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NONLINEAR ELLIPTIC CONVOLUTION EQUATIONS OF
WIENER-HOPF TYPE IN A BOUNDED REGION

Bur AN ToN

The existence of a solution of a nonlinear perturbation
of an elliptic convolution equation of Wiener-Hopf type in
a bounded region G of R” is proved. More explicitly, let A
be an elliptic convolution operator on G of order a,a > 0; A;
the principal part of A in a local coordinate system and A (2, &)
be the symbol of A; with a factorization with respect to &, of
the form: A;(x, &) = A (29, £)A7 (w4, &) forzl =0. A, A7 are
homogeneous of orders 0, « in & respectively; the first admitting
an analytic continuation in Im &, > 0, the second in Im¢&, < 0.
Let Ty, k=0, :--,[a] — 1 be bounded linear operators from
HY(G) into LXG) where Hf(G), k=0 are the Sobolev-Slobo
detskii spaces of generalized functions.

The purpose of the paper is to prove the solvability of:
Aus + 22ur = flw, Tous, - -+, Trag-1u+) on G5 us_in H%(G) for
large | 2| and on a ray argl=¢ such that A; 4+ 2+ 0 for
|€] 4+ 12| # 0 and for all 5. f(x,&o, -+, ls-1) has at most a
linear growth in (&, ---,{,—;) and is continuous in all the
variables,

Linear elliptic convolution equations in a bounded region for arbi-
trary a and with symbols having the above type of factorization (A = 0)
have been considered recently by Visik-Eskin [3]. Those equations
are similar to integral equations since no boundary conditions are
required.

The notation and terminology are those of Visik-Eskin and are
given in § 1. The theorems are proved in §2.

1. Let s be an arbitrary real number and H*(R") be the Sobolev-
Slobodetskii space of (generalized) functions f such that:

11 = [ @+ lepr 17 ras < 4+

where f(&) is the Fourier transform of f.
We denote by H*(R"), the space consisting of functions defined on
® = {&: 2, > 0} and which are the restrictions to R% of functions in
H*(R"). Let lf be an extension of f to R", then:

AT = IF llaseny = inf [[1F]

The infimum is taken over all extensions If of f.
The Hf = {f.; fi(®) = f(2) if x, >0, f € L*(R"), f:(x) =0 if ¢, < 0}

577

s e



578 BUI AN TON

and similarly for 1210‘.

We denote by HY, the space of functions f, with f, in I-_ci;r and
fre HR?) on R%.

Iifg“ is the subspgce of H*(R") consisting of functions with supports

in cl(RY). Hif H, }}j denote respectively the spaces which are the
Fourier images of H}, H*(R"), I;I;*.

Let f(¢) be a smooth decreasing (i.e., | f(§)| < M|&, | for large
|&€,] and for some ¢ > 0) function. The operator JI* is defined as:

IT* 7€) = 370 + iemvp. |*_Fe, 7)€ — n)-dn,

where &' = (Ely M) En——-l)'

For any f, then the above relation is understood as the result of
the closure of the operator [[*+ defined on the set of smooth and
decreasing functions.

II* is a bounded mapping frorri H, into I;I;* if 0 <s<1/2 and is
a bounded mapping from H, into H: if s > 1/2.
Set: &_ =&, — ¢ |&|; (- — ©)* is analytic for any s if Im &, < 0 and:

WAIE = T G- = D)LFE) |l

where If is any‘extension of f to R* (Cf. [3], p. 93 relation (8.1)).
Let G be a bounded open set of R" with a smooth boundary. H*(G)
denotes the restriction to G of functions in H*(R") with the norm:

Hull, = inf[|v]lge@m; v=uonG.

By H:(G), we denote the space of functions f defined on all of
R*, equal to 0 on R"/cl(G) and coinciding in ¢l G with functions in
H(G).

DEFINITION 1. A& is in 0, if and only if:
(i) A(%) is a homogeneous function of order « in &.
(ii) A is continuous for & == 0.

DEFINITION 2. A.(8) is in 0f if and only if:

(i) A is in 0,.

(ii) A.(¢, &, has an analytic continuation with respect to &, in
the half-plane Im &, > 0 for each &’.

Similar definition for 03:

DEFINITION 3. A is in E, if and only if:
(i) Aisin 0,.
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(ii) A(&) = 0 for & = 0.
(iii) A(&) has, for & = 0, continuous first order derivatives, bounded
if [¢]=1, &=+0.

DEFINITION 4. A(z, &, &,) is in DY if and only if:

(i) Az, &) is infinitely differentiable with respect to x and §&;
§+0.

(ii) Az, &) is in 0, for # in R".

>iil)  au(x) = (35 )k -2 _ Az, 0, —1) = (—1)* exp (—iQT) —— (3 ,)k Az, 0,1)
rin R 0= k| < ooy k= (ky o ov, k).

DEFINITION 5. Let A be a bounded linear operator from H; into
H*=*(R"). Then any bounded linear operator T from H}_, into H*~*(R%),
(or from H} into H*—**'(R")) is called a right (left) smoothing operator
with respect to A.

T is a smoothing operator with respect to A if it is both a left
ane right smoothing operator.

Let A(¢) be in 0, for @ > 0. For u, in H;, s =0, with support
in ¢l (R"), set: Au, = F~'(A(&)ii,(£)) where F~' is the inverse Fourier
transform. It is well defined in the sense of generalized functions.
A is a bounded linear operator from H; into H*—*(R").

Let A(z, &) be an element of E, for each x in cl G and A(x, £) be
infinitely differentiable with respect to « and &, Since G is a bounded
set of R", we may assume that G is contained in a cube of side 2p
centered at 0. We extend A(x, &) with respect to = to all of R" by
setting A(x, &) =0 if || =p —¢ for ¢ > 0. We get a finite func-
tion, homogeneous of order « with respect to &.

We take the expansion into Fourier series of A(z, &):

A, 9 = 3 ) exp [(inka)/pILu6) ; k= (koo k)
where:
L@ = @pr || exp[(—imke)/plA(, Sda
Yo@) =1 for [x| < p — & Po(x) = 0 for |z| = p; Y(x) e C(R"). We
have: |L,(8)| < C|&|*( + | k|)~* for arbitrary positive M. Let u, be
in H:(®), we define:
(L.1) A, = 3, du(@)lexp (ikom)/p)] Ly,

where L,xu, = L,u. is defined as before since I,(¢) is independent of x.
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Denote by P+, the restriction operator of functions defined on R*
to G. We consider an elliptic convolution equation of order «, on G
of the form:

T is a smoothing operator. The ¢, is a finite partition of unity cor-
responding to a covering N, of ¢l G with diam (NV;) sufficiently small.
The +; are in C2(R") with ¢;v; = ¢; and supp (¥;) S N;.

Suppose A e D¢, then the operator @,;Av; taken in local coordinates
may be written as:

P AY; = pAir; + T;

where A; is a convolution operator of the form (1.1) and T; is a
smoothing operator (Cf. [3] Appendix 2).

2. The main result of the paper is the following theorem:

THEOREM 1. Let A be an elliptic convolution operator on G, of
order « >~O, and of the form (1.2). Suppose that:

(1) é-j(xj, §) e E,. N D;.

(ii) A%, &) has for xi = 0 a factorization of the form:

Aai, &) = Aj (@i, §)A5(a7, €)

where A} € 0F; A7 € 0; for all #'e N; N G.

(iii) There ewists a ray argx = 0 such that A (27, &) + 1= =0
SJor &+ IN]#0,27e N; N G.

Let f(®, Loy +++, Liag—1) be a function measurable in x on G, continu-

ous 1n all the other variables. Suppose there exists a positive con-
stant M such that:

[a]—1
7@, o+ G | S ML+ 5161

Let Ty;k=0,---,[a] —1 be bounded, linear operators from HZEG)
into LAG). Then for |N| =\, > 0;arg N\ = 0; there exists a solution
w in HX(G) of:

P+(A + >"O[)u+ = f(xy T0u+) tt T[a]—lu+) on G.

The solution is unique if f satisfies a Lipschitz condition in

(COy ctcy C[a]—-l)-

To prove the theorem, we shall do as in [2]. First, following
Visik-Agranovich [4], we establish an a prior: estimate and show the
existence and the uniqueness of a solution of a linear elliptic convolution
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equation depending on a large parameter in a bounded region. Then
we use the Leray-Schauder fixed point theorem to prove Theorem 1.
We have:

THEOREM 2. Let A be an elliptic convolution operator, of order
a > 0, of the form (1.2). Suppose that all the hypotheses of Theorem 1
are satisfied. Let fe L*G); then there exists a umique solution u,
wn HXG) of:

PHA+ M u,=fon Gy [N =X>0 argx =0 .
Moreover:

s fla + [N [lus [lo = M Sl

where M is independent of N, ..

Proof of Theorem 1. Let v be an element of HX(G) and 0 < ¢ < 1.
Consider the linear elliptic convolution equation:

Pr(Auy + Nuy) = flx, tTw, <y tTi-1) «

With the hypotheses of the theorem, f(z, tT\w, «--, tT(y-v) is in
LXG). It follows from Theorem 2 that there exists a unique solution
U, in HXG) of the problem.

Let .o (t) be the nonlinear mapping from [0, 1] x H(G) into HX(G)
defined by .o (f)v = u,. where u, is the unique solution of the above
problem,

The theorem is proved if we can show that .97 (1) has a fixed
point.

ProposITION 1. .97 (¢) is a completely continuous mapping from
[0,1] x HXG) into H{(G).

Proof. (i) &7(t) is continuous. Suppose that ¢, — ¢ ¢,, ¢ in
[0,1] v,— v in H{(G). Set: w, = & (t,)v,. Then from Theorem 2,
we get:

Hun - u’”a é M”f(', tnTOvm *0 %y tnT[a]—lvn)
- f('y tTOvy i "tT[a]—l/v) ”0 .

It follows from Lemmas 3.1 and 3.2 of [1] that u, — % in HZG).
(ii) &7 (t) is compact. Suppose that ||v,|l. < M. Then from the

weak compactness of the unit ball in a Hilbert space and from the
generalized Sobolev imbedding theorem, we get:

v,; — v weakly in H(G) and strongly in H*(G); 0 <¢,a —e=0.
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Applying the argument of the first part, we get the compactness
of 7 (¢).

ProposiTION 2. I — .7 (0) is a homeomorphism of H*(G) into it-
self. If v = o7 (t)v, for 0 < ¢t < 1; then: ||v]||, £ M where M is inde-
pendent of ¢.

Proof. The first assertion is trivial.
Suppose that v = .7 (t)v. It follows from Theorem 2 that:

“?)Hu + lx!a H?JHO = MHf(', tTOv, *t tTfa]—lv) HO

= M{1 + || vl
It is well-known that:
10l = 12M |||l + Cllv]l, .
Taking |\ | sufficiently large, we have: ||v||l. £ M,. .7 () satisfies

the hypotheses of the Leray-Schauder fixed point theorem (the uniform
continutiy condition as in [2] is not necessary). So .97 (1) has a fixed
point, i.e. &rL)u, = wu,.

The uniqueness of the solution in the case f(x, L, « -+, {(o—1) satis-
fies a Lipschitz condition in (¢, ---, {y—:) follows trivially from the

estimate of Theorem 2. We shall not reproduce it.

Proof of Theorem 2. As usual, we consider first the case of the
positive half-space R" with the convolution operator A having a con-
stant symbol.

LEMMA 1. Let A(8) be an element of E,, (@ > 0). Suppose that:
A@E) = AL (5)A_(8) with A () in 0f, A_(£) in 0;. Let P+ be the restric-
tion operator of functions im R" to R% and A be the convolution
operator with symbol A(E). Suppose there exists a ray argh =0
such that: A@E) +\*# 0 for ||+ |N| % 0. If f is in H'R?), then
there exists a unique solution w in HF of:

PHA +NYu, =fon R [N =X >0.
Moreover:
s 1T+ N s ll5 = M
where M is independent of \, u., f.
Proof. Set A(5,\) = A(£) + A= It is homogeneous of order « in

(§,\). Since A(¢) is in E,, we have the following factorization with
respect to &,, which is unique up to a constant multiplier:
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A@) = A.(HA©®)

(Cf. Theorem 1.2 of [3], p. 95). The same proof with &, =&, + 7|&|
replaced by & =&, + (N[ + | €' ]) and &_ replaced by:

=&, — (N + €]
gives:
AN = A MAE N .

Moreover:

If 4.(¢) is in 0f, then A,(£, \) is also in O, (is homogeneous of
order 0 in (£,))). Similarly for A_(&, \).

Let [f(x) be an extension of f to R". Consider:

W:(@) = (A& V) T LFEAE, V).
For | x| = 0, %.(§) has an analytic continuation in Imé&, > 0 and:
[13.¢, ¢ + inpazas, = C,
C is independent of = > 0. So: ﬁ+(5)eﬁ§. (Cf. [3], p. 91).
We get:

luelle = IIF G = @l
< G- = L W) T PO W)

Since A, (&, \) is homogeneous of order 0 in (£, \), we have:
AiEN) = ALEAET+ IND MAET+ I

Let ¢ = Min | A.(&,\)] for |&]| + |n| =1,argAn = 0. Then ¢ >0
and is independent of \.
So:

g 15 < e 1 (62 — ) TTF LFEOAE M) o
< CILFEOAE M) e -
We may write:
A_(E,N) = (&1 + IND*A_E/(E]+ INDMAET+ IND) .

Let C = Min |A_(&,\)]| for |&| + |\|=1,argx=6. Then C >0
and is independent of .
We obtain:

lus ||F < CHFO I < CIFIIE .

A similar argument gives:
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NusllF = CINLIS .
So:
[ |lF + I urlls = ClFIT -

C is independent of X\, f, ..

A direct verification shows that ., is a solution of the equation,
It remains to show that the solution is unique. Let v, be an element
of H}. Suppose that v, is also a solution of the equation. Then as
in [3], 7.(¢), its Fourier transform is given by an expression of the

same form as %,(£) with i}(é) replaced by le/(E). l,f being an extension
of f to R".

Set l,f=1f —l,f. Then l,fe H;, so i:fe ffo‘. /l:?(é)(;l_(ﬁ, At
is analytic in Im &, < 0 for |)| = 0 and moreover:

S VA&, &0 + i0) | A, &, + i7) | dE'dE, = C

where C is independent of 7 < 0. 5
Hence lfz?/(f)(ﬁ_(é, M)~ s in I}; (Cf. [3], p. 91), so:

I+ LAGAE_EA)™) = 0.

Therefore: A, (£, N)(#.(€) — ¥,(8)) = 0.
But A.(5,)\) = 0 for [n| 0, we get %, = ¥,. Q.E.D.
Set:

Au = ;10 Vro(x) exp [(kma)/p] Lyxu
A = 3 d(a) exp [(ihr)/p]Luu
where L,, 4, are as in §1.
LEMMA 2. Let A, A, be as above and +(x) be in CT(R") with

(@) =0 for |x — x| > d; |v(@)| = K where K 1is independent of o.
Then:

(A — Adu |lie = Cofullf + CO) [|ulli=

for all w wn H;,s = 0.
Proof. Cf. Lemma 4.7 of [3], p. 119.

Proof of Theorem 2 (continued). (1) First, we establish an a-
priori estimate of the solutions.
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Consider:
Pro;Agju, + NPHpu,) = PHp,f) — Tu.

where T is a smoothing operator with respect to ¢;A;.

It has been shown in [3] (Appendix 2) that in a local coordinates
system, the operator ¢;A+; becomes: ¢;A;v; + T; where A; has for
symbol A;(a’, &) and T, is a smoothing operator.

So, we have: ‘

Prp;A;(yus) + NP (pus) = PHp;f) + Tiu,

where T is again a smoothing operator.

Let A;, be the convolution operator with symbol A,(x, &) evaluted
at the point 2. We write:

Piop;A;(¥uy) + NPt puy) = PHp;f)
+ Tiu, + Propi(A; — A)vu* .

Applying Lemma 4.D.1 of [3] (p. 145), we have:
Pro;Aj(vyjuy) = PTApuy) + Tiu,

where T% is a smoothing operator.
Therefore:

(Ajo + M)pjuy = @, f + Tiur + @Az — A))rjuy) .

The symbols A;, satisfy the hypotheses of Lemma 1. Applying
Lemma 1; 2, we obtain:

o iz + I llpjus | = M{llpsf 11T + 1 o
+ 12M || [lo + [[ 404 | + @0 [T}

where we have used the well-known inequality:
Hoslloes S el uslla + C@) 1w o -

On the other hand: ||y u. || < M||u,|l.. Summing with respect to
Jj, we get:

s (o + N Tus [lo = M{IF llo + 1/2M || %4 [l

+ 0w |le + K[| s |lo} -
Taking 6 small and |\ | sufficiently large, we have:
s e + DN [ wsllo < MLFlo -

So, if there exists a solution, then the solution is unique.
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(2) It remains to show the existence of a solutiorl. From Lemma 1,
we know that P+(4;, + \*) has an inverse R;,. Let E; be the operator
R;, expressed in the global system of coordinates of G. Consider:

Rf =3, P Riv: 1)

R is a bounded linear mapping from L*G) into HX(G).
We show that: &7 Rf = P*(A + \9Rf = f + & f with ||Z"|| £ 1/2.
We have:

S Rf = 5 PHA + NP Bisf) -
Applying Lemma 4.D.1. of [3], we may write:
SZRf = 3, P* (A + M) Riu(¥;f) + TRf
where T is a smoothing operator.
We express @;(A + A)y;R;(v;f) in local coordinates. We get:
Pi(Ajo + N R f) + pi(A; — Aj)ViRi(¥if) + TiRo(v;f) -
Using Lemma 4.D.1 of [3] again, we obtain:

Pi(Ajo + N)VRo(¥if) + 9i(A; — A iBio(vif) + TiR;o(¥;f)
= TiR;(¥;f) + @;f + @i(A; — Aj)¥;Ri(yif) = pif + F (i f) .
The T; are all smoothing operators.
Applying Lemma 1, we have:
I TiR; (v /)T = Cll By )i S el fllo + CINT [ F o
From Lemmas 1 and 2, we get:
| pi(A; — AV iRy )T = 0|4 Rio(vri ) |l&
+ C(9) || ﬂ/ijjo(«Fif) a1
s o0l fllo + CO) || RBio(¥5S) llaes
sallfll + sc(al[[Rjo(“ij) Il
+ C(O)M(e) || Bjo(v5 1) Ml
< {0 + eCO} ISl
+ [N [T M(e)CO) || flo -

Taking ¢, d small, |\ | large enough, we have:
1
& (i NI = Wllfllo-

We obtain:
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Rf =1+ TRf+§:%,w,~f) =f+ &f

where ?;”j is the operator &’; expressed in the global coordinates system
of G. We obtain: || Zfll, < 1/4]|fll, + 1/4 || f|l, for large |»
Hence || Z || < 1/2; therefore (I + &) exists. We define:

.

=R+ &)

The writer wishes to thank the referee for his remarks.
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