G)$ for large $|\lambda|$ and on a ray $\arg \lambda = \theta$ such that $\widetilde{A}_j + \lambda^{\alpha} \neq 0$ for $|\xi| + |\lambda| \neq 0$ and for all j. $f(x, \zeta_0, \cdots, \zeta_{\alpha-1})$ has at most a linear growth in $(\zeta_0, \cdots, \zeta_{\alpha-1})$ and is continuous in all the variables.

Linear elliptic convolution equations in a bounded region for arbitrary α and with symbols having the above type of factorization ($\lambda=0$) have been considered recently by Visik-Eskin [3]. Those equations are similar to integral equations since no boundary conditions are required.

The notation and terminology are those of Visik-Eskin and are given in § 1. The theorems are proved in § 2.

1. Let s be an arbitrary real number and $H^s(\mathbb{R}^n)$ be the Sobolev-Slobodetskii space of (generalized) functions f such that:

$$||f||_s^2=\int_{E^n}(1+|\,\xi\,|^2)^s\,|\,\widetilde{f}(\xi)\,|^2d\xi<+\infty$$

where $\tilde{f}(\xi)$ is the Fourier transform of f.

We denote by $H^s(R_+^n)$, the space consisting of functions defined on $R_+^n = \{x: x_n > 0\}$ and which are the restrictions to R_+^n of functions in $H^s(R^n)$. Let lf be an extension of f to R^n , then:

$$||f||_{\mathfrak{s}}^{+} = ||f||_{H^{s}(R^{n}_{\perp})} = \inf ||lf||_{\mathfrak{s}}$$
 .

The infimum is taken over all extensions lf of f.

The
$$\overset{\circ}{H_0^+} = \{f_+; f_+(x) = f(x) \text{ if } x_n > 0, f \in L^2(\mathbb{R}^n), f_+(x) = 0 \text{ if } x_n \leq 0\}$$

and similarly for \mathring{H}_{0} .

We denote by H_s^+ , the space of functions f_+ with f_+ in $\overset{\circ}{H_0^+}$ and $f_+ \in H^s(R_+^n)$ on R_+^n .

 H_s^+ is the subspace of $H^s(R^n)$ consisting of functions with supports in cl (R_+^n) . \tilde{H}_s^+ , \tilde{H}_s^+ , \tilde{H}_s^+ denote respectively the spaces which are the Fourier images of H_s^+ , $H^s(R^n)$, H_s^+ .

Let $\widetilde{f}(\xi)$ be a smooth decreasing (i.e., $|\widetilde{f}(\xi)| \leq M |\xi_n|^{-1-\varepsilon}$ for large $|\xi_n|$ and for some $\varepsilon > 0$) function. The operator Π^+ is defined as:

$$\prod^+ \widetilde{f}(\xi) = rac{1}{2}\widetilde{f}(\xi) \,+\, i(2\pi)^{-1}\,\mathrm{v.p.}\int_{-\infty}^\infty \widetilde{f}(\xi',\,\eta_n)(\xi_n\,-\,\eta_n)^{-1}d\eta_n$$

where $\xi' = (\xi_1, \dots, \xi_{n-1})$.

For any \widetilde{f} , then the above relation is understood as the result of the closure of the operator Π^+ defined on the set of smooth and decreasing functions.

 Π^+ is a bounded mapping from \widetilde{H}_s into $\overset{\circ}{H_s^+}$ if $0 \le s < 1/2$ and is a bounded mapping from \widetilde{H}_s into \widetilde{H}_s^+ if $s \ge 1/2$.

Set: $\xi_{-} = \xi_{n} - i | \xi' |$; $(\xi_{-} - i)^{s}$ is analytic for any s if Im $\xi_{n} \leq 0$ and:

$$||f||_{s}^{+} = ||\prod^{+}(\xi_{-} - i)^{s}l\widetilde{f}(\xi)||_{0}$$

where lf is any extension of f to R^n (Cf. [3], p. 93 relation (8.1)).

Let G be a bounded open set of R^n with a smooth boundary. $H^s(G)$ denotes the restriction to G of functions in $H^s(R^n)$ with the norm:

$$||u||_s = \inf ||v||_{H^s(\mathbb{R}^n)}; \quad v = u \text{ on } G.$$

By $H^s_+(G)$, we denote the space of functions f defined on all of R^n , equal to 0 on $R^n/\operatorname{cl}(G)$ and coinciding in $\operatorname{cl} G$ with functions in $H^s(G)$.

DEFINITION 1. $\widetilde{A}(\xi)$ is in 0_{α} if and only if:

- (i) $\tilde{A}(\xi)$ is a homogeneous function of order α in ξ .
- (ii) \widetilde{A} is continuous for $\xi \neq 0$.

DEFINITION 2. $\widetilde{A}_{+}(\xi)$ is in 0^{+}_{α} if and only if:

- (i) $\widetilde{A}_{+}(\xi)$ is in 0_{α} .
- (ii) $\widetilde{A}_{+}(\xi', \xi_n)$ has an analytic continuation with respect to ξ_n in the half-plane Im $\xi_n > 0$ for each ξ' .

Similar definition for 0_{α}^{-} :

DEFINITION 3. \widetilde{A} is in E_{α} if and only if:

(i) \widetilde{A} is in 0_{α} .

- (ii) $\widetilde{A}(\xi) \neq 0$ for $\xi \neq 0$.
- (iii) $\widetilde{A}(\xi)$ has, for $\xi' \neq 0$, continuous first order derivatives, bounded if $|\xi| = 1, \ \xi' \neq 0$.

DEFINITION 4. $\widetilde{A}(x, \xi', \xi_n)$ is in D_{α}^0 if and only if:

- (i) $\widetilde{A}(x,\xi)$ is infinitely differentiable with respect to x and ξ ; $\xi \neq 0$.
 - (ii) $\widetilde{A}(x,\xi)$ is in 0_{α} for x in \mathbb{R}^{n} .

$$\begin{array}{ll} \text{(iii)} & a_{k2}(x) = \frac{\partial^k}{(\partial \xi')^k} \, \widetilde{A}(x,\,0,\,-1) = (-1)^k \exp{(-i\alpha\pi)} \, \frac{\partial^k}{(\partial \xi')^k} \, \widetilde{A}(x,\,0,\,1) \\ x \text{ in } R^n; \, 0 \leq |\, k \,| < \infty; \, k = (k_1,\,\cdots,\,k_n). \end{array}$$

DEFINITION 5. Let A be a bounded linear operator from H_s^+ into $H^{s-\alpha}(R_+^n)$. Then any bounded linear operator T from H_{s-1}^+ into $H^{s-\alpha}(R_+^n)$, (or from H_s^+ into $H^{s-\alpha+1}(R_+^n)$) is called a right (left) smoothing operator with respect to A.

T is a smoothing operator with respect to A if it is both a left ane right smoothing operator.

Let $\widetilde{A}(\xi)$ be in 0_{α} for $\alpha>0$. For u_+ in H_s^+ , $s\geq 0$, with support in $\mathrm{cl}\,(R_+^n)$, set: $Au_+=F^{-1}(\widetilde{A}(\xi)\widetilde{u}_+(\xi))$ where F^{-1} is the inverse Fourier transform. It is well defined in the sense of generalized functions. A is a bounded linear operator from H_s^+ into $H^{s-\alpha}(R^n)$.

Let $\widetilde{A}(x,\xi)$ be an element of E_{α} for each x in cl G and $\widetilde{A}(x,\xi)$ be infinitely differentiable with respect to x and ξ . Since G is a bounded set of R^n , we may assume that G is contained in a cube of side 2p centered at 0. We extend $\widetilde{A}(x,\xi)$ with respect to x to all of R^n by setting $\widetilde{A}(x,\xi)=0$ if $|x|\geq p-\varepsilon$ for $\varepsilon>0$. We get a finite function, homogeneous of order α with respect to ξ .

We take the expansion into Fourier series of $\widetilde{A}(x,\xi)$:

$$\widetilde{A}(x,\,\xi)=\sum_{k=-\infty}^{\infty}\psi_{\scriptscriptstyle 0}(x)\exp{[(i\pi kx)/p]}\widetilde{L}_{\scriptscriptstyle k}(\xi)$$
 ; $k=(k_{\scriptscriptstyle 1},\,\cdots,\,k_{\scriptscriptstyle n})$

where:

$$\widetilde{L}_{\scriptscriptstyle k}(\xi) = (2p)^{-n} \int_{-p}^{p} \exp{[(-i\pi kx)/p]} \widetilde{A}(x,\xi) dx$$

 $\psi_0(x)=1$ for $|x|\leq p-\varepsilon$; $\psi_0(x)=0$ for $|x|\geq p$; $\psi_0(x)\in C_c^\infty(R^n)$. We have: $|\widetilde{L}_k(\xi)|\leq C\,|\xi|^\alpha\,(1+|k|)^{-M}$ for arbitrary positive M. Let u_+ be in $H^s_+(G)$, we define:

(1.1)
$$Au_{+} = \sum_{-\infty}^{\infty} \psi_{0}(x) [\exp((ikx\pi)/p)] L_{k} * u_{+}$$

where $L_k*u_+=L_ku_+$ is defined as before since $\widetilde{L}_k(\xi)$ is independent of x.

Denote by P^+ , the restriction operator of functions defined on R^n to G. We consider an elliptic convolution equation of order α , on G of the form:

(1.2)
$$P^{+}Au_{+} = \sum_{i} P^{+}\varphi_{i}A\psi_{i}u_{+} + Tu_{+}$$

T is a smoothing operator. The φ_j is a finite partition of unity corresponding to a covering N_j of $\operatorname{cl} G$ with $\operatorname{diam}(N_j)$ sufficiently small. The ψ_j are in $C^{\infty}_{\mathfrak{o}}(\mathbb{R}^n)$ with $\varphi_j\psi_j=\varphi_j$ and $\operatorname{supp}(\psi_j)\subseteq N_j$.

Suppose $\widetilde{A} \in D^0_{\alpha}$, then the operator $\varphi_j A \psi_j$ taken in local coordinates may be written as:

$$\varphi_j A \psi_j = \varphi_j A_j \psi_j + T_j$$

where A_j is a convolution operator of the form (1.1) and T_j is a smoothing operator (Cf. [3] Appendix 2).

2. The main result of the paper is the following theorem:

THEOREM 1. Let A be an elliptic convolution operator on G, of order $\alpha > 0$, and of the form (1.2). Suppose that:

- (i) $\widetilde{A}_{j}(x^{j},\xi) \in E_{\alpha} \cap D_{\alpha}^{0}$.
- (ii) $\widetilde{A}_i(x^j,\xi)$ has for $x_n^j=0$ a factorization of the form:

$$\widetilde{A}_j(x^j,\,\xi) = \widetilde{A}_j^+(x^j,\,\xi)\widetilde{A}_j^-(x^j,\,\xi)$$

where $\widetilde{A}_{j}^{+} \in 0_{0}^{+}$; $\widetilde{A}_{j}^{-} \in 0_{\alpha}^{-}$ for all $x^{j} \in N_{j} \cap G$.

(iii) There exists a ray $\arg \lambda = \theta$ such that $\widetilde{A}_j(x^j, \xi) + \lambda^{\alpha} \neq 0$ for $|\xi| + |\lambda| \neq 0$, $x^j \in N_j \cap G$.

Let $f(x, \zeta_0, \dots, \zeta_{\lfloor \alpha \rfloor - 1})$ be a function measurable in x on G, continuous in all the other variables. Suppose there exists a positive constant M such that:

$$|f(x,\zeta_0,\cdots,\zeta_{\lfloor lpha \rfloor-1})| \leq M \Big\{1+\sum_{j=0}^{\lfloor lpha \rfloor-1}|\zeta_j|\Big\}$$
.

Let T_k ; $k = 0, \dots, [\alpha] - 1$ be bounded, linear operators from $H_+^k(G)$ into $L^2(G)$. Then for $|\lambda| \ge \lambda_0 > 0$; $\arg \lambda = \theta$; there exists a solution u in $H_+^k(G)$ of:

$$P^+(A+\lambda^lpha)u_+=f(x,\,T_{\scriptscriptstyle 0}u_+,\,\cdots,\,T_{\scriptscriptstyle [lpha]-{\scriptscriptstyle 1}}u_+)$$
 on G .

The solution is unique if f satisfies a Lipschitz condition in $(\zeta_0, \dots, \zeta_{\lfloor \alpha \rfloor - 1})$.

To prove the theorem, we shall do as in [2]. First, following Visik-Agranovich [4], we establish an *a priori* estimate and show the existence and the uniqueness of a solution of a linear elliptic convolution

equation depending on a large parameter in a bounded region. Then we use the Leray-Schauder fixed point theorem to prove Theorem 1.

We have:

THEOREM 2. Let A be an elliptic convolution operator, of order $\alpha > 0$, of the form (1.2). Suppose that all the hypotheses of Theorem 1 are satisfied. Let $f \in L^2(G)$; then there exists a unique solution u_+ in $H^{\alpha}_+(G)$ of:

$$P^+(A + \lambda^{\alpha})u_+ = f$$
 on G ; $|\lambda| \ge \lambda_0 > 0$ arg $\lambda = \theta$.

Moreover:

$$||u_{+}||_{\alpha} + |\lambda|^{\alpha} ||u_{+}||_{0} \leq M ||f||_{0}$$

where M is independent of λ , u_{+} .

Proof of Theorem 1. Let v be an element of $H^{\alpha}_{+}(G)$ and $0 \leq t \leq 1$. Consider the linear elliptic convolution equation:

$$P^{+}(Au_{+} + \lambda^{\alpha}u_{+}) = f(x, tT_{0}v, \dots, tT_{[\alpha]-1}v)$$
.

With the hypotheses of the theorem, $f(x, tT_0v, \dots, tT_{[\alpha]-1}v)$ is in $L^2(G)$. It follows from Theorem 2 that there exists a unique solution u_+ in $H^{\alpha}_+(G)$ of the problem.

Let $\mathscr{A}(t)$ be the nonlinear mapping from $[0,1] \times H^{\alpha}_+(G)$ into $H^{\alpha}_+(G)$ defined by $\mathscr{A}(t)v = u_+$ where u_+ is the unique solution of the above problem.

The theorem is proved if we can show that $\mathcal{A}(1)$ has a fixed point.

PROPOSITION 1. $\mathscr{A}(t)$ is a completely continuous mapping from $[0,1]\times H^{\alpha}_{+}(G)$ into $H^{\alpha}_{+}(G)$.

Proof. (i) $\mathscr{A}(t)$ is continuous. Suppose that $t_n \to t$; t_n , t in [0,1] $v_n \to v$ in $H^{\alpha}_+(G)$. Set: $u_n = \mathscr{A}(t_n)v_n$. Then from Theorem 2, we get:

$$||u_n - u||_{\alpha} \leq M ||f(\cdot, t_n T_0 v_n, \cdot \cdot \cdot, t_n T_{\lfloor \alpha \rfloor - 1} v_n) - f(\cdot, t T_0 v, \cdot \cdot \cdot, t T_{\lceil \alpha \rfloor - 1} v)||_{0}.$$

It follows from Lemmas 3.1 and 3.2 of [1] that $u_n \to u$ in $H^{\alpha}_+(G)$.

(ii) $\mathscr{A}(t)$ is compact. Suppose that $||v_n||_{\alpha} \leq M$. Then from the weak compactness of the unit ball in a Hilbert space and from the generalized Sobolev imbedding theorem, we get:

 $v_{*_j} \longrightarrow v$ weakly in $H^{lpha}_+(G)$ and strongly in $H^{lpha-\epsilon}_+(G); \, 0<\epsilon, \, \alpha-\epsilon \geqq 0$.

Applying the argument of the first part, we get the compactness of $\mathcal{A}(t)$.

PROPOSITION 2. $I - \mathscr{M}(0)$ is a homeomorphism of $H^{\alpha}_{+}(G)$ into itself. If $v = \mathscr{M}(t)v$, for $0 < t \leq 1$; then: $||v||_{\alpha} \leq M$ where M is independent of t.

Proof. The first assertion is trivial. Suppose that $v = \mathcal{A}(t)v$. It follows from Theorem 2 that:

$$||v||_{\alpha} + |\lambda|^{\alpha} ||v||_{0} \le M ||f(\cdot, tT_{0}v, \cdot \cdot \cdot, tT_{\lceil \alpha \rceil - 1}v)||_{0}$$

$$\le M\{1 + ||v||_{\lceil \alpha \rceil - 1}\}.$$

It is well-known that:

$$||v||_{[\alpha]-1} \leq 1/2M ||v||_{\alpha} + C ||v||_{0}$$
.

Taking $|\lambda|$ sufficiently large, we have: $||v||_{\alpha} \leq M_2$. $\mathscr{A}(t)$ satisfies the hypotheses of the Leray-Schauder fixed point theorem (the uniform continutiy condition as in [2] is not necessary). So $\mathscr{A}(1)$ has a fixed point, i.e. $\mathscr{A}(1)u_+ = u_+$.

The uniqueness of the solution in the case $f(x, \zeta_0, \dots, \zeta_{\lfloor \alpha \rfloor - 1})$ satisfies a Lipschitz condition in $(\zeta_0, \dots, \zeta_{\lfloor \alpha \rfloor - 1})$ follows trivially from the estimate of Theorem 2. We shall not reproduce it.

Proof of Theorem 2. As usual, we consider first the case of the positive half-space R_+^n with the convolution operator A having a constant symbol.

LEMMA 1. Let $\widetilde{A}(\xi)$ be an element of E_{α} , $(\alpha > 0)$. Suppose that: $\widetilde{A}(\xi) = \widetilde{A}_{+}(\xi)\widetilde{A}_{-}(\xi)$ with $\widetilde{A}_{+}(\xi)$ in 0_{0}^{+} , $\widetilde{A}_{-}(\xi)$ in 0_{α}^{-} . Let P^{+} be the restriction operator of functions in R^{n} to R_{+}^{n} and A be the convolution operator with symbol $\widetilde{A}(\xi)$. Suppose there exists a ray $\arg \lambda = \theta$ such that: $\widetilde{A}(\xi) + \lambda^{\alpha} \neq 0$ for $|\xi| + |\lambda| \neq 0$. If f is in $H^{0}(R_{+}^{n})$, then there exists a unique solution u in H_{α}^{+} of:

$$P^+(A + \lambda^{\alpha})u_+ = f$$
 on R^n_+ ; $|\lambda| \ge \lambda_0 > 0$.

Moreover:

$$||u_{+}||_{\alpha}^{+} + |\lambda|^{\alpha} ||u_{+}||_{0}^{+} \leq M ||f||_{0}^{+}$$

where M is independent of λ , u_+ , f.

Proof. Set $\widetilde{A}(\xi, \lambda) = \widetilde{A}(\xi) + \lambda^{\alpha}$. It is homogeneous of order α in (ξ, λ) . Since $\widetilde{A}(\xi)$ is in E_{α} , we have the following factorization with respect to ξ_n , which is unique up to a constant multiplier:

$$\widetilde{A}(\xi) = \widetilde{A}_{+}(\xi)\widetilde{A}_{-}(\xi)$$

(Cf. Theorem 1.2 of [3], p. 95). The same proof with $\xi_+ = \xi_n + i | \xi' |$ replaced by $\xi_+^{\lambda} = \xi_n + i(|\lambda| + |\xi'|)$ and ξ_- replaced by:

$$\xi_{-}^{\lambda} = \xi_{n} - i(|\lambda| + |\xi'|)$$

gives:

$$\widetilde{A}(\xi,\lambda) = \widetilde{A}_{+}(\xi,\lambda)\widetilde{A}_{-}(\xi,\lambda)$$
.

Moreover:

If $\widetilde{A}_{+}(\xi)$ is in 0_{0}^{+} , then $\widetilde{A}_{+}(\xi,\lambda)$ is also in O_{0} (is homogeneous of order 0 in (ξ,λ)). Similarly for $\widetilde{A}_{-}(\xi,\lambda)$.

Let lf(x) be an extension of f to R^n . Consider:

$$\widetilde{u}_+(\xi)=(\widetilde{A}_+(\xi,\,\lambda))^{-1}\prod^+l\widetilde{f}(\xi)(\widetilde{A}_-(\xi,\,\lambda))^{-1}$$
 .

For $|\lambda| \neq 0$, $\tilde{u}_{+}(\xi)$ has an analytic continuation in Im $\xi_n > 0$ and:

$$\int |\widetilde{u}_+(\xi',\xi_n+i au)|^2 d\xi' d\xi_n \le C$$
 ,

C is independent of au>0. So: $\widetilde{u}_+(\xi)\in \overset{\circ}{H_0^+}$. (Cf. [3], p. 91). We get:

$$egin{aligned} ||u_{+}||_{lpha}^{+} &= ||\prod^{+}(\hat{\xi}_{-}-i)^{lpha}\widetilde{u}_{+}(\hat{\xi})||_{0}^{+} \ &\leq ||(\hat{\xi}_{-}-i)^{lpha}(\widetilde{A}_{+}(\hat{\xi},\lambda))^{-1}\prod^{+}l\widetilde{f}(\hat{\xi})(\widetilde{A}_{-}(\hat{\xi},\lambda))^{-1}||_{0} \ . \end{aligned}$$

Since $\widetilde{A}_{+}(\xi, \lambda)$ is homogeneous of order 0 in (ξ, λ) , we have:

$$\widetilde{A}_+(\xi,\lambda)=\widetilde{A}_+(\xi/(\mid\xi\mid+\mid\lambda\mid),\,\lambda/(\mid\xi\mid+\mid\lambda\mid))$$
 .

Let $c=\min |\widetilde{A}_+(\xi,\lambda)|$ for $|\xi|+|\lambda|=1$, $\arg \lambda=\theta$. Then c>0 and is independent of λ .

So:

$$\| \|u_+\|_{\alpha}^+ \le c^{-1} \| (\xi_- - i)^{\alpha} \prod^+ l \widetilde{f}(\xi) (\widetilde{A}_-(\xi, \lambda))^{-1} \|_0$$

 $\le C \| \| l \widetilde{f}(\xi) (\widetilde{A}_-(\xi, \lambda))^{-1} \|_{\alpha}.$

We may write:

$$\widetilde{A}_-(\xi,\,\lambda)=(\mid\xi\mid+\mid\lambda\mid)^\alpha\,\widetilde{A}_-(\xi/(\mid\xi\mid+\mid\lambda\mid),\,\lambda/(\mid\xi\mid+\mid\lambda\mid))$$
 .

Let $C=\min |\widetilde{A}_{-}(\xi,\lambda)|$ for $|\xi|+|\lambda|=1$, $\arg \lambda=\theta$. Then C>0 and is independent of λ .

We obtain:

$$||u_{+}||_{lpha}^{+} \leq C \, ||\, l\widetilde{f}(\xi)\, ||_{\scriptscriptstyle 0} \leq C_{\scriptscriptstyle 2} \, ||\, f\, ||_{\scriptscriptstyle 0}^{+}$$
 .

A similar argument gives:

$$||u_+||_0^+ \le C |\lambda|^{-\alpha} ||f||_0^+$$
.

So:

$$||u_{+}||_{\alpha}^{+} + |\lambda|^{\alpha} ||u_{+}||_{0}^{+} \leq C ||f||_{0}^{+}$$
.

C is independent of λ , f, u_+ .

A direct verification shows that u_+ is a solution of the equation. It remains to show that the solution is unique. Let v_+ be an element of H_{α}^+ . Suppose that v_+ is also a solution of the equation. Then as in [3], $\widetilde{v}_+(\xi)$, its Fourier transform is given by an expression of the same form as $\widetilde{u}_+(\xi)$ with $\widetilde{lf}(\xi)$ replaced by $\widetilde{l_1f}(\xi)$. l_1f being an extension of f to R^n .

Set $l_2f=lf-l_1f$. Then $l_2f\in H_0^-$, so $\widetilde{l_2f}\in \overset{\circ}{H_0^-}$. $\widetilde{l_2f}(\xi)(\widetilde{A}_-(\xi,\lambda))^{-1}$ is analytic in $\mathrm{Im}\ \xi_n\le 0$ for $|\lambda|\ne 0$ and moreover:

$$\int |\widetilde{\mathit{l}_{2}f}(\xi',\,\xi_{n}\,+\,i\tau)\,|^{2}\,|\,\widetilde{A}_{-}(\xi',\,\xi_{n}\,+\,i\tau)\,|^{-2}\,d\xi'd\xi_{n} \leqq C$$

where C is independent of $\tau \leq 0$.

Hence $\widetilde{l_2f}(\xi)(\widetilde{A}_{-}(\xi,\lambda))^{-1}$ is in H_0° (Cf. [3], p. 91), so:

$$\prod^{+} \widetilde{l_2 f}(\xi) (\widetilde{A}_{-}(\xi, \lambda))^{-1})) = 0.$$

Therefore: $\widetilde{A}_{+}(\xi, \lambda)(\widetilde{u}_{+}(\xi) - \widetilde{v}_{+}(\xi)) = 0$.

But $\widetilde{A}_{+}(\xi,\lambda)\neq 0$ for $|\lambda|\neq 0$, we get $\widetilde{u}_{+}=\widetilde{v}_{+}$. Q.E.D.

Set:

$$egin{aligned} A_{\scriptscriptstyle 1} u &= \sum\limits_{k=-\infty}^{\infty} \psi_{\scriptscriptstyle 0}(x) \exp{[(ik\pi x)/p]} L_{\scriptscriptstyle k} * u \ A_{\scriptscriptstyle 0} u &= \sum\limits_{k=-\infty}^{\infty} \psi_{\scriptscriptstyle 0}(x_{\scriptscriptstyle 0}) \exp{[(ik\pi)/p]} L_{\scriptscriptstyle k} * u \end{aligned}$$

where L_k , ψ_0 are as in § 1.

LEMMA 2. Let A_1 , A_0 be as above and $\psi(x)$ be in $C_c^{\infty}(\mathbb{R}^n)$ with $\psi(x) = 0$ for $|x - x_0| > \delta$; $|\psi(x)| \leq K$ where K is independent of δ . Then:

$$|| \psi(A_1 - A_0)u ||_{s-\alpha}^+ \le C\delta || u ||_s^+ + C(\delta) || u ||_{s-1}^+$$

for all u in H_s^+ , $s \geq 0$.

Proof. Cf. Lemma 4.7 of [3], p. 119.

Proof of Theorem 2 (continued). (1) First, we establish an α -priori estimate of the solutions.

Consider:

$$P^+\varphi_jA\psi_ju_+ + \lambda^{\alpha}P^+(\varphi_ju_+) = P^+(\varphi_jf) - Tu_+$$

where T is a smoothing operator with respect to $\varphi_i A \psi_i$.

It has been shown in [3] (Appendix 2) that in a local coordinates system, the operator $\varphi_j A_i \psi_j$ becomes: $\varphi_j A_j \psi_j + T_j$ where A_j has for symbol $\widetilde{A}_j(x^j, \xi)$ and T_j is a smoothing operator.

So, we have:

$$P^+ arphi_j A_j (\psi_j u_+) \, + \, \lambda^{lpha} P^+ (arphi_j u_+) \, = \, P^+ (arphi_j f) \, + \, T_j^2 u_+$$

where T_j^2 is again a smoothing operator.

Let A_{j_0} be the convolution operator with symbol $\widetilde{A}_j(x_0^j, \xi)$ evaluted at the point x_0^j . We write:

$$egin{align} P^+ arphi_j A_{j0} (\psi_j u_+) \, + \, \lambda^lpha P^+ (arphi_j u_+) \, &= P^+ (arphi_j f) \ &+ \, T_j^2 u_+ \, + \, P^+ arphi_j (A_{j0} \, - \, A_j) \psi_j u^+ \; . \end{split}$$

Applying Lemma 4.D.1 of [3] (p. 145), we have:

$$P^+ \varphi_i A_{i0} (\psi_i u_+) = P^+ A_{i0} (\varphi_i u_+) + T_i^3 u_+$$

where T_i^3 is a smoothing operator.

Therefore:

$$(A_{j_0} + \lambda^{lpha}) arphi_j u_+ = arphi_j f + T_j^4 u_+ + arphi_j (A_{j_0} - A_j) (\psi_j u_+)$$
 .

The symbols \widetilde{A}_{j_0} satisfy the hypotheses of Lemma 1. Applying Lemma 1; 2, we obtain:

$$\begin{aligned} || \varphi_{j} u_{+} ||_{\alpha}^{+} + | \lambda |^{\alpha} || \varphi_{j} u_{+} ||_{0}^{+} & \leq M \{ || \varphi_{j} f ||_{0}^{+} + || u_{+} ||_{0} \\ & + 1/2M || u_{+} ||_{\alpha} + || \psi_{i} u_{+} ||_{\alpha}^{+} + || \varphi_{i} u_{+} ||_{0}^{+} \} \end{aligned}$$

where we have used the well-known inequality:

$$||u_+||_{\alpha-1} \leq \varepsilon ||u_+||_{\alpha} + C(\varepsilon) ||u_+||_{\alpha}$$
.

On the other hand: $||\psi_j u_+||_{\alpha}^+ \leq M ||u_+||_{\alpha}$. Summing with respect to j, we get:

$$||u_{+}||_{lpha} + |\lambda|^{lpha} ||u_{+}||_{0} \le M\{||f||_{0} + 1/2M ||u_{+}||_{lpha} + \delta ||u_{+}||_{lpha} + K ||u_{+}||_{0}\}.$$

Taking δ small and $|\lambda|$ sufficiently large, we have:

$$||u_{+}||_{\alpha} + |\lambda|^{\alpha} ||u_{+}||_{0} \leq M ||f||_{0}$$
.

So, if there exists a solution, then the solution is unique.

(2) It remains to show the existence of a solution. From Lemma 1, we know that $P^+(A_{j_0} + \lambda^a)$ has an inverse R_{j_0} . Let \hat{R}_{j_0} be the operator R_{j_0} expressed in the global system of coordinates of G. Consider:

$$Rf = \sum_{i} arphi_{j} \widehat{R}_{j0}(\psi_{j}f)$$
 .

R is a bounded linear mapping from $L^2(G)$ into $H^{\alpha}_+(G)$.

We show that: $\mathscr{M}Rf = P^+(A + \lambda^{\alpha})Rf = f + \mathscr{C}f$ with $||\mathscr{C}|| \leq 1/2$. We have:

$$\mathscr{A}Rf = \sum_j P^+(A + \lambda^{\scriptscriptstylelpha}) arphi_j \psi_j \widehat{R}_{j\scriptscriptstyle0}(\psi_j f)$$
 .

Applying Lemma 4.D.1. of [3], we may write:

$$\mathscr{M}Rf = \sum\limits_{i} P^{+} arphi_{j} (A + \lambda^{lpha}) \psi_{j} \widehat{R}_{j0} (\psi_{j} f) + \mathit{TR}f$$

where T is a smoothing operator.

We express $\varphi_i(A + \lambda^{\alpha})\psi_i \hat{R}_{i0}(\psi_i f)$ in local coordinates. We get:

$$arphi_i (A_{i0} + \lambda^lpha) \psi_j R_{i0} (\psi_j f) + arphi_i (A_j - A_{i0}) \psi_j R_{j0} (\psi_j f) + T_j^{\scriptscriptstyle 1} R_{j0} (\psi_j f)$$
 .

Using Lemma 4.D.1 of [3] again, we obtain:

$$egin{aligned} arphi_j(A_{j_0} + \lambda^lpha) R_{j_0}(\psi_j f) + arphi_j(A_j - A_{j_0}) \psi_j R_{j_0}(\psi_j f) + T_j^2 R_{j_0}(\psi_j f) \ &= T_i^2 R_{j_0}(\psi_j f) + arphi_j f + arphi_j(A_j - A_{j_0}) \psi_j R_{j_0}(\psi_j f) = arphi_j f + \mathscr{C}_j(\psi_j f) \;. \end{aligned}$$

The T_i are all smoothing operators.

Applying Lemma 1, we have:

$$||T_i^2 R_{i0}(\psi_i f)||_0^+ \le C ||R_{i0}(\psi_i f)||_{\alpha-1}^+ \le \varepsilon ||f||_0 + C ||\chi||_{-\alpha} ||f||_0$$

From Lemmas 1 and 2, we get:

$$egin{aligned} || arphi_{j}(A_{j}-A_{j0})\psi_{j}R_{j0}(\psi_{j}f) ||_{0}^{+} & \leq \delta \; || \; \psi_{j}R_{j0}(\psi_{j}f) \; ||_{lpha}^{+} \ & + \; C(\delta) \; || \; \psi_{j}R_{j0}(\psi_{j}f) \; ||_{lpha-1}^{+} \ & \leq \delta \; || \; f \; ||_{0} \; + \; C(\delta) \; || \; \hat{R}_{j0}(\psi_{j}f) \; ||_{lpha-1} \ & \leq \delta \; || \; f \; ||_{0} \; + \; arepsilon C(\delta) \; || \; \hat{R}_{j0}(\psi_{j}f) \; ||_{lpha} \ & + \; C(\delta) M(arepsilon) \; || \; \hat{R}_{j0}(\psi_{j}f) \; ||_{0} \ & \leq \{\delta \; + \; arepsilon C(\delta) \; || \; f \; ||_{0} \; . \end{aligned}$$

Taking ε , δ small, $|\lambda|$ large enough, we have:

$$||\mathscr{C}_{j}(\psi_{j}f)||_{0}^{+} \leq \frac{1}{4N}||f||_{0}.$$

We obtain:

$$extit{R} f = f + extit{T} extit{R} f + \sum_{i} \hat{\mathscr{C}}_{j}(\psi_{j}f) = f + \mathscr{C} f$$

where $\hat{\mathscr{C}}_j$ is the operator \mathscr{C}_j expressed in the global coordinates system of G. We obtain: $||\mathscr{C}f||_0 \leq 1/4 ||f||_0 + 1/4 ||f||_0$ for large $|\lambda|$. Hence $||\mathscr{C}|| \leq 1/2$; therefore $(I + \mathscr{C})^{-1}$ exists. We define:

$$\mathcal{N}^{-1} = R(I + \mathscr{C})^{-1}$$
.

The writer wishes to thank the referee for his remarks.

BIBLIOGRAPHY

- 1. F. E. Browder, Nonlinear elliptic boundary value problems II, Trans. Amer. Math. Soc. **117** (1965), 530-550.
- 2. B. A. Ton, On nonlinear elliptic boundary value problems, Bull. Amer. Math. Soc. 72 (1966), 307-313.
- 3. M. I. Visik and G. I. Eskin, Equations in convolution in a bounded region, Uspehi Mat. Nauk. 20 (1965), No. 3, 90-153; Russian Math. Surveys 20 (1965), 85-157.
- 4. M. I. Visik and M. S. Agranovich, Elliptic problems with a parameter and parabolic problems of general type, Uspehi Mat. Nauk. 19 (1964), 53-161; Russian Math. Surveys, No. 3 (1964), 53-157.

Received March 20, 1967.

UNIVERSITY OF BRITISH COLUMBIA VANCOUVER, CANADA