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A CHARACTERIZATION OF GROUPS IN TERMS
OF THE DEGREES OF THEIR CHARACTERS II

I. M. ISAACS AND D. S. PASSMAN

In this paper we continue our study of the relationship
between the structure of a finite group G and the set of degrees
of its irreducible complex characters. The following hypo-
theses on the degrees are considered: (A) G has r.x. e for some
prime p, i.e. all the degrees divide pe, (B) the degrees are
linearly ordered by divisibility and all except 1 are divisible
by exactly the same set of primes, (C) G has a.c. m, i.e., all
the degrees except 1 are equal to some fixed m, (D) all the
degrees except 1 are prime (not necessarily the same prime)
and (E) all the degrees except 1 are divisible by pe > p but
none is divisible by pe+1. In each of these situations, group
theoretic information is deduced from the character theoretic
hypothesis and in several cases complete characterizations are
obtained.

In situation (A), the greater complexity which can occur when
e ^ p is explored and a conjecture concerning p-groups with e < p is
studied and certain cases of it are proved. Detailed statements are
made about groups G satisfying (B) for which the common set of
prime divisors of the degrees does not consist of a single prime for
which G has a nonabelian @p subgroup. These results are applied to
situation (C), groups with a.c. m, and such groups are completely
characterized when m is not a prime power corresponding to a non-
abelian Sylow subgroup. If m = pe and an @p of G is nonabelian
then it is shown that G must be nilpotent unless e = 1 (in which case
G has r.x. 1 and has been completely characterized in [2]). This
reduces the study of groups with a.c. m to p-groups and it is shown
that a p-group G with a. c. pe must have an abelian normal subgroup
of index pe unless G has class 2 or 3. Further information is obtained
about these "special" class 2 and 3 groups. It is also shown that if
e > 1 then G must have class ^ p.

Groups satisfying hypothesis (D) are completely characterized and
it is shown that in this case there are at most two degrees different
from 1. Finally it is shown that if G satisfies hypothesis (E) and has
a nonabelian @p subgroup then G is nilpotent and has a.c. p\ In all
the situations considered in this paper, the group in question is shown
to be solvable.

We use here the notation and terminology of [2].

1* Groups with r*x* (p — 1)* In [4] we classified all groups with
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r.x.2. As it turned out, in that study the prime p — 2 played a
special role. It now appears that in the general classification of groups
with r.x. e those primes p with p ^ e will again play a special role.
In the other direction, this means that groups G with r.x. e and p > e
are somehow better behaved than the others. In this section we will
attempt to justify this last statement.

Let G have r. x. e but not r.x. (e — 1). Then we say that e = e(G)
is the character exponent of G. If G has a normal subgroup N of
index p with e(N) = e(G) — 1, then in terms of the characterization
problem, G is trivial. We say that such groups are imprimitive. Other-
wise G is primitive. We note that since all groups with r.x. e are
M-groups this terminology causes no confusion.

The following result handles the nonnilpotent case. It shows
moreover that the nonnilpotent exceptional group of [4](Theorem A (ii))
belongs in some sense to a series of such groups.

THEOREM 1.1. Let e(G) = e and let @P,(G) be noncentral. If
pφ2 and p is not a Mersenne prime or if p > e, then G is imprimi-
tive. If p — e, then G is imprimitive unless G/Q(G) = Go where
Go — (V xσ C) ~ C, I CI = p, V is elementary abelian and either p —
2, I VI = 3 or p = 2a — 1 is a Mersenne prime and \V\ = 2a.

Conversely if e(G) = e and G/&(G) = Go given above, then p = β
and G is primitive.

The lemma below is well known.

LEMMA 1.2. Let π be a set of primes and let arbitrary group G
have a normal abelian @ff subgroup A. Then A = Z x B where Z
and B are characteristic in G and Z = 3(G) Π A.

Proof. Clearly A is characteristic in G and G/A acts on A. Let
θ be the endomorphism of A which is given by θ(a) — ILe^M αβ.
Clearly K = ker θ and I — image θ are characteristic subgroups of G
and I K\ 11\ = \ A\. If Z = Q(G) f] A, then we see easily than Z^I
and Z Π K — <Ί>. The latter uses the fact that A is an ©. subgroup
of G. Hence Z = / and A = Z x K.

Proof of Theorem 1.1. Let H=®P,(G) and P = G/&(H). Let
H be the group of linear characters of H and let Gj. = H xσ P where
P acts faithfully in the natural manner on H. If there exists λeff
with <εP(λ) = <1> then choose N with N 2 (£(#) and [ (? :#] = p. By
[5](§ 3, in particular the proofs of Theorems 3.1 and 3.2), e(N) =
e(G) — 1. Now this occurs by Corollary 2.4 (i) of [5] if p Φ 2 and p
is not a Mersenne prime or if p > e(G). It also occurs for p — e(G)
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unless G1 has Go as a homomorphic image. This follows by Theorem
2.1 of [5] and a slight modification of Lemma 1.2 of [5] since we do
not have to look at subgroups here. We consider this last possibility.
Assume G is primitive.

Now P has as a homomorphic imape Po, a Sylow p-subgroup of
Go. Since [Po - Po] — V2 we see that Po has a nonabelian group of order
p* as a homomorphic image. Thus there exists KΔG with K 3 (£(iϊ)
and G/K nonabelian of order p\ By [2](p. 885, equation * with m = 1)
G has a normal subgroup JV with K < N < G, [G : N] = p2 and
e(JV) ^ e(G) — 1. Since p = β > e(iV) we conclude by [5] that
[#:<£(#)] ^ pe{N). Hence [G: <£(#)] ^ p2 pe( iV) ^ p*+ 1. Since | P 0 | = pfH-\
it follows that [G : (£(#)] = ^ + 1 and P ~ Po.

Let TF be the kernel of the homomorphism Gx —» Go. By the above
W £ i ϊ . We show that W is central in Glβ Let w eW and suppose
that ©^(w) < G1# It is easy to see in Go that there exists <x, b eH/W
such that I <£Po(ά) | = | <£Po(6) | = j> and Po - <©po(α), <£Po(&)>. Thus since
Gi acts on fl/ W and KGl(tc;) < G: we cannot have both &Gl{w) 3 &Gι{a)
and KGl(&). Say &Gl(w)ib(£ffl(a). Since | EPo(a) | = ^ we have SGl(w) Π
&Gi(a) = fl". Now p-group &Gl(a)/H permutes the elements of the coset
aW = α and |αTF| is prime to p. Hence we can choose an element
aeaW which is centralized by KGl(a). Consider v = aweH. If
x e &Gl(v) then x e Qίβι(v) = SGl(ά). Thus a; centralizes α and hence
x 6 Kffl(α) Π Kβjίw) = H". Therefore KGl(ι;) = J ϊ and this is a contradic-
tion since G is primitive. Thus TΓ is central in G± and since GJW =
Go, TΓ = BίGJ. By Lemma 1.2, H=WxR where β Δ G, and RP = Go.

Since H — W x R we have H = Q x Z. All linear characters of
Z are fixed by P and hence Z is central in G. Also QP = Go and
from the nature of Go we see easily that QP = Go Moreover &G(H) —
Q x Z x S where S = ^(©(Jϊ)) . We show now that S is central in G.

Choose X,μeQ with | TP(λ) | = | TP{μ) \ = p and P - <TP(λ), TP(//)>.
Let φ be an irreducible character of S. View X,μ and ^ as characters
of &(H). Let χ be a constituent of (λ<p)* so that χ | (£(iϊ) = a Σ5(λ<P)i
Clearly T(λcp) = Γ(λ) Π Γ(^) so ί ^ ^ and ^ p ^ deg χ = at deg φ ^ pp

deg <p. Thus deg ^ = 1 and t ~ pp. This shows that S is abelian and
that T(φ) 2 T(X). Similary T(φ) 2 Γ(μ) and hence Γ(^) = G. There-
fore S is central in G and 3(G) = Z x S. Hence G/3(G) ~ QP = GQ

and the result follows.

We show conversely that all the exceptional groups discussed have
β(G) = p and are primitive. Let A — (£(if). Since G/Q(G) ~ Go we see
that A = H8(G) is abelian since i ί is abelian. Also [G: A] = pp+1.
Let χ be an irreducible character of G and χ | A = a Σ ί λ»*. Then
deg χ = αί and α2ί ^ [G : A] = p p + 1 by Lemma 1.2 of [2]. Thus deg χ ^
p p + 1 and if deg χ = p 2^ 1 then α = 1 and t = p p + 1 . The latter implies
that for λ = λx we have T(X) = A. We [show that this is not the
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case. Let λ | 3(G) = μ. Then λ is a constituent of μ (induction to
A) and G/A permutes the linear constituents of μ since Q(G) is central.
Now G/A is a p-group and deg μ is prime to p so there exists a con-
stituent η of μ which is fixed by G/A. Since λ | 3(G) = η \ 3(G) it
follows that λ = ηξ where ζ is a character with ξ \ 3(G) = 1. By
properties of Go, T(ξ) > ^ and since Tty) = G, it follows that T{ηξ) > A.
Thus e(G) ̂  p. Since e(G0) = p we have β(G) = p.

Suppose G is imprimitive. Let NAG with [G: N] = p and
e(jV) = p — l. Let χ be a character of G of degree pp. Since e(iV) =
p — 1 we have χ = 99* for some irreducible character >̂ of iV. This
shows that N 2 ,3(G). Clearly iV 2 @P, (G) = if and therefore N 2
iί3(G) - A. Since p > e(iV) and &N(H) is abelian, it follows from § 3
of [5] that [N: A] = pe(iNΓ). Hence [G : A] - p 6 ^ 3 - ^p, a contradic-
tion. This completes the proof.

We now study ^-groups with r.x. e and p > e. Here our results
are not conclusive.

Let p-group G have e(G) = e. We set Ω(G), the character kernel
of G equal to i2(G) = n ker Θ where θ runs over all irreducible charac-
ters of G of G of degree p\ If Ω(G) = <1>, we say G is character regular.
In [6](Corollary 2 with n = pe~ι) we showed that | Ω(G) \ ̂  i(2^e-1)!
We conjecture that if p > e(G) than G is character regular. Reasons
for studying this property can be seen in the following result.

PROPOSITION 1.3. Let G be a p-group with e(G) = e.
(i) Let NAG with e(N) = e. If N is character regular then

&(N) S S(G).
(ii) Suppose G is primitive and every maximal subgroup is charac-

ter regular. If ζeG - 3(G), then [G: K(ζ)] ^ p2. Thus if J is a
central subgroup of G of order p, then 8(G/J) - 3(G)/J.

Proof. In (i) suppose 3(JV) g 3(G). Then we can choose
® e (G, S( W)) with x Φ 1. Since N AG, xeN. Now JV is character
regular so there exists irreducible character φ of N with deg φ = pe

and #£ker<£>. Let χ be and irreducible constituent of φ*. Since
degχ^ pe we have clearly χ\N = φ. Thus 3(iV) is central in the
representation associated with χ and (G,,S(JV)) C kerχ Π N = kerφ, a
contradiction.

We consider (ii). Since ζ ί 8(G) we have [G: (£(ζ)] ̂  p. If
[G : <£(ζ)] = p, let N = (£(ζ). Then N A G,N is character regular and
β(iSΓ) - e(G) since G is primitive. By (i), S(N) S 3(G) and hence
ζ G 3(G), a contradiction. Thus [G: £(ζ)] ̂  p2. Clearly 3(G/^) 2 8(G)/J.
Let ζ G G be the inverse image of an element of $(G/J). Then (G, Q g J
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and I J j = p so [G : &(ζ)] ^ p. By the above ζ e $(G) and the result
follows.

We say p-group G has property (*) if e(G) — β and given any
p — e nonidentity elements of G there exists an irreducible character
χ of G of degree pe which does not contain any of these elements in
its kernel. Note that if p > e(G) and G has property (*), than G is
character regular. In [5] we conjectured that every p-group satisfies
(*). If this is so the following shows that p — e is best possible.

PROPOSITION 1.4. Given p and e. If p ^ β, there exists a p-group
G with β(G) = e and i2(G) > <1)>. If #> > e, then there exists a p-group
G with β(G) = β having p — e + 1 nonidentity elements with the pro-
perty that every irreducible character of G of degree pe contains at
least one of these elements in its kernel. Moreover in both cases we
can take G to have class 2.

Proof. Let G be generated by x19 •••,#«, 2/1, m ,yβ,u,v all of
order p, such that u and v are central, (#*, ̂ ) = uvi for ΐ = 1, , e,
and all other commutators are trivial. Set J = <v)>. Clearly G/J is
a faithful irreducible linear group of degree p\ Since [G : 3((?)] ^ p2e

we see that e(G) = e.
Let p S e. We show that i; e β(G). Let χ be an irreducible

character of G with vgkβΐχ. Then for some i = 1, « , p we have
nvι G ker χ. Since p ^ e we see that â , 2/{ exist and that x{ and ^ are
central in Gjζuv^. Hence G/{uv{y has r.x. (e — 1) and degχ ^ j)e - 1.
Thus v e Ω(G).

Now let p > e. Consider the p — e + 1 elements v, 6̂̂ ?β+1, , uvp.
Let χ be an irreducible character of G containing none of these elements
in its kernel. Then for some i = 1, « ,e we have ^ ^ e k e r χ . As
above for such i ^ e, G/^uv{y has r.x. (β — 1) and hence the result
follows.

We show now that at least in certain cases (*) holds. For possible
later applications we use the following general setup.

Let £f be a class of p-groups closed under taking subgroups and
quotient groups. Let G be a member of £f of minimal order which
does not satisfy (*) if such exists. We consider properties of this
minimal counterexample.

Let e(G) — e and let xu , xr be r = p — e nonidentity elements
of G such that each irreducible character of G of degree pe contains
at least one of the x{ in its kernel. We of course have r > 0 and thus
p > e. Clearly e > 0 by Proposition 4.6 of [2]. Hence r <̂  p — 1.

We can assume that the x{ are central and have order p as
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follows. If x is one of the cc/s, then we can find elements yu , 2/fc

such that h — (x, yu , yk) is a nonidentity central element. If
h ί ker χ for some character χ then clearly x g ker χ. Also we can
take a suitable power of h to have order p.

We show now that all the x{ are contained in Φ(G), the Frattini
subgroup of G. If not say xι g iV for some maximal subgroup JV of
G. Since â  is central of order p we have G = N x <#!> and clearly
e(JV) = e(G) = e. Let ζ be an element of order p in 3(N). Then
<ζ, #!> is central of type (p, p) and has p + 1 subgroups of order p. Since
T <ί p — 1, we can find one such subgroup J with α̂ , , xr, ζ g J .
Then G — N x J and 5̂ , , » r are nonidentity elements of G/J = JV,
a group with e(G/J) = e. Since G is a minimal counterexample, we
can find a character φ of G/J of degree p e with xi £ ker 9?. Viewing
φ as a character of G yields a contradiction.

Let JV be a maximal subgroup of G. Clearly e(N) ^ e — 1. If
β(JV) = e, then since &lf , α?r e JV there exists an irreducible character
φ of AT of degree p e with αj4 ί ker φ for all ί. If X is a constituent of
φ* then since degX ^ pe we have degX = pe and X\ N = φ. Thus
&f g ker % for all i, a contradiction. Therefore e(JV) = e — 1.

If χ is a character of G of degree p e, then χ = <p* for some
irreducible character φ of N since e(iV) = β — 1. Thus T(φ) = N and
hence S(G) a N. Therefore S(G) a S(JV). We show that S(G) - &(N).
If not, choose a;r+1 e (G, 3(-^)) with α?r+1 Φ 1. Since e(iV) = e — 1 and
r + 1 = p — (β — 1), we can choose an irreducible character θ of JV
of degree p 6 " 1 with c^gkertf for all i. Let χ be a constituent of θ*.
If deg χ = p e, then x19 , xr $ ker % yields a contradiction. On the
other hand, if degχ — pe~\ then χ\N = θ and so ,8(^0 is central in
the representation associated with χ. Hence (G, ,8(N)) £ ker χf]N =
ker # and this contradicts the fact that xr+1 g ker #. Thus .Sί̂ V) = 8(G).

We show now that Q(G) has two generators and is not cyclic.
Let G have as a homomorphic image G = G/iί, a faithful irreducible
linear group of degree pe. Suppose 3(G) Π K has a subgroup of type
(p,p). Then we can find a central subgroup J of order p with XiίJ
for all i and J Q K. Then e(G/J) = β and we clearly have a contra-
diction. Thus 3(G?) n if is cyclic. Since 3(G) is cyclic we see that
8(G) has two generators. Let ζ e &(G) - 3(G) with ζp e 3(G). Then
the map g —* (g, ζ) is a homomorphism of G into the elements of order
p in 3(G). The kernel is <£(ζ) and by the above [G : <£(ζ)] ^ p2. Hence
[G: ©(ζ)] = p2 and (G, ζ) is abelian of type (p, p). Thus S(G) is not
cyclic.

THEOREM 1.5. If G has class at most 2, then G satisfies (*).

Proof. Let £f be the family of all ^-groups of class at most 2
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and let G be a minimal counterexample. Then all of the above applies.
Let J be a central subgroup of G with x{ g J for all i. Let X be an
irreducible character of G/J viewed as one of G and with xxJ£kerX.
Let K be the kernel of X. If U is the subgroup of 3(G) of type (p, p)
then clearly J = KnU and thus Kn 3(G) is cyclic. Let G = G/ϋΓ.
We show that Q(G/K) = Q(G)/K. Let 5 be the complete inverse image
of &(G) in G. Clearly 5 3 3(G). If B > 3(G), choose ζeB - 3(G)
with ζ^eBΐG). Since ζe8(G) we have (G, ζ) ^Kf] U = J. Hence
[G : C£(ζ)] = ί>, a contradiction. Since x{ $ ker X, it follows that deg X ^
pe-1 and so [G : 3(G)] g p2e~2 by Lemma 2.3 of [2]. Hence [G : 3(G)] ^
p2e~2 and G has r.x. (0 — 1), a contradiction. Thus the theorem is
proved.

We now return to our discussion of the general minimal counter-
example. Again let ζ e 32(G) - 3(G) with ζp e 3(G). Thus if X = S(ζ),
then we have [G \ K] — p2 and in fact G/K = (G, ζ) is abelian of type
(p, p). Let N be any subgroup of G with G > N > K. Since 3C*OS
^(iV) and K is character regular we see by Proposition 1.3 (i) that
e(K) < e(N). But e(K) ^ e(N) - 1 so β(iΓ) = e(N) - 1 = e - 2. In
particular e ^ 2.

We show now that [&(K): 3(G)] - P so that 3(K(O) - <3(G), ζ>.
Let <9 be an irreducible character of K of degree pe~2 (note that e(K) =
β — 2) with #!, , xr not in its kernel and let J S ker ^ where J is
central in G of order p. Clearly J — (T, ζ) for some subgroup T with
G > T > K. Consider G = G/J. Since ^, ^ 1 in G we see that
β(G) ^ e - 1. But e(£") = e - 2, where of course if = iΓ//. Also
ζ e 3 ( f ) - 3(G). Hence β(G) > e(f) ^ e(JP). This yields e(G) = β - 1
and e(f) = β(j^) = β - 2. By Proposition 1.3 (i) we have 3(ΪΓ) £
3(10 £ 3(Γ) and thus (Γ, 3(ίΓ)) = J . Now T - <JBΓ, α> and the map
b —* (6, α) is a homomorphism of 3(K) onto / with kernel ®(α) n 3 ( ^ ) —
3(Γ) . Hence [Q(K): 3(T)] = P But 3(T) = 3(G) so [ 3 ( Z ) : 3(G)] =p.

lie = 2, then JSΓ is abelian and so Q(K) = K. Hence [G:3(G)] - p\
a contradiction and hence e ^ 3. If we let S? be the set of p-groups
with r.x.2, then the above yields:

PROPOSITION 1.6. If G is a p-group with r. x. 2, then G has pro-
perty (*).

We now discuss an application of the above. Let ^~ denote a
family of character regular p-groups closed under taking subgroups
and quotient groups.

PROPOSITION 1.7. Let G e ^ with e(G) = e. Let X be an irre-
ducible character of G of degree pe and let Zχ denote the set of
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elements of G central in the representation associated with X. Then
Zχ is abelian.

Proof. If Zχ is central the result is clear. So assume Zχ §
and hence Zχ > 3(G). Choose ζ e Zχ - 3(G) with ζ e &(G) and ζp e 3(G).
Then (ζ, G) is central, elementary abelian and (ζ, G) £ ker X. Clearly
(ζ, G) ̂  <1>. If I (ζ, G) I ̂  p2, choose J, and J 2 subgroups of (ζ, G) of order
p with Jι[\Jι — <T>. Since J^ £ ker X, we have e(G/Ji) = e and hence
by induction Zχ/ /* is abelian. Thus Z'x £ Jλ Π / 2 = <1> and ^ χ is abelian.

Thus we can assume that (ζ,G) = p and hence if H =(£ (ζ), then
[G: £Γ] = p. Since i ϊ is character regular and Q(H) g£ 3(G), Proposi-
tion 1.3 (i) yields e(H) = e — 1. Thus X\H = Σ f ^ and X vanishes
off £Γ. This latter fact implies that Zχ £ iJ. Now if φ — φγ, then
deg <p = p""1 and e(H) — e — 1. Thus in iϊ, Z^ is abelian. Since clearly
^ χ £ ί^, the result follows.

COROLLARY 1.8. Let G have class 2. Ifp> e(G) = β, £/ιew G
α normal abelian subgroup of index p2e.

Proof. Let ̂ " b e the family of ^-groups of class ^ 2 with p > β(G).
By Theorem 1.5 all members of j?~ are character regular. Let X be
an irreducible character of G of degree p\ Then by the above Zx is
a normal abelian subgroup of G. Since G has class 2, [G: Zχ] — p2e

and the result follows.

2* 7Γ-Character groups. In this section we study groups whose
irreducible characters have degrees which are powers of a fixed integer
m. In fact we consider the more general class of groups defined below.
Here π(n) denotes the set of prime factors of integer n.

DEFINITION 2.1. Let π be a set of primes. We say group G is a
7Γ-character group if the following hold.

( i ) The distinct degrees of the irreducible characters of G are
d0, du ' , dk with k ^ 1.

(ii) For all i ^ 1, cZί—x | d< and π(di) = π.

(iii) If π = {p}, then @P(G) is abelian.

Condition (iii) above is included for convenience in order to avoid
overlap with our previous study of r. x. e groups. If H is a homo-
morphic image of G, then the degrees of the irreducible characters of
H forms subset of those of G. Hence if G is a τr-character group,
then either H is a π-eharaeter group or H is abelian. The main result
here is as follows.
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THEOREM 2.2. Let G be a π-character group. Suppose the distinct
degrees of its irreducible characters are d0, du •• ,d;k with di_1\di.
Then G has the following structure.

( i ) G has a normal abelian ©ff, subgroup H Φ <T> with G/H =
@π(G) abelian.

(ii) A — &(ίf) is a normal abelian subgroup of G of index dk.
(iii) There exists a subset {α0, α lf , ar} of {0,1, , k} with

0 — α0 < aγ < < ar = k such that GjA is abelian of type (dajdao,
djdaί, . . , djd^j and (da.Jda.) \ (dajdai__) for all i.

COROLLARY 2.3. Suppose the degrees of the irreducible characters
of G are all powers of a fixed integer m, with ms the largest such
degree. Let π = π(m) and assume that | π | > 1. Then G has a normal
abelian subgroup A with G/A abelian of order ms and type (ms°, mSl,
• • , m 5 r ) for suitable integers s{. Moreover &π(G) is abelian.

The corollary is of course an immediate consequence of the theorem.
The proof of the latter will be in two parts. We first show that G
satisfies (i). Then we study groups with that property and show that
they satisfy the remaining conditions (ii) and (iii).

We start with a lemma. If λ is a linear character of G, then the
order of λ, written o(λ), is its order as an element of the dual group

G/G'. If X is any irreducible character of G we set o(X) equal to o(λ)
where λ = det X, the determinant of the representation associated
with X.

LEMMA 2.4. Let p be a prime and let U — QP(G) be the minimal
normal subgroup of G having a p-quotient group. Then

\U\ = Σ^o(*> X(l)2 mod p.

Proof. By induction on \G\. Suppose first that G has no normal
subgroup of index p. Then G = VLP(G) and GjGf is a p'-group. Hence

for all λ e G/G' we have p)(o(X). Therefore the above congruence
follows from the equation | G \ = Σ%(1)2

Now let G have a normal subgroup H of index p. Clearly VLP(G) —
VLP(H) and thus by induction

\u\ = Σ P , O < * ) W modi?

where the sum runs over the irreducible characters θ of H. We show
now that

Σ>p*oix) Z ( l ) 2 Ξ Σ P * O ( * ) #(1) 2 mod p .

In both sums we can of course discard those χ and θ with p \ χ(l) and
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p I 0(1). Also if T(θ) = H, then 0 has p conjugates θu 02, , θζ.
Clearly 0 (̂1) = 0(1) and o(0J = o(β). Thus the contribution of these
conjugates to the right hand sum is a multiple of p. Hence we need
only consider those 0 with T(θ) — G.

Let SΊ = {X I X is an irreducible character of G, p | Z ( l ) , and
p Jf o(X)} and <5 2̂ = {0 | 0 is an irreducible character of H,p\ 0(1),
p \ o(0), and T(0) = G}. As we have shown above it suffices to prove
that

mod p .

We will in fact show that the map χ —• χ | H is a one-to-one map
of ^ Ί onto S^z and this will yield the result since X and X | i ϊ have
the same degree.

Let X G S?x. Since [G : £Γ] = p we have that either X \ H is
irreducible or X | if is the sum of p conjugates. Since p \ χ(l), the
latter cannot occur so X \ H — 0 is irreducible. Clearly 0(1) = Z(l),
o{θ) I o(χ) and T(θ) = G and hence 0 € ^ 2 . Thus the restriction map
sends £fx into </Ί.

Now let ^ e y 2 and let μ = det 0. Since Γ(0) = G we have
T(μ) = G and thus K = ker μ is normal in G. If X is such that X | H = 0,
then X is a constituent of 0*. Thus to show that the restriction map
is one-to-one and onto we must find a unique constituent X of 0* with
% e S^Ί and X\H — 0. Let r be a nonprincipal linear character of G/H
and let X be an irreducible constituent of 0*. Since [G: H] = p and
T(θ) = G we see that X\H = θ and that all the constituents of 0* are
of the form X{ = τ̂ Z for i = 0,1, , p — 1. Let λ = det X so that
λ I H = μ. We have clearly

det Xi = det τ*Z = τ ί κ ( 1 )λ .

Since χ(l) = 0(1) is prime to p we see that det X{ Φ det X5 for i Φ j and
hence we obtain p distinct linear characters of G which extend μ.

Since T{μ) — G we see that fZ/if is central in GjK and since G/H
is cyclic, G/if is abelian. Also H/K is a p'-group since p | o ( μ ) and
hence G/K ~ (fί/iΓ) x (G/H). It follows easily from this that there
are precisely p distinct linear characters of G which extend μ and that
precisely one of these has order prime to p. Hence there is a unique
% with o(χio) prime to p. Then p \ o(XiQ) and p \ Xio(l) since Xio(l) =
0(1). Thus X,o e £fγ and XiQ\H = 0. This completes the proof.

The first two parts of the following theorem are due to John
Thompson. They generalize our original result, proved under more
restrictive assumptions.

THEOREM 2.5. Let p be a prime and π a set of primes.
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( i ) Suppose for every nonlinear irreducible character χ of G
we have p | X(l). Then G has a normal p-complement.

(ii) If the degrees of the irreducible characters of G are linearly
ordered by divisibility, then G has a Sylow tower.

(iii) Suppose for every nonlinear irreducible charactor X of G
we have π(X(l)) = π. Then G has a normal abelian @ff, subgroup H.
Moreover if \ π | > 1, then G/H is abelian.

Proof. ( i ) Let U be as in the preceeding lemma. Since p | χ(l)
if χ(l) Φ 1 we see by Lemma 2.4 that

v\ = Σ P W J ) λ(i)2

where the sum runs over linear characters λ. Clearly p \ o(λ) is equiv-

alent to λ belonging to &P,(G/G'). Hence

I moάp

and so p\ \ U\. Thus U is a normal p-complement of G.
(ii) By induction on | G \. If G is abelian the result is clear so

assume that G is nonabelian. Let d0 = l,d19 ,dk be the distinct
degrees of the irreducible characters of G with d{ \ di+ί. Since k ;> 1,
choose prime p with p\ d19 Then for all i ^ 1, p \ d{. By (i), G has a
normal p-complement H. Let X be a character of G of degree d{

and say

X I H = a Σ ί θ< .

If θ = #i, then αί deg # = deg % = d{. As is well known at | [G : if] and
of course deg # 11 H\. Hence clearly at = | rff |p and deg # = | ̂  |p /. Thus
the degrees of the irreducible characters of H are \dQ\p,, \dx\pt\, •••,
|ώfc|p/ and these are linearly ordered by divisibility. By induction H has
a Sylow tower and thus the result follows here.

(iii) By (i), G has a normal p-complement for all peπ. Hence
G has a normal @ff, subgroup i ϊ with G/iJ nilpotent. Let θ be an
irreducible character of H and let % be a constituent of θ*. Then
deg θ I deg X and deg 5 | | H \ and so deg 0 = 1. Thus if is abelian. Now
let 7Γ = {ply p2, , pr} and suppose r > 1. Let G/iϊ = P1 x P2x x P r

where P4 = &P.(G/H). If P4 is nonabelian then G/ίί has a character
Z with π(X(l)) = {pj ^ π, a contradiction. Hence for all i, P^ is abelian
and thus G/H is abelian. This completes the proof.

Part (iii) of the above result yields (i) of Theorem 2.2. We now
study groups satisfying this latter condition.

THEOREM 2.6. Let π be a set of primes. Let G be a group with
a normal abelian &κ, subgroup H and with G/H =; @ff(G) abelian.
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Suppose the distinct degrees of the irreducible characters of G are
d09 dιy , dk with di_γ \ d{. Then

( i ) A = (£(iJ) is a normal abelian subgroup of G.
(ii) There exists a subset {α0, alf , ar} of {0,1, •••,&} with

0 == α0 < ax < < ar = k such that G/A is abelian of type (daJdaQ,
dajdaι, , djd^) so [G: A] = dk and (da.+Jda.) \ (dajda.^) for all i.

Let K be a normal subgroup of G, maximal subject to G/K being
nonabelian. If G/K ~ E is solvable, then in the terminology of § 2
of [2], E is extra-special. By Proposition 2.2 of [2], E is either a
Case P or Case Q group. We will refer to these as Case P and Case
Q quotients of G.

Let G satisfy the hypotheses of the above theorem. Set q{ =
di/di_lm These degree quotients will come into play in some later
results.

LEMMA 2.7. Let G satisfy the hypothesis of Theorem 2.6. Let
KΛG so that G/K is an extra-special group. Then G/K is a Case Q
quotient. Let Q/K be the normal Sylow q-subgroup of G/K with G/Q
cyclic of order d. Then \ d \π = d and \ q \κ, = q. Also there exists a
subset {b0, bu , bs} of {0,1, , k} with bo<bί< < bs = k such
that the distinct degrees of the irreducible characters of Q are dbjd,
dbjd, ---,dbjd.

Suppose further that qi\ d for all i > 1. Then d — dγ and the
distinct degrees of the irreducible characters of Q are djdί9 d2/du ,
dk/dx. Moreover if θ is an irreducible character of Q, then θ* is either
irreducible or it has all linear constituents.

Proof. Let G/K be an extra-special quotient of G. If G/K is
Case P, then G/K is a nonabelian p-group for some prime p. Since all
Sylow subgroups of G are abelian, this cannot occur. Thus G/K is
Case Q. By Ito's theorem we have d{ \ [G: H] for all i and hence
1 d{ \π = di. Since d is the degree of an irreducible character of G we
have \d\π — d. Moreover since G/K is nonabelian and &X(G) is abelian,
we see that G/K is not a π-group. Hence \q\π> = q.

Let θ be an irreducible character of Q and let μ be a nonprincipal
linear character of Q/K viewed as one of Q. Suppose θ — θμ. If L
is the kernel of μ then Q > L =2 K and θ vanishes off L. Say θ \ L =
a Σ ί Φi Then [θ IL, θ \ L]L = aH. On the other hand since θ vanishes
off L,[Θ\L,Θ\ L]L = [Q : L][θ, θ] = [Q : L]. Hence aH is a proper power

of q. Since deg θ — at deg φγ we have q \ deg θ. If % is a constituent
of θ*, then deg θ | deg X and so q \ deg X. This is a contradiction since
I deg X \π — deg X and g g TΓ. Hence θ Φ θμ.

Now let λ, μ be two distinct characters of Q/K. We show that
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T(ΘX) Π T(θμ) = Q. If not we can find x e (T{ΘX) Γ) T(θμ)) - Q. Then

ΘX = {ΘX)X = ΘXXX θμ = {θμ)x = 0 s μ*

and hence

θ* = ΘXXX =

Now λλ* ^ μμx since cc acts fixed point free on Q/K and X Φ μ. Thus
θ = θp where p = (μμx)(XXx) Φ 1 and this contradicts the above. Let
u be the number of minimal subgroups of G/Q. Then this says that
there are at most n characters X of QjK with T{ΘX) > Q. Clearly
u <ί d — 1 since each minimal subgroup is cyclic and has a nonidentity
generator. On the other hand G/Q acts fixed point free on Q/K so
there are at least d + 1 > u linear characters of Q/K. Hence there
exists λ with T(ΘX) = Q.

Since T(0λ) = Q, it follows easily that (ΘX)* is irreducible. Hence
for some i

di - deg {ΘX)* = d deg (0\) - d deg 0 .

This implies that there exists a subset {b0, b19 , 6β} of {0,1, , Λ}
with 60 < &i < < b8 ^ k such that the distinct degrees of the irre-
ducible characters of Q are db0/d, dhjd, , dbjd. We show now that
bs = k. Let % be a character of G of degree dk and let θ be an irre-
ducible constituent of X \ Q. Then certainly deg θ ^ dk/d. On the other
hand by the above deg θ = dy/d for some j . Hence dό/d ^ d̂ /d so
j = k and deg θ — dk/d. This completes the first half of the proof.

Now assume that qt \ d for all i > 1. Since q{ \ di and d > 1, it
follows that d = dlβ Let Z be an irreducible character of G of degree
di for i > 0 and let θ = 0X be an irreducible constituent of X | Q. We
have Z | Q = a Σ ί ^ and thus if 6 = at then 6 ^ d and 6 deg 0 = deg X —
d{. On the other hand we know that deg θ = djd for some i . Hence
di/b = dy/d. Since d^b, it follows that dy ^ d£. If d̂  > d4, then
di+1\ dj and we have

d = dx = b{dj/di) = bqi+1{dά/di+ι)

and gί+11 d, a contradiction for i > 0. Hence i = i and deg 61 = d̂ /d.
Moreover b — at ~ d and since α2ί g d, in general, we have a = 1,
ί = d and X = 0*. Thus the distinct degrees of the irreducible characters
of Q are djdly djd19 , dfc/dlβ

Finally let ^ be a character of Q and suppose that #* has a non-
linear irreducible constituent X. Since 0 is a constituent of % | Q, the
above yields X = θ* is irreducible. This completes the proof of the
lemma.
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Proof of Theorem 2.6. First A = &r(A)H, @π(A) is abelian and
H is central in A. Hence A is abelian and (i) follows. Note that
G is solvable. If G is abelian, then (ii) is obvious. So assume G
is nonabelian.

Let K A G with G/K an extra-special group. By the preceeding
lemma, G/K is a Case Q quotient. Using the notation of that lemma
we have [G : Q] = di for some i. Moreover assume that K is so chosen
that i is maximal with this occuring.

In G/K we have &Glκ{Q/K) = Q/K. This shows that A = &β(H) g Q
and hence &G(H) — &Q(H) — A. Let x e G/A be such that it generates
the cyclic quotient G/Q. We show that | ζx} | = di = djdo. Clearly
di I I <V> |. If dt Φ I <V> I, then for some prime p e π we have | <V> \p >
I di \p. For this prime let J be the subgroup of <V> of order p. Now
@π(A) centralizes H and some @ff(G) and hence @ff(A) is central in G.
Thus by Lemma 1.2 we can write A = D x C where D — &A(J) and
D, C AG and J acts fixed point free on C. Clearly C Φ <1)>. Let λ
be a nonprincipal linear character of C viewed as one of A. Then
(T(X)/A) n J = <1> and hence [G : Γ(λ)]p ^ |<a?>|p > | d< |p. Since C ^ 1
this implies that the distinct degrees of the irreducible characters of
G/D are 1, djy with j > i. Hence G/D has a Case Q quotient with
[G : Q] = d$ > diy a contradiction. Thus |<x)>| = ώi# Setting aγ — i,
we have by induction applied to Q, that G/A is abelian of type (daJdaQ,
d a β a i , , d j d ^ j w i t h α r - ft. A l s o ( d a . J d a . ) \ ( d a j / d a j j f o r j > l
by induction. To obtain (dajdai) \ (daJdaQ) we merely note that | <(x) \ = di
for all such choices of x. This implies that the period of Q/A divides
^ = dajdao. This completes the proof.

The proof of Theorem 2.2 is now immediate. Part (i) follows from
Theorem 2.5 (iii) and from the assumption that if π = {p}, then @P(G)
is abelian. Then Theorem 2.6 yields parts (ii) and (iii).

In the remainder of this section we assume that G satisfies the
hypothesis of Theorem 2.6 and we will use the notation of the conclu-
sion of that theorem. We first note a few simple facts about the
characters of G.

LEMMA 2.8. Let X be an irreducible character of G. Then we
have

( i ) X I H = Σ ί ^i> thut is ^here is no ramification.
(ii) There exists a subgroup L 3 A and a linear character λ of

L with X = λ*.
(iii) If X is faithful, then L = A and deg X = dk.

Proof. Let X\H = α Σ ί λ ^ and set L = TOw). Clearly L 2 (£(#) =
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A. As is well known there exists a character θ of L with χ — θ* and
Θ\H = αλx. Let ϋΓ be the kernel of θ. Then clearly H is central
modulo if. Since @Γ(L) is abelian this shows that L/JK" is abelian and
hence deg θ = 1. Thus α = 1 and (i) and (ii) are proved.

If X is faithful then since L /\G we have that L is abelian.
Hence L S W ) = A. This yields deg X = [G:A] = dk and (iii) follows.

It is interesting to consider which subgroups L can occur in (ii) of
the above lemma. Define a Galois connectivity between groups L with
G Ξ2 L Ξ2 A and groups 5 with H 3 I? as follows.

L-^+(L,H) B-^{geG\ (g, H) S 5}

We say L is closed if Ldtt = L

PROPOSITION 2.9. Using the above notation, group L has a linear
character λ with λ* irreducible if and only if L is closed.

Proof. We note first that (L, if) = L\ This follows since L/(L, H)
has a central ©^ subgroup and an abelian @.τ subgroup and hence is
abelian.

Now let L have a linear character λ with λ* = X irreducible.
Set M = Ld% so that M 2 L. Suppose that M > L. Clearly L 3 ker Z.
Since G/A is abelian, L A G and hence L/ker Z is abelian. Thus ΊJ —
(L,H) ^ ker X. Since degX = [G:L] and M > L it follows that
M' = (M, H) g ker X. Thus Afd = (M, H) Φ (L, ί ί) - ZΛ a contradic-
tion. Hence M = L and L is closed.

Now assume L is closed. We consider G = G/(L, H) in which
L — L/(L, H) is abelian. Since L is closed we see that G/L acts faith-
fully o n S = &π>(L). Thus G/L acts faithfully on 15, the dual group of
5. Since these groups are abelian and have relatively prime orders,
it follows by a trivial modification of Lemma 2.2 of [5] that there exists

λ e S with Sjs/i(λ) = <1>. View λ as a character of L and then as
one of L. We see that T(\) = L and hence that λ* is irreducible.
The result follows.

If G/A is cyclic we can obtain additional information.

THEOREM 2.10. Suppose G/A is cyclic. Let Li he the unique sub-
group of G with [G: LJ = d{ and Li Ξ2 A. Then we can write A =
BQ x BL x x Bk where each Bt is characteristic in G, Li centralizes
Bi and G/L{ acts fixed point free on B{. Here B{ Φ <(Γ> for i Φ 0.
Conversely a group with this structure has characters of degrees
dOJ dιy - , dk only.

Proof. Note that A = &(H) and each Li is characteristic in G.
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Note also that @*(A) is central in G. We have

a s <M£*)
and each of these groups is characteristic in G. By Lemma 1.2 we
can write for i = 1, 2, , k

where each I?; is characteristic in G. Setting Bo = K (̂L0) = 3(G) we
have

A = Bo x jBi x x 2?Λ

where each I?; is characteristic in G and is centralized by L{.
Let i ;> 1 and let λ be a nonprincipal linear character of Bi viewed

as one of A. Since L{ centralizes B{ we have T(λ) 3 ^ . If T(λ) > Li9

then by Lemma 2.8 (i) we have T(k) ΞΞ2 L ^ . This implies that L^
centralizes an element of BI which is not the case by definition of Bi%

Hence T(λ) = L{ and G/Li acts fixed point free on B{ and hence on Bi%

We show now that Bi Φ ζiy for i Φ 0. Let X be an irreducible
character of G of degree d{ and let λ be an constituent of X\A.
Since there is no ramification, [G : T(X)] — d{ and hence Γ(λ) = L^
Write λ = λoλi Xk where λy is a character of Bά viewed as one of
A. As we showed above, Lέ fixes no nonprincipal character of Bό for
j > i. Hence λ = X ^ λ<. If λ< = 1, then clearly T(λ) 3 L, _! which
is not the case. Hence λ* ^ 1 and Bi Φl. The completes the forward
half of the proof.

Conversely let G have the structure described above. Since A is
abelian and G/A is cyclic we know that there is no ramification. Let
X be an irreducible character of G with λ = λoλ! Xk a constituent
of X I A. Then deg X = [G : Γ(λ)]. If λ = 1, then deg X = 1 = d0. If
λ ^ l choose j maximal with λ, Φ 1. Clearly Γ(λ) = Lό and deg X = dά.
This completes the proof.

We now seek sufficient conditions to guarantee that G/A is cyclic.

THEOREM 2.11. Each of the following will guarantee that G/A
is cyclic.

( i ) dk)(dkj
(ii) For all i <j, q^qi.
(iii) For all i, qi+ί > qim

(iv) There exists a prime peπ such that \ qi+1 \p > | ĝ  \p for all i.

Proof. We consider (i) first. This is a simple corollary of Theorem
2.6. If G/A is not cyclic, then there exists 6 < a < k with (dk/da) \ (djdb).
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Thus dk I d\ and since da \ dk_x this yields dk \ d\_u a contradiction.
Now assume G satisfies condition (ii). We prove the result by

induction on \G\. If k = 1, the result follows by (i) above so we
assume k > 1. Let % be a character of G of degree dγ. By Lemma
2.8 (iii), G/kerX has characters of degrees 1 and d1 only. Choose
K ΛG, K 3 kerZ with G/K a Case Q quotient. Using the notation
of Lemma 2.7, it is clear that [G: Q] — dγ = qlm Since qj\dι for all
j > 1, it follows by Lemma 2.7 that the distinct degrees of the
characters of Q are djd19 d2/du , djd^ Hence Q has degree quotients
#2> ̂ 3, , Qk and we can apply induction to Q. Thus Q/A is cyclic.

Theorem 2.10 applies to Q and thus A contains a characteristic
subgroup B on which Q/A acts fixed point free. Then B /\G and also
B Φ <Ί>. Let λ be a nonprincipal linear character of B viewed as one
of A. Then λ (induction to Q) is an irreducible nonlinear character
of Q since k > 1. By Lemma 2.7, λ* = λ* is irreducible. This shows
that G/A acts fixed point free on B and hence G/A is cyclic.

Parts (iii) and (iv) follow immediately from (ii).

3* Groups with a* c* m. In this section we study nonabelian
groups G having the property that every nonlinear irreducible character
has degree m for some fixed integer m. We say these groups have
a.c. m (all characters m). As an immediate consequence of Theorems
2.2 and 2.10 we have the following.

THEOREM 3.1. Let G have a.c. m with π = π(m). Suppose that
either \ π \ > 1 or π = {p} and an @p subgroup of G is abelian. Then
G has the following structure.

( i ) G has a normal abelian ©*, subgroup H Φ <Γ> with G/H ~
©*((?) abelian.

(ii) A — &(H) is a normal abelian subgroup of G with G/A
cyclic of order m.

(iii) A = 3(G) x B where B A G, B Φ <1> and G/A acts fixed
point free on B.

Conversely any group G having this structure has a. c. m.

Therefore we need only consider the case in which m — pe for
some prime p with @P(G) nonabelian. Actually the e — 1 case has
already been studied in [2]. However there is little additional work
involved in handling it so we will consider it again here. As we will
see, the structure of those groups with e > 1 is much more restrictive
than the structure with e = 1. We start with several lemmas.

LEMMA 3.2. Let G have a.c. m with m —pe and @P(G) nonabelian,
Then we have the following.
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( i ) G has a normal abelian &p, subgroup H.
(ii) G has a Case P quotient E.
(iii) // E is any Case P quotient of G, then E is a p-group with

E/Q(E) elementary abelian of order m2. Also any abelian subgroup
B of E satisfies [E\E\^ m.

Proof Since G has r.x. e, Proposition 3.4 of [2] yields (i). Now
G/H ~ @P(G) is nonabelian. Thus we can choose K Δ G , K 3 H and
maximal with G/K nonabelian. Clearly G/K is a Case P quotient and
(ii) follows. Now let E be any Case P quotient of G. Then E has
a.c. m and hence E is a p-group and E/$(E) is abelian of order m2

by Proposition 2.2 of [2]. Since E has an irreducible character of
degree m, it follows that E has no abelian subgroup of index less than m.
We need only show that E/Q(E) is elementary abelian. Given x,yeE.
Since E has class 2 and Er has period p we have (xp,y) = (x,y)p = 1.
Thus a* e 3(J5) and E/3(E) has period p.

LEMMA 3.3. Let G have a.c. m. Tλβn we Λαi e ίΛβ following.
( i ) Lei & be a permutation representation ofG with deg & <. m.

Tλera G' S k e r ^ .
(ii) // IG' I ̂  m, ίΛβn, G' s S(G).
(iii) Let L be a subgroup of G with [G: L] ^ m. T&ew Gf ξίL

and hence LAG. Moreover if [G : K] = m απώ K < L SG, then
(JBΓ, L) = L' = G'.

Proof. Let ^ be the character corresponding to ^ . Then deg θ <*m.
We have 0 = Σ α<̂ < where each Ẑ  is an irreducible character of G.
Now if Zx = 1, then ax ^ 1 and hence for all i, deg Ẑ  < m. Since G
has a.c. m, degZ; = 1 and G' £ kerZ^ and hence G' £ ker ^ . This
yields (i).

Suppose I G'| ^ m. Let xeG. Clearly | Clx | S I G'| ^ m, where
Clx denotes the class of x. Now G permutes the elements of Clx
by conjugation and this representation has degree ^ m. Hence by (i)
G' is in the kernel of the representation and thus G' centralizes x.
Since x was arbitrary, G' £ ,8(G) and (ii) follows.

Now let L £ G with [G: L] ^ m. We see that G permutes the
right cosets of L by right multiplication and this representation has
degree ^ m. Thus by (i), G' is in the kernel and hence G' £ L. Now
let [G: K] = m and L > K. Since both if and L are normal in G so
is H = (if, L). Ii H < G', then G/iί is nonabelian and thus has a.c. m.
Since if' £ if, K/H is abelian and is centralized by a properly larger
subgroup. Thus G/H has an abelian subgroup of index <[G : K] — m.
This contradicts the existence of an irreducible character of G/H of
degree m. Hence H = G\ Since G' 2 1/ ΞJ (if, L), the result follows.
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LEMMA 3.4. Let G have a.c.m where m = pe and @P(G) is non-
abelian. Let A^H= @P/(G) be a normal self-centralizing subgroup
of G. If G has a faithful irreducible character X then GjA is ele-
mentary abelian of order m.

Proof. Since 4 3ff, G/A is a p-group and hence there exists
subgroup L and linear character λ of L with G 3 L 2 A and X = λ*.
Since deg X = m, [G : L] — m and hence by Lemma 3.3 (iii), L A G .
Thus X I L has only linear constituents. Since X is faithful L is abelian
and since A is self-centralizing L = A. Thus G/A has order m.

By Lemma 3.2(ii), G has a Case P quotient E = G/JBL. Let Z/JSΓ =
£(#). Then (AZ)/K is an abelian subgroup of E so [G : AZ] ^ m by
Lemma 3.2 (iii). Since [G : A] = m, we have A 2 Z and hence G/A is
elementary abelian.

We now reduce the study of these groups to a study of p-groups.

THEOREM 3.5. Let G have a.c. pe with P = @P(G) nonabelian.
Let H be the normal abelian &p, subgroup.

( i ) If e > 1, then H is central and hence G = H x P.
(ii) 7/ β = 1, then either H is central or G has a normal abelian

subgroup of index p.

Proof. We start with the case e > 1. Suppose first that G has
a faithful irreducible character. By the preceeding lemma, G has
a normal abelian subgroup A with G/A elementary abelian of order p\
Then A = B x H where B = Θ^A) A G. We consider G/B and show
it is abelian. If not, then G/B has a.c. p\ Now &P(G/B) ~ G/A is
abelian and thus Theorem 3.1 applies. Hence since A/B = &P,(G/B) we
see that (G/B)/&(A/B) is cyclic of order pe. This implies that K(A/ΰ) =
A/B and therefore that G/A is cyclic of order pe. Since G/A is ele-
mentary abelian this is a contradiction for e > 1. Thus G/5 is abelian.
Since if A G this yields ( G , f f ) S ΰ Π f f = <1> and i ί is central.

Now let G be arbitrary with e > 1. We show that £Γ is central.
If not choose xeP', y e (G, i ϊ) with a?, 2/ 9̂  1. By Proposition 4.6 of
[2] there exists an irreducible character X of G with &, 7/ g ker Z. Hence
G/ker % has a. c. pe, a nonabelian Sylow ^-subgroup and a noncentral
@p/ subgroup. Since G/ker % has a faithful character this contradicts
the above and (i) is proved.

Now let β = 1 and suppose that H is not central. Since p > 1 = e,
G is imprimitive by Theorem 1.1. Thus there exists A A G with [G:A\ —
p such that e(A) = e(G) — 1 = 0. Hence A is abelian and (ii) follows.

It is easy to construct examples to show that H need not be central
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in G if e — 1. For example, let Q be an abelian g-group (q Φ p) which
has an automorphism of order p. Let G = Q xσ P where P has order
p3 and P acts on Q in such a way that Po a subgroup of index p
centralizes Q and P/Po corresponds to the automorphism of order p.
Since A — QPQ is an abelian subgroup of G of index p, G has a.c. p.
Finally Q = ®P,(G) is not central and P = @P(G) can be chosen to be
nonabelian.

In the remainder of this section and in the next two sections we
will consider only ^-groups.

LEMMA 3.6. Let G have a. c. m. Then we have the following.
(i ) Φ(G), the Frattini subgroup of G, is abelian.
(ii) If G has two distinct abelian subgroups A and B of index

m, then \ G' | ^ m and hence G has class 2. Moreover if\Gf\ — m, then
S(G) = Af]B and [G: 3(G)] = m\

(iii) If G' is not central, then (ϊ(G') is abelian.

Proof. We consider (ii) first. Choose xeB — A wi th xp e A and

set L = <A, x}. Then [G : L] — pe~ι where m = pe. Thus by Lemma

3.3 (iii), U = G'. Clearly U = (A, x) and \G'\ = \L'\ = [A: ( £ ^ ) ] .

Since &Λ(x) 3 i n 5 and [A:Af)B]^m, we have \G'\^m. By
Lemma 3.3(ii), G has class 2. If | G'\ = m, then [A : A Π B] — m and
so [AJB : J5] = m. Thus G = A5 and since A and J5 are abelian
3(G) 3 A Π B. On the other hand A and I? must be maximal abelian
subgroups so A, B 3 3(G). Thus 3(G) = i Π 5 and (ii) follows.

If Φ(G) is not abelian, then there exists an irreducible character
1 of G with Φ' S ker Z. Hence Φ(G/ker X) is nonabelian. Now G = G/ker %
has a normal abelian subgroup A with G/A elementary abelian by
Lemma 3.4. Hence Φ(G) g A, a contradiction and (i) follows.

Now assume G' is not central. If K(G') is not abelian we can
choose x,ye (£(G') with (x, y) Φ 1. Choose z e (G, G') with z Φ 1. Then
there exists an irreducible character X of G with (α?, y), z & ker X. There-
fore it suffices to assume that G has a faithful irreducible character.
Since G' is abelian, we can extend normal abelian subgroups <(x, G')>
and ζy, G')> to normal self-centralizing subgroups A and B. By Lemma
3.4, [G: A] = [G:B] = m. Since xeA,yeB and (a?, #) ^ 1, we see that
A Φ B. By (ii) above G has class 2, a contradiction. This completes
the proof of the lemma.

THEOREM 3.7. Let G be a p-group with a.c.m. Then either G
has a normal abelian subgroup A with G/A elementary abelian of order
m or G has class at most 3.

Proof. By induction on | G | . If Q(G) is cyclic, then G has a
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faithful irreducible character and the result follows by Lemma 3.4.
Hence we can assume that $(G) is not cyclic and thus 3(G) has at least
three distinct subgroups Jx, J2, Js of order p. We can clearly assume
that G has class > 3. Since the subgroups J{ are disjoint it follows
that at most one quotient G/J{ has class ^ 3. Hence say G/Jx and
G/J2 have class > 3. By induction, for i = 1, 2, G/Jt has a normal
abelian subgroup AJJi with G/A< elementary abelian of order m. Set
U = JJ2 so that U £ 3(G). If Aι Φ A2, then AJU and A2/?7 are two
distinct abelian subgroups of G/U of index m. By Lemma 3.6 (ii), G/U
has class ^ 2 and thus G has class ^ 3, a contradiction. Therefore
A1= A2 — A. Since A</J< is abelian, A' £ Jx Π J? = <1> and A is abelian.
This completes the proof.

Let TG denote the ith term of the lower central series of G. Thus
7°G = G, Ύi+1G = (YG, G) and the class of G is the minimal c with
7CG =

LEMMA 3.8. ( i ) Let G be an arbitrary p-group having a normal
abelian subgroup A with G/A abelian of order m. Suppose for all
subgroups H with G Ξ> H > A and [H: A] = p we have Hr — Gf Φ <(Γ>.
Then G has a.c.m.

(ii) Let G have a. c. m. and a normal abelian subgroup A with
G/A abelian of order m. If Gf is not central, then K = G' xσ (G/A)
has a.c.m. Moreover let x e G/A have order p. Then for all i > 0,
YG = A ( 1-<

Proof. We consider (i). Let X be an irreducible character of G.
Since [G : A] = m we have deg 1 ^ m. We assume deg X < m. Since
A is normal and abelian, X is induced from a linear character of some
subgroup L 3 A. Clearly L> A and we can choose H with L 3 H> A
and [H: A] = p. Since G/A is abelian, L A G. Thus ker X 3 L' 3 ί Γ
and since # ' = G\ ker % 3 G\ Thus deg X = 1. Since | G'| ^ 1, G has
a.c.m.

Now let G have a.c.m and a normal abelian subgroup A of index
m. Set K — Gr xσ (G/A). Then if has a normal abelian subgroup G'
with iί/G' = G/A abelian of order m. Let x have order p in G/A and
set H — (A, yy where y is an inverse image of x in G. Then H Δ G
and (α, G') = (iί, G') Δ G. Now G = G/(», G') is nonabelian since
(», G') < G' and thus _G has a.c.m. Clearly (S(G') 3 fl/(«, <?') so
[G : (£(G')] < m. Now G cannot have an abelian subgroup of index < m
and hence by Lemma 3.6 (iii), G' £ £(G). Therefore (a?, Gr) = (G, G') =
(G/A, G'). Thus we see that K satisfies the hypothesis of (i) above,
since (G, Gf) Φ <1> by assumption. Thus K has a.c.m.

Let K be as above. We know that for i > 1
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= (A,G/A,G/A, . . .

and YK = (G', G/A, G/A, , G/A)

where G/A occurs i times in each of the above. This follows using
Lemma 3.3 (iii) for i = 1. Since Gf — {A, G/A) we have for i ^ 2,
YG = Y^K.

Let x € G/A have order p . We show that for i ;> 1, 7*G = A(1~x)*
by induction on i. If i — 1, the result follows from Lemma 3.3 (iii).
Let ί ^ 2 so that 7*G = Y~XK. By induction, since i — 1 ^ 1, we have
T*-1^ - (G'y1-**""1. Since G' - A{1~x) the result follows.

EXAMPLE 3.9. Let D be an additive elementary abelian group of
order m — pe and let Au A2, , Ap be p distinct groups isomorphic to
D. Say (Xi: D—> A{ is an isomorphism.

Let F be a field of endomorphisms of D with | F | — m. In fact
i*7 corresponds to the regular representation of GF(pe) on its additive
group. For σ e F define σi: A* —> A i + 1 by o ̂ α^) = αi+^α^^αί) for i =
1,2, , p — 1 and σp: Ap —* <0>. Let A = AL + A2 + + Ap and
define σ on A by α = α1! + σ2 + + σp. Clearly σp = 0.

Let σ, τ e F. We show that στ = τσ. Let a^A^ If i = p — 1 or
p then ^(α^) = 0 — τ(7(αέ). Now let i < p — 1. Then

Since στ = τσ we have clearly στ = τσ.
Now for σ G F set xσ = 1 + σ. Since σp = 0 and A is elementary

abelian we have xp

σ — 1. Also for σ,τeF we have xσxτ — xτxσ.
Let σly σ2, , σe be a basis of F over GF(p) and set &< = ^σ ί for

convenience. Let B be the elementary abelian group of automorphisms
of A generated by the xi9 Clearly | B \ <: pe. Set S = {#*}. Since

it follows that when restricted to

At - (A, + A,+1 + • + Ap)/(Aί+2 + + Ap)

S is a group of order pe. Here i = 1, , p — 1 and if i = ί> — 1
then the denominator of the quotient is the group <Ό)>. Clearly B and
S restricted to this quotient are isomorphic and hence \B\ — p\

Now let xeB with x Φ 1. Then there exists σ eF, σ Φ 0 such
that x and $σ act the same way on A< above for all i. Since σ is an
onto map we see that

[(1 - x)(At + Ai+1 + + Ap)](Ai+2 + + Ap)

= (Ai+1 + + Ap)

for i = 1, 2, , p — 1. This clearly yields

(1 - x)A = (A2 + A3 + + A,) .
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Thus by Lemma 3.8(i), G = A xpB has a.c.m. Moreover as is easily
seen, G has class p.

The following result exhibits another difference between the e = 1
and e > 1 cases.

THEOREM 3.10. Let G have a.c.p6 with e > 1. Then G has class
at most p and Gf is elementary abelian.

Proof. By induction on | G | . If 3(G) is not cyclic choose Ju J2

subgroups of g(G) with JLf]J2 = <T>. By induction G/Ji has class ^ p
so ΎPG S «7i (Ί /2 = <1>. Also (£//;)' has period p so clearly G' is ele-
mentary abelian.

Now assume 3(G) is cyclic. By Lemma 3.4, G has a normal
abelian subgroup A with G/A elementary abelian of order pe. Let
if = G/A so that /(if), the group ring of H over the rational integers
/, acts on A. If S is a subset of if we let S denote the sum of the
elements of S in I(H). Let if be a nonidentity subgroup of H.
Choose xeK with x Φ 1. By Lemma 3.8 (ii), G' = A{1~x\ Hence

since (1 - x)K = 0 in I( i ί ) . Thus J? annihilates G'.
Since e ^ 2 we can choose if to be a subgroup of if of order p2.

Let iΓ0, JBLΊ, , Kp be the subgroups of K of order p. Note that K is
elementary abelian. Now in I(H)

and hence p annihilates G'. Thus G' has period p.
Now let J be a subgroup of H of order p with J = <(#>. Then

as is well known

J = 1 + x + . . . + x*-1 = (1 - .τ)*-1 mod pl( i ϊ) .

By Lemma 3.8 (ii),

Since Gf has period ^ we can take (1 — x)v~ι modulo pI(H) in the above.

Therefore 7PG = (G'Y = <1> and G has class <Ξ ̂ ?. This completes the

proof.

EXAMPLE 3.11. If e = 1, the above result is false. For example,
let A = <(αt̂ > x <(α:2> x x <( p̂> where each a{ has order pα . Let
J = ζxy be cyclic of order p and let / act on A by a* = ai+1 for
i = 1, 2, , p — 1 and aξ = α l β If G = A x σ /, then G has a.c.p.
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Now a2a^ e G' and hence if a > 1 we see that Gf is not elementary
abelian. Moreover as we see below G has class a(p — 1) + 1. First
in I(J)

(1 - xY~ι - J = 0 mod pl(j)

and hence

[(1 - x)p~ι - J]a = 0 mod paI(J) .

Since (1 — x) J = J(l — x) — 0 and (J) 2 — p/, the above yields

(1 - xyi'-v = {-p)a-ιJ mod paI(J) .

Now A has period pa and hence (1 — x)aip~1] and (—pY^J act the same
way on A. Since J(l — x) — 0 we see from the nature of the action
of x on A that

and rγatp-v+iQ = i l(-p) -i7(i-.)

Hence G has class a(p — 1) + 1 and this can be arbitrarily large.

4* Special class 3 groups* Let G be a p-group with a.c.p*.
We say that G is special if it does not have a normal abelian subgroup
of index p\ By Theorem 3.7 if G is special, then G has class 2 or 3.
As is expected the structure of the special class 3 groups is quite
restrictive. We study these latter groups in this section.

THEOREM 4.1. Let G be a special class 3 group with a.cm. Then
we have the following.

( i ) [G': 72G] - m and 72G = G' Π 3(G).
(ii) [G : ®(G')] = m2 emd K(G') is α normal self-centralizing sub-

group.
(iii) [G;3(G)] = m\
(iv) If H — G/$(G), then Hr — 2(H) is elementary abelian of

order m and H has two normal abelian subgroups of index m whose
intersection is equal to Hr.

We start with a lemma.

LEMMA 4.2. Let G have a.c.m and class 3.
(i ) // 72G is cyclic or if [Gr: 72G] > m, then G has an abelian

subgroup A of index m.
(ii) [G': G' Π S(G)] ^ m αwd [G : 3(G)] ^ m3.

Proof. By induction on | G | . Suppose that 72G is cyclic. Then
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there exists an irreducible character X of G with 72G (Ί ker X = <(Γ>.
By Lemma 3.4, G/kerX has an abelian subgroup A/kerl of index m
with A 3 G'. Then (A, G') £ 72G n kerZ - <1> s o A g £(G'). Since
G has class larger than 2, (S(G') is abelian by Lemma 3.6 (iii) and hence
A is abelian.

Now suppose [Gf: 72G] > m. If 72G is cyclic, then the result
follows by the above. Thus we can assume that 72G contains distinct
subgroups Ji and J2 of order p. Since 72G £ B(G), Jx and J2 are
normal in G. By induction G/Ji has an abelian subgroup AJJi of index
m. Set U = J 1 J 2 g 7 2 G . If Λ ^ A2, then At/C7 and A2/U are two
distinct abelian subgroups of G/U of index m. Hence | (G/U)f | ^ m by
Lemma 3.6 (ii). Since UQΎ2G this yields [G': 72G] ̂  m, a contradiction.
Thus Aί = A2 — A and hence A' § Jx n Jz — <1>. Therefore A is abelian
and (i) follows.

We consider (ii). The result is obvious if m — p and hence we
assume m = pe with e > 1. By Theorem 3.10 Gf is elementary abelian.
If Gf Π 8(G) is not cyclic, there exists subgroup J of G' Π 3(G) with
J g 72G. Hence G = G/J has class 3. By induction [G': G' Π S(G)] ^ m.
Now G' = Gf\J and G' n 3(G) 2 (G' Π 3(G))/J. Thus the result follows
in this case. Now let G' Π 3(G) be cyclic. Since G' is elementary
abelian | G' Π 3(^) I = P Now G has class > 2 and thus by Lemma
3.3 (ii), I G'| ^ jpm. Hence [G': Gr Π 3(G)] ^ m.

Let W/y2G be the center of G/72G. Since G/72G has a .cm we see
that [G:W]^ m2. Clearly 3(G) £ W and Gr E W. Hence

[TΓ: 3(G)] ^ [W n G': 3(G) Π G'] - [G': &(G) n G'] ^ m .

Therefore [G : 3(G)] - [G : T7][ W: 3(G)] ^ m3 and the lemma is proved.

Proof of Theorem 4.1. We assume throughout that G is a special
class 3 group with a.c.m. Since 72G g G ' n 3(G) we have [G': 72G] ^ m
by Lemma 4.2 (ii). Moreover since G is special [Gf: 72G] ^ m by Lemma
4.2 (i). Hence [G': 72G] = m and (i) follows.

Let Ku K2, , iΓs be all the proper subgroups of 72G with 72G/iT^
cyclic. Clearly Π ^ = <1>. By the preceeding lemma, G/i^ has a
normal abelian group ^/iΓ^ of index m. By Lemma 3.3 (iii) B{ 2 G'. Since
G/ϋΓί has class 3, Lemma 3.6 (iii) yields BJK, = ^G'/K,). Thus for all
i, 5, 3 A = &(G'). SetB=Π B, so that B ^ A. Since (B, Gr) E ϋΓ*
we have (β, G') g f l i - <1>. Thus B = A.

Choose LAG with G/L a Case P quotient. Let Z/L be the center
of G/L so that [G: Z] = m\ Clearly L 2 72G. Since ΰ,Z/L is an
abelian subgroup of G/L of index ^ m we must have J5̂  =2 Z by Lemma
3.2 (iii). Thus B 2 £ and [G : A] rg m2. Now if J5 = J?lf then clearly
B is an abelian subgroup of G of index m and this does not occur.
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Thus say B1 Φ B2. Then G/72G has two distinct abelian subgroups
BJy2G and B2/72G of index ra. Since | G'/72G | = m we see that
[G : Bx n B2] = m2 by Lemma 3.6 (ii). Hence [G : A] = m2. This proves
(ii) and the part of (iv) concerning the existence of two abelian sub-
groups of H of index m.

We prove (iii) by induction on | G |. Say 172G | = pr. By the pre-
ceeding lemma τ2G is not cyclic and hence r ^ 2. Let J be a subgroup
of 72G of order p. Suppose that G/J has an abelian subgroup B/J of
index m. Then B is nonabelian so B' = J and 5 has class 2. Clearly
B 2 K(G') and K(G') is a maximal normal abelian subgroup of B. Since
[B: <£(G')j = m, it follows that B has a.c.m and [B: S(B)] = m2 by
Lemma 2.3 of [2]. Let α e B with x Φ 1. Then there exists an
irreducible character X of B with α?, # g ker X where J = <j/>. Hence
X is nonlinear and deg X = m. This says that B is character regular.
Since e(B) = e(G) = e where m = p% it follows by Proposition 1.3 (i)
that 3(B) S 3(G). Since clearly £(G) S <E(G') S B we have 3(G) =
3(B) and thus [G : 3(G)] - [G: B][JB: 3(G)] = m3. Thus the result follows
in this case. Note that if r = 2 the J2(G/J) is cyclic so the result
follows here.

We assume that r ^ 3 and that for all subgroups J of 72G of
order p the quotient G/J is a special class 3 group. Since 72G is not
cyclic, let Jx and J2 be two such subgroups of order p and set U = J ^ .
Thus I £71 = p2<pr = I τ2G I and U < 72G. By induction G/Ji has center
Zi/Ji of index m3 If Z1 Φ Z2 then we see that {ZγZ2)\Ό is central in
G/U and has index < m3. Since 17 < 72G, G/Z7 has class 3 and a.c.m
and this violates Lemma 4.2 (ii). Thus Zx = Z2 = Z. Since (Ziy G) S J<
it follows that (Z, G)S-JiΓiJ2 = <X> and hence Z = 3(G). This yields
(iii).

Finally we know that | H\ = m\ [H:&(H)] ^ m2, 3(£Γ) 3 i ϊ ' and
I i fΊ ^ m. The latter follows since [G': G' Π S(G)] ̂  m. Hence we
must have equality throughout. Now H has a.c.m with m = pe. If
e > 1, then H' is elementary abelian by Theorem 3.10. If e — 1,
then I H'\ = p and the result is clear here. Thus the theorem is
proved.

We used simple facts about GF(pe) to obtain Example 3.9. In
order to construct special class 3 groups we will need the following
interesting fact about these fields. The authors would like to thank
Walter Feit for his help with the proof of this result.

PROPOSITION 4.3. Let E be a finite field of characteristic p > 2
and let F be a subfield. Then there exists a basis of E over F with
respect to which every matrix of the regular representation of E over
F is symmetric.
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Proof. Let w = {wl9 w2, , wn} be a basis of E over i*7 and let
Rw be the matrix form of the regular representation with respect to
this basis. Let θ e E be a primitive element so that E — F(θ). Then
the characteristic polynomial of Rw(θ) is irreducible over F. Note that
all matrices below are over F.

By Theorem 1 of [8] there exists a matrix S with S~1RW(Θ)S =
Rw(θ)r. Here ' denotes the transpose operation. As is well known the
norm map from E to F is onto and hence there exists a e E with
det S = NElF{a) = det Rw(a). If Γ = ΛΛer-1)^, then T~ιRw{θ)T =
jβw(0)' since i2w(α) and 22W(0) commute. Moreover det Γ = 1. By Theorem
2 of [8], T is symmetric.

Now T is symmetric and det T = 1, a square in ί7. Since F is a
finite field of characteristic p > 2, there exists a matrix Z7 with T =
UU'. Let A = U-'R^U. Then

A' = U'RU(Θ)'(U')-1 = U'T-
= U-ιRw{θ)U - A .

Hence if we let C7 be a change of basis matrix, U: w —+v, then A =
β*(0) is symmetric. Since i? = .F(0), the result follows.

THEOREM 4.4. Special class 3 groups with a.c.p' e#is£ /or αZZ
> 2 α^d e. No suck groups exist for p = 2.

Proof. Let p = 2. If e > 1, then by Theorem 3.10 groups G with
a.c.p6 have class <; p = 2. Hence no special class 3 groups exist. If
e = 1 and G is a special class 3 group, then [G: 3(6?)] = 8 by Theorem
4.1. Therefore H — G/$(G) is nonabelian of order 8. Such groups all
have cyclic subgroups of order 4. Thus if A < G with A/Q(G) cyclic
of order 4, then A is an abelian subgroup of G of index 2 and hence
G is not special, a contradiction.

Now let p > 2 and let e be arbitrary. By the previous proposi-
tion there exists a basis wlf , wβ of GF(pe) over GF(p) such that for
all /3 G GF(pe), Rw{β) is symmetric. Let a{ = [α^] be the matrix 0̂  =
Rw(Wi). These β matrices of size β x e over GF(p) have the following
properties.

(1) α«> = α«}.
( 2) a?} = α # and α#> = αJV.
( 3 ) If Σ / Λ is singular for /4 e GF(p)f then we must have /x =

/. = = Λ = 0.
Condition (1) follows since Rw(Wi) is symmetric and (3) follows since

Wi, W2, •- , we are a basis of field GF(pe) over GF(p). Finally a^Wj) =
Rw(Wi) Wj = w ^ and hence ^(wy) = o^Wi). This yields α^ = a{

r{
].

The remaining equality in (2) follows from this and symmetry.
Let
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A = gp<%» x2, , %e, Vu Vz, , Ve, u, v I

%l = yf = up = Vp = 1 ,

w and v are central

(»», »i) = (Vif Vά) = 1

where 3^ = 0 for i ψ j and δi3- = 1 for i = j . Clearly | A \
where m = pe and A' = <u)>. Let r< act on A by

^6Γi = % vτi — v

where

Here division in the exponent is performed modulo p.
We show first that τ< defines an automorphism of A. To do this

it suffices to show the following.

(xγγ = (yγγ = (^^)^ = (v^)p = l

i6Tί and vTi are central in A

(yγ, yV) = 1

Now A has class 2 and p > 2 so A is regular. Since it is generated
by elements of order p, it has period p. Hence the first equation
holds. Since A has class 2, the next three equations are obvious. We
consider the last one now. We have

α ( i ) \ / α(t)

SO

by (1). Thus τ{ is an automorphism of A.

We show now that as an automorphism r< has order p. Clearly
•n.

τi Φ 1. Now r< fixes u and v and y/ = y&****. Thus τf fixes yi#

Finally
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So for p > 2, τ\ fixes α?,- and hence τt has order p.
We know that r i f τά e Aut A. We show that τ{τά = τάτi9 Clearly

u = ΉΛΓJ = uτsvi, v = vΓ*Γi = vΓiΓ* and 2/ί<Γi = ykv
Sik+^k = 2/P"Γ<. Finally

and

These two expressions are equal since a^ = αj$ by (2).
Let E — gp ζzu z2, , ze \ z\ — (zif zά) = 1)> and set G = A x r E,

the semidirect product of A by E, where τ : E —> Aut A is the map
induced by z{ —> τ{. We note some elementary properties of G. Clearly
I G I = m y , G' = <j/i, 2/2, ,2/β, w, v} and 72G = <u, v) so that G has class 3.
We show that (£(G') = G' so that [G: £(G')] = m2. Since G' is abelian
we have (£(G') 2 G'. On the other hand if

h =

with g 6 G', then for all j , 1 = (yj9 h) = wβit;δi and hence α̂  = 6y = 0.
Thus E(G') - G'.

Since [G : A] = m, we see easily by (3) and Lemma 3.8 (i) that
G/τ2G has a.c.ra. Set B = <j/x, y2, , yβ, zu z2, , ^e, u, v>. We see
that 3(A) = 3(J5) - <>, v>, A' = < » and 5 ' = <^>. Since [A : &(A)] =
[ 5 : 3(1?)] = m2 we conclude by Lemma 2.3 of [2] that both A and B
have a.c.m. Let Z be an irreducible character of G with 72G gϋ ker Z.
Then either w ί ker Z or v g ker Z or both. If say w ί ker Z, then Z | A
is faithful on A' and hence deg χ >̂ m. Similarly if 1; g ker Z. Thus
in either case deg X ^> m.

For each integer ί set Et = (zfil, z2xl, , zexiy and J f = <vtt'^ so
that EQ = E. We show that E[ £ J t . Now

where
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= (Π
Hence

= WΓ/(Πl/rJr) ^ " ^ ' •{ I

Since α£! = α ĵ* by (2) and since all terms in the last line above
commute, it follows that the yr terms drop out. Thus

Now a\γ = a1/} and oφ = a\? by (2) and so

aU)

where ί/2 is viewed as division in GF(p). Finally using w\j =(u~1v) "
we obtain

Thus E7/ S eT"t.
Set Bt = <G', £?,>. Then [G : Bt] = m and JB; - J t . The latter

follows since G' is abelian, J?/ s J t and (]/<, ̂ a J) = (vu1)^. We show
now that (? is a special class 3 group with a.c.m. Let χ be an irre-
ducible nonlinear character of G. If ker X 2 τ2G, then 5ί is a character
of GJΊ2G and hence has degree m. Assume ker χ =£ 72G. As we
showed above deg X ;> m. Let / = ker X Π 72ί? so that G is a character
of G/J. If J = <X>, then G/J has an abelian subgroup A/J of index
m and if J = ^MG*)- — Je then G/J has an abelian subgroup J5β/J of
index m. Thus deg X ^ m and hence deg X — m. This shows that G
has a.c.m. Since G has class 3 and [G : K(G')] = m2, we see that G is
a special class 3 group. This completes the proof of the theorem.

5* Special class 2 groups* In this section we study special class
2 groups with a.c.m (m = pe). As is to be expected, the structure of
these groups is less restrictive than in the class 3 case. Let G have
a.c.p' We say G is imprimitive if it has a normal subgroup H of index
p with a.c.p " 1. Otherwise G is primitive. We first note the following,
Let G have a.c.p* and let HAG with [G:H] = p. If H has a.c.p-1.
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then certainly e(H) = e(G) — 1. Suppose now that e(H) = e(G) — 1.
If φ is a nonlinear irreducible character of H and if X is a constituent
of φ*, then degX = pe so deg<p = pe~ι. Hence H has a.c.p*"1. Thus
the concepts of imprimitivity as an r.x.β group and as an a.e.p6 group
are entirely equivalent. We now relate this idea to a certain chara-
cteristic subgroup of G.

PROPOSITION 5.1. Let G have a.c.m and class 2. Set

S = S(G) = <geG\(g,G)<

Then we have the following.
( i ) If [G: S(G)} < m, then G is a special class 2 group,
(ii) G is primitive if and only if G = S(G).

Proof. ( i ) Suppose that G has a normal abelian subgroup A of
index m. If x 6 G — A, then by Lemma 3.3 (iii), (x, A) = Gf and hence
(x, G) = G'. Thus S(G) £ A and [G: S(G)] ^ m, a contradiction.

(ii) We show that G > S(G) if and only if G is imprimitive.
Suppose first that G > S(G). Choose subgroup H with G> H^ S(G)
and [G: H] = p. Let φ be a nonlinear irreducible character of H and
let X be constituent of φ*. If x e G — H, then (α?, (?) = G' g= ker X and
thus x is not in the center of the representation associated with X.
Since x e &2(G), this yields X(x) = 0. Thus X vanishes off H and so
X = φ*. This yields pdegφ = deg<£>* = άegX = pe and thus H has
a.c.pe-1 and G is imprimitive.

Now let G be imprimitive so that G has a normal subgroup if of
index p with a.c.p'"1. We show that S(G) £ iί. If not, there exists
xeG - H with T7 = (&, G) < G'. Note that a; is central modulo W
and we have G/W = (H/W)&(G/W). Since W< G' we see that G/T7
has a.c.p6 and that H/W is either abelian or has a.c.p6"1. Let X be a
nonlinear irreducible character of G/W. The above implies that X =. φ*
for some irreducible character φ of if/ΐ^. Thus

H/W = T(φ) a (H/W)S(G/W) = G/W,

a contradiction. Therefore G> H^ S(G).

We now consider an example.

EXAMPLE 5.2. Let Z be an elementary abelian group of order
ps+ι with s > 0. Set fc = (ps+1 - l)/(p - 1) and suppose that E19 E2, ,
Ek are k nonabelian groups of order pz. Let Zt — <^> be the center
of 2?;. We define a homomorphism

r : = Zγ x ^ 2 x x Zk > Z
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by sending each zi onto a generator of the k distinct subgroups of Z
of order p. Let N be the kernel of τ. Then N is central and hence
normal in E = Eι x E2 x x Ek. Set G - E/N.

It is clear that Z — Q(G) = G'. Let % be a nonlinear irreducible
character of G so that X \ Z = (degX)λ with λ =£ 1. By way of the
homomorphism E-~+G,X can be viewed as a character of E and as
such X = #^2 0fc where 0, is a character of E{ and hence has degree
1 or p. Moreover deg θi — p if and only if ZiN/N §£ ker λ. Thus
there are precisely (p8+1 — ps)/(p — 1) = ps such θ{ with deg ^ = p and
hence deg X — pp\ Thus G has a.c.p2'8.

Now since | Z \ > p we have clearly JŜJV/JSΓ £ S(G) for all i. Thus
£(G) = G and by Proposition 5.1, G is primitive and therefore special.
Note finally that if e = p , then G has a.c.pe and [G: 3(G)] = p2fc

with k > e.

The above example shows that special class 2 groups with arbi-
trarily large commutator subgroups and central quotients do in fact
exist. However the above construction required that we let m get
arbitrarily large. We will show in Theorem 5.5 that this is typical of
the general situation. We first obtain a generalization of Theorem B
of [2].

THEOREM 5.3. Let G be a p-group with e(G) — e. Then either G
has a normal abelian subgroup of index pe or G has a subgroup H
of index p*-1 with [H:&(H)] ^ p« < +8>.

Proof. By Theorom B of [2], there exists subgroups N and A of
G with [G : N] = p% A = Q(N) and [N A] ^ p5e{e+2}. If ©(A) > N,

then we can choose subgroup H with ©(A) 3 H > N and [H: N] = p.
With this H the result follows. So assume (£(A) = iV.

Suppose now that N is not normal in G. Let Nx Φ N. If J5 =
A n A , then (£(B) 3 <JV, iV*> > iV. Since [iV: B] ^ p^*+v+% the re-
sult follows also in this case.

Thus we can assume that NAG and hence that AAG. If N =
A, then G has a normal abelian subgroup of index p\ Hence we can
assume that N is nonabelian. Since N is a p-group and A — ,8(^0
we can choose subgroup J with / S ΛΓ Π A and | J | = p. Set w =
min {[A : S4(x)] | x $ N}. We compute as in Lemma 4.4 of [2].

Clearly

r ( A ) ^ |ΛΓ| + (|G| - \N\)/n .

Now let λ be a character of A. If λ has pe conjugates, then since
Γ(λ) 2 N we have Γ(λ) = ΛΓ. Thus if X is a constituent of λ*, then
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there exists character η of N with X — ψ and λ a constituent of
Ύ) I A. Since deg 1 S P\ w e see that deg rj = 1. Hence λ = rj \ A and
ker λ 3 iV' Π 4 i X Thus we see that

s(A) ^ [A : J]/p* + (I A \ - [A :

By Lemma 4.3 of [2], r(A) = [G : A]s(A). Thus

p~e + (1 - ί9~e)M ^ P" 6" 1 + (1 - V

Hence

Choose xeG - N with [A : QZA(x)] = n and set K = <iV, .τ> > N.
Then 3(if) = e^(a ) so

[N:&(K)] = [N: A][A : &A(x)] ^ p 3 ^ ^ 2 ^ ^ 1 < p^+^-^ .

If ί ί is chosen with K^H> N and [ i ϊ : N] = p, then the result
follows.

We now return to our study of class 2 p-groups with a .cm.

LEMMA 5.4. Let G have a .cm and class 2. Tλ<m Gf and G/S(G)
are both elementary abelian.

Proof. We show that G' is elementary abelian by induction on
G\. Of course G' is abelian since Gr S 3(G). If ^(G) is not cyclic,

let Jx and J2 be two distinct subgroups of S(G) order p. By induction
G'Ji/Ji has period p and hence so does G'. Now let 3(G) be cyclic
By Lemma 3.4, G has a normal abelian subgroup A with G/A elementary
abelian of order m. lί xeG — A, then Gf = (a?, A) by Lemma 3.3 (iii).
Let ?/ e A. Since x p e A and G has class 2, we have (x, y)p — (xp, y) = 1
and thus G' is elementary abelian.

We show now that G/g>(G) is elementary abelian. The quotient is
of course abelian. Let x9 y e G. Since G has class 2 and G' has period
p, we have (xp, y) - (a?, i/)p - 1. Thus x* e Q(G) and G/Q(G) has period
p. This completes the proof.

We will use the following notation throughout this section. Let
W be a subgroup of G'. Set

Zw = lgeG\(g,G)£ W}

so that Zw/W = 3(G/W0. We let T denote a hyperplane in G' and J
denote a line (that is, [G': T] - p and | J\ - p). We have [G : ZΓ] - m2

by Lemma 2.3 of [2] and S(G) = <ZT \ all Γ>.
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THEOREM 5.5. Let G have a.c.p6 and class 2. Suppose that \G'\ =
p8 and [G : 3(G)] = p\ Then

( i ) z ^ e(s + 1) and s <; J«(« — 1)
(ii) if G is special, then z ^ 18e3(e + 3)2 and s < 18e2(e + 3)2.

Proof. ( i ) Let T^ and T2 be two hyperplanes in G'. We show
first that \ZTχ: ZTχ Π ^ 2 1 ^ 2>e. Let X* be a nonlinear irreducible
character of G/Tt for i = 1, 2. Since %, vanishes off Zτ., we see that
XΛ vanishes off N = Z Γ l Π ̂ 2 . Also deg Ẑ  = p e so that ZΛ | N = p2βλ
where λ is a linear character of iV. Now let θ be an irreducible
constituent of XJ2 so that θ \ N = (deg #)λ. Then

1 ^ [ZΛ, ff] = (1/[G : iSΓ])[ZΛ I iV, ^ I JVk = p2e(deg <?)/[(? : N] .

Since deg θ <, pe we have [G: AT] ^ p3 e and hence \ZTχ: Z Γ l n ZTz] ^ p e .
Let ϊ\, T2, , Γw be hyperplanes. We show that [G: Γ l Γ ^ J ^

pβ{«+D ^y in(ju ction on %. For u = 1, 2 we have result by the above
so let M ^ 3. Set U = p|Γ~1 ^z- so that by induction [G: C7] ^ p e \
Hence since ?7 £ Z Γ l we have

[G :UnZTu] = [G : i7][Z7:C7n Zτ%\ £ [G : C7][ZΓi: ZTχ ΓΊ Z Γ J

and this follows.
Since | G ' | — p% we can find s hyperplanes Tlf T2, •••, Ts with

Π Γ* = <1>. Clearly Πi ^ Γ i - 3(G). By the above

8 + 1)

and hence 2 g β(s + 1). Now let x19 x2, , x2eG generate the quo-
tient G/$(G). We see easily that the commutators (xi9 xά) with i < j
generate G'. Since G' is abelian and has period p, this yields s ^ 4«(« — 1)
and (i) follows.

(ii) We apply Theorem 5.3. Since G is special we see that G has
a subgroup H of index pe~ι with [H: $(H)] ^ p6e{e+Z). By Lemma
3.3 (iii), H' = G\ If [H:S(H)] = p* and | i P | = I G' | = P", then as
above we have

s ^ it(t - 1 ) < Jί2 ^ 18e2(β + 3)2 .

Finally by (i) we obtain

z ^ e(β + 1) ^ 18β3(β + 3)2

and the theorem is proved.

The above result is of course qualitative in nature. The bounds
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are no where near best possible. If G has an abelian subgroup of
index m, the following example shows that | G' | and [G: 3(G)] can be
arbitrarily large for fixed m.

EXAMPLE 5.6. Let group G have a .cm and a normal abelian
subgroup A of index m. Given integer k, set B = A1 + A2 + + Ak,
the direct sum of k copies of A. Set H = B x σ(G/A) where G/A acts
on B in the natural way. If x e G/A with x Φ 1, then (#, A) = G'.
Hence clearly (&, JB) — JET. By Lemma 3.8 (i) we see that H has a.c.m.
Moreover | H'\ = | G'\k and [B : 3(fΓ)] - [A : 3(G)]\

If we now take G to be an extra-special Case P group with
[G : 3(G)] — m2, then G has a.c.m and \G'\ = p. Also G is nonspecial
so the above construction yields nonspecial groups H with | H' | and
[H: 3(iJ)] arbitrarily large.

LEMMA 5.7. Leί G and H have class 2 with \ Gr \ = | H'\. Suppose
that G has a.c.m and H has a.c.n. Let K be the product of G and
H with G' and Hf identified. Then K has class 2 and a.e.mn. Also
with G and H naturally embedded in K we have Q(K) — $(G)$(H)
and S(K) 3 S(G)S(H).

Proof. By Lemma 5.4, G' = Hr and so K clearly exists. Let X
be a nonlinear irreducible character of K. By way of the map E =
G x H—>K we can view X as a character of E. As such X = Θφ where
Θ is a character of G and φ is one of H. In K, ker XΊQ Kr and thus
in £7, ker Z | G ' and ker χ =g fΓ. Hence both # and 9? are nonlinear.
Thus deg 0 = m, deg φ = n and deg X — mw. Therefore if has a.c.mw.
The remaining results are obvious.

The following proposition considers minimal special groups.

PROPOSITION 5.8. Let G be a primitive group with a.c.p6 and
class 2. Suppose that for all J S G ' with \J\=p the quotient G/J
has an abelian subgroup of index pe. Then either | G ' | = p2 and p \ e
or IG' | = p 3. Moreover for all p, e (with p \ e in the first case) such
groups exist.

Proof. We show first that | G; | ^ p3. Suppose by way of contra-
diction that I G' | ̂  2>\ Let Tx and T2 be two not necessarily distinct
hyperplanes in G;. Since | G' | ̂  p 4 we have | Γx Π Γ21 ̂  P2. Let J x

and J 2 be two distinct subgroups of T1 n Γ2 of order p. By assump-
tion G//i has an abelian subgroup AJJi of index m = p e . This implies
that S(G/Ji) £ Ai/Jί and so ^ / ^ = ZτJJi and ^Γ a / t Γ ί = ^ 2 / / i are both
contained in Ai/Ji9 This yields (ZTχ9 ZT2) £ JΊ Π Λ = <1>. Now G is



502 I. M. ISAACS AND D. S. PASSMAN

primitive so G = S(G) = <ZT>. Since (ZTί, Zτ) = <1> for all T, and T2

we see that G is abelian, a contradiction. Thus | G' | ^ p3.

By Lemma 3.4, we must have | G' | = p2 or p 3. We consider the
case \G'\= p2 now. Let To, Tx, , Tp be the subgroups of G' of
order p and set Z, = Zτ.. Since G is primitive, G = S(G) = Z0Zλ Zv.
Consider

Note that for i Φ j , (Zi9 Z3) g ^ n Ts = <1> so ^ and Z, commute
elementwise. Since W £ Z< we see that (£( W) 3 JẐ Zί ^ -i^i+i *
Z p and since W £ ZOZX Zi^Zi+1 --• Zp we see that K( TF) 2 ^ .
Thus (E(TΓ) - G. Since clearly TΓ 2 8(G) we have TΓ = 3(G). This
says that

Now [G: Zt] = p2e so that \Zi\^\Zi\. If [^ : 3(G)] = p 7 then the
above direct product yields

- [G : 3(G)] - [G : Zo][^o: 8(G)] = P2ePf

2

and hence 2e — pf. If p Φ 2, then clearly p | β. If p = 2, then / =
e ^ l . Clearly 3(Z0) = Q(G) and ^ = Γo. Hence by Lemma 2.3 of
[2], [#o: 3(^o)] = Pf is a square. Thus 2 | /, / = e and the result
follows.

We show now that all such groups exist. Consider first | G'\ = p
and e/p = /, Example 5.2 with s = 1 yields a group JET with a.e.pp,
S(H) = if and | H'\ = p2. Let G be the product of / copies of H with
their commutator subgroups indentified. By Lemma 5.7 and induction,
G has a.c.p^ = a.c.p*, S(G) = G and | G' | = p2. If J £ G' with | J | = p,
then G/ J has a cyclic commutator subgroup and hence an abelian sub-
group of index p\ Thus G is the required example.

Now we consider \G'\ — p\ Let F be the group of Example 3.7
of [2]. Then | F'\ = p\ \ F \ = p6 and S(F) - F . Also it is easy to
see that if J is a subgroup of Ff of order p, then F/J has an abelian
subgroup of index p. Let G be the product of e copies of F with
their commutator subgroups identified. Since F has a.c.p, Lemma 5.7
and induction show that G has a.c.p% | G'\ — pz and S(G) — G. Let J
be a subgroup of G' of order p. Then each factor in G/J has an
abelian subgroup of index p so G/J has an abelian subgroup of index
p\ This completes the proof.

We now apply the above results to improve the bounds in Theorem
5.5 in case p > e.
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THEOREM 5.9. Let G be a special class 2 group with &.c.pe. Sup-
pose that I Gf I = ps and [G : 3(G)] = p\ If p > e, then z ^ 4e2 and
s <: 4e - 1.

Proof. Let T be a hyperplane in Gf. We show first that p > e
implies that Zτ is abelian. This of course a consequence of Theorem
1.5 and Proposition 1.7. However we can give an alternate inductive
proof as follows. Suppose first that | T | ^ p2. Then we can choose
distinct subgroups Jt and J2 of T of order p. By induction ZτlJ. =
ZT\J{ is abelian and hence Z'τ g Jx Π J2 = <1>. Thus we need only
consider | T\ = 1, p. If | Γ | = 1, then certainly Z Γ - Q(G) is abelian.
Now let \T\ = p so that | G' | — p2. Note that groups G with a.c.p6

and | G' | = p2 have the property that if J is any subgroup of G' of
order p, then G/J is nonspecial. Hence since p > e, Proposition 5.8
and induction easily imply that G is nonspecial. Therefore Zτ is
contained in an abelian subgroup of G of index pe and thus Zτ is abelian.

We show now that s ^ 4β — 1. Suppose first that G is imprimi-
tive. Choose H /\G with [G: if] = p and such that H has a.c.p6"1.
Since G is special, H is special and hence β > 1. By Lemma 3.3 (iii),
\H'\ = | G ' | . By induction | I Γ | ^ p4*-1*-1 and so the result follows
here. Now let G be primitive so that G = S(G) = ^ r ^ . We assume
that I G' | ^ p4 e and derive a contradiction. Let 2\ and T2 be two not
necessarily distinct hyperplanes and let x e ZTl and y e ZT2. We show
that x and y commute. Since each Zτ. is abelian of index p2e we see
that I (x, G) I £ p2e and | (y, G) | ^ p2 e. * If (x, G) n (y, G) - <1>, then
certainly (», y) — 1. Thus we can suppose that (a?, G) Π (y, G) > <1>.
This yields | (x, G)(yf G) \ ̂  pu~ι <\G'\ and thus we can choose hyper-
plane T with T 2 (a;, G)(τ/, G). Clearly x, y £ Zτ and so x and ?/ com-
mute. Since G = <^>, the above shows that G is abelian, a contradic-
tion. Hence | G' \ < p4e. Finally by Theorem 5.5 (i) z ^ e(s + 1) ^ 4β2

and the result follows.

6. Additional results. We generalize our r.x.l results in another
direction now.

THEOREM 6.1. Let G be a group with the property that every
nonlinear irreducible character has prime degree. Suppose further
that at least two distinct primes occur. Then there exists primes
p Φ q such that G has one of the following two normal series.

( i ) G>Q>8(G)

with G/$(G) and Q both nonabelian.

(ii) G>Q> A = S(G) x R
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with both G/A and Q nonabelian. Here R is elementary abelian of
order rm for some prime r and Q/A acts irreducibly on it. Also
(rm - l)/(rmlP - 1) = q.

Conversely if group G has either of the above structures and if
X is an irreducible character of G, then άegX = 1, j> or q and all
three degrees occur.

We start with two lemmas.

LEMMA 6.2. Let G be a group with the property that every
nonlinear irreducible character has prime degree. Then every normal
subgroup and quotient group of G has this property.

Proof. The result is clear for quotient groups. Let NAG and
let φ be a nonlinear irreducible character of N. If X is a constituent
of φ*, then X \ N — a Σ ί Ψi and hence deg X — at deg φ. Since deg X
is a prime, at — 1 and deg φ = deg X is a prime.

LEMMA 6.3. Let G satisfy the hypothesis of Lemma 6.2. Then
G is solvable.

Proof. Since this property is inherited by normal subgroups and
quotient groups, it suffices to show that G cannot be a nonabelian
simple group. Thus suppose G is nonabelian and simple. Let X be a
nonlinear irreducible character of minimal degree p. Since G is simple,
X is faithful. If p = 2 and if x e G is a nonidentity involution, then
since det X = 1 we see that the eigenvalues of x in this representation
are both —1. Hence &(G) Φ <Ί)>, a contradiction. Thus p > 2.

Let π = {deg φ \ φ is irreducible and deg φ > p}. Then π is a set
of primes and qeπ implies that q > p + 1. If π is empty, then G has
r.x.l for prime p and is therefore solvable. Hence we have \π\ Ξ> 1.
Since X is faithful, a result of Blichfeldt ([7] Satz 196) shows that G
has an abelian @r subgroup H Φ <(1>.

Let x e H*. Then | Cϊ x \ is prime to the degree of every irre-
ducible character φ of degree different from p. By Burnside's Lemma
([7] Satz 168) since G is simple we have φ(x) = 0. If ô is the regular
character of G, then we have 0 = ρ(x) = Σ Z«(l)Z*(ί») = 1 + pec where
a is an algebraic integer. This is impossible and the result follows.

We now proceed to prove the theorem.

Proof of Theorem 6.1. We know that G is solvable. Choose
AAG with G/A extra-special. We show first that A is abelian. If
not let φ be a nonlinear irreducible character of A and let % be a
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constituent of φ*. Then X | A = a Σί Ψ% a n d deg X — at deg φ. Since
degZ is a prime we must have a — t = 1. Let 0 be a nonlinear irre-
ducible character of G/A viewed as one of G. Then Xθ is irreducible
(see Lemma 5.5 of [2]) and deg Xθ = (deg %)(deg θ) is not a prime, a
contradiction.

If G/A is a Case P quotient for prime p, then by Ito's Theorem
the degrees of the irreducible characters of G are powers of p which
is not the case. Thus G/A is Case Q. Let Q/A be the normal Sylow
g-subgroup of G/A. Since G/A has an irreducible character of degree
[G: Q] we see that G/Q is cyclic of prime order p Φ q.

Note that Q is nonabelian. Otherwise G would have r.x.l for
prime p. Now G/A has trivial center so $(G) Q A Q Q. We show
that 3(Q) = 3«?). Clearly 3 ( 6 ) S 3 ( 0 ) . If & e 3(Q) - 3(G), then
there exists yeG with (x, y) Φ 1. Now Q is nonabelian and 2 = (x, y) Φ1
so there exists a nonlinear irreducible character φ of Q with z g ker <£>.
As above, there exists an irreducible character X of G with % | G = φ.
Since as is in the center of the representation associated with φ and
since X \ Q = φ we see that (x, y) e ker X n Q = ker φ, a contradiction.
Hence £(G) - 3(Q).

Case 1. I Q/A | ^ q\ Let λ € A. Then clearly [G : Γ(λ)] is 1 or a
prime. If | Q/A | ^ g2, then the only subgroup of G/A having prime
index is Q/A. Hence T(λ) 3 ζ). This implies that (^(A) Ξ2 Q and hence
ζ) is nilpotent of class 2. Let φ be a nonlinear irreducible character
of Q and let W — W(φ) denote the subgroup of Q mapping into the
center of the representation. Since clearly deg φ — q we have [Q: W] =
q2 by Lemma 2.3 of [2] and also W 2 A. Now Γ(φ) = G so W/ AΔ G/A.
Hence TΓ(9>) = A and [Q : A] = g2. We saw above that A £ 3(Q)
This clearly implies that A = 3(Q) = £(G) and G satisfies (i).

We assume now that | Q/A \ = g. Since Q is nonabelian, KG(A) =2 Q
and hence εG(A) = A. Suppose A = M x JV with MAG and NAG
and N, M Φ <1>. We show that either Λf or JV is central in G. Say
i\Γ g 3(G) = 8(Q). Choose λ e N so that Γ(λ) n Q = A. If peM,
then Γ(λj«) = Γ(λ) n Γ(j") and [G: T(λμ)] is a prime. Hence Γ(^) "̂  T(λ)
and so (Eβ(Λf) a Γ(λ). Since (EG(ΛΓ) Δ G, this implies that <£Gtflf) = G
and M S 3(^) I n particular we see that precisely one Sylow sub-
group of A is noncentral. Hence A/Q(G) in an r-group for some
prime r.

Case 2. q Φ r. Since Q/A is cyclic of prime order, we can write
A = 3(Q) x R where Q/A acts fixed point free on R by Lemma 1.2.
Also 3(Q) — 8(G) a n d -K Δ G since Q Δ G. Let λ be a nonprincipal
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linear character of R. Then T(\) piQ = A and [G: T(λ)] is a prime.
Hence | T(X)/A | = p. Thus G/A acts half̂  transitively but non fixed
point free on R. By Theorem I of [3], R is elementary abelian and
G/A acts irreducibly on it. Let G - G/A, Q = Q/A and let P = &P(G).
Let W be an nonidentity irreducible Q-submodule of R. If λ 6 TF*,
then G = Q(T(λ)/A) and thus FF is a G-module. Hence Q acts irre-
ducibly on R.

We view R as a vector space over GF(r) of dimension m and we
find dim &£(P). This dimension is clearly invariant under field exten-
sion so we can extend to the algebraic closure F of GF(r). If Q = <V>,
then since R is an irreducible Q-module, all eigenvalues of x are
distinct and not equal to 1. Let S be an irreducible G-submodule of
F(g)R. By Clifford's theorem, this representation restricted to Q
breaks up into either p distinct conjugates or all equivalent represen-
tations. If the latter occured then since all eigenvalues of x are dis-
tinct, dim S — 1 and hence Q = G' is in the kernel. This contradicts the
fact that x has no eigenvalue equal to 1. Thus the former case must
always occur. From this we see easily that p \ m and dim E^(P) = m/p.

Now G contains q conjugate subgroups Plf , Pq of order p.

We have S^JPί) Π &*(-P;) = <1> for i ^ i and R = \J (E&(P). Since
I (^(P;)! = rm/p we obtain from this disjoint union (rm — 1) = q(rmlP — 1).
Finally since R is elementary abelian and Q acts irreducibly, we see
that the same is true for R. Thus G satisfies (ii).

Case 3. q = r. Here <J is clearly nilpotent. Let R — @r(A). As
above we have

£ - e*(Q) u ύ &*&).
1

Let W = K (̂G) and set

[jβ: PΓ] = rw, [(Ei(Q): W] = rβ and [^(PJ : ΪΓ] = rδ .

Note since all the P< are conjugate this is well defined. Now

(R - w) = (<EA(Q) - TF) u ύ

is a disjoint union so

rm - 1 = rα - 1

and since r = q, rm — rα = rδ + 1 — r. Again since the union is disjoint,
we have a + b <£ m and 26 ^ m. Finally m> a since KG(A) = A and
hence the above equation yields m = & + l , α = l . Since 26 ^ m we
have m — 2 and 6 = 1.

Since m = 2, α = 1 we have [£ : <££(<?)] = ?. Thus | (Q, 22) | = q
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and Q' is cyclic of order g. This shows that [Q : Q(Q)] — q2 by Lemma
2.3 of [2]. Thus G satisfies (i). (Note, the difference between Cases
1 and 3 is that in the former G/Q acts irreducibly on Q/S(G) and in
the latter it does not.)

We show now that groups with structure (i) or (ii) have characters
of degree 1, p and q only. Let G satisfy (i) and let X be an irreducible
character of G. By Ito's Theorem deg X | pq2 and also (deg Xf ^
\G:3(G)] = pq2. Since G/3(G) is nonabelian we see easily that p <Ξ* q + 1.
This yields deg X = 1, p or q. Since G/g(G) is nonabelian, it has a
character of degree p and since Q is nonabelian it has a character of
degree q. Thus G does not have a.c.p or a.c.g and hence G has
characters of degree 1, p and q.

Now let G satisfy (ii) and let X be an irreducible character of G.
By Ito's theorem, deg X \ pq and hence deg X = 1, p, q or pq. We show
that the latter cannot occur. If deg X — pq and X \ A — a Σ i \ then
αί = pq and also α2£ ^ £>g. Thus α = 1 and t = pq. Let X = XΣ and
write X = ηe where η e Q(G) and εeR. This implies that A — T(X) =
T(ε). As in our Case 2 computation above, we see that (J? ®Λ( P<) is
a disjoint union and | e^(Pi) | = rw / p . Hence | U? KΛ(Pί) | = g(rw/p) + 1 =
r w . Thus for every εeR we have T(ε) > A, a contradiction and
deg X Φ pq. Now G/A being nonabelian has a character of degree p
and Q has a character of degree q. Thus G has characters of degree
1, p and g. This completes the proof of the theorem.

The following are essentially canonical examples of the above.

EXAMPLE 6.4. First let Q be a nonabelian group of order g3. If
q = 2, let Q be the quaternion group and if q > 2, let Q have period
q. As is well known, the group of automorphisms of Q, fixing 3(Q),
is isomorphic to SP(2, q) = SL(2, g) and hence has order q(q — l)(g + 1).
If we choose prime p with p \ (q — l)(g + 1) then we can find an
appropriate automorphism group Pof Q of order p. Clearly G = Q xσP
satisfies (i).

Now suppose we are given primes p, q, r with pφq and
(rm - l)/(rmlP - 1) = q. Let R be the additive group of GF(rm).
Since q | (τm — 1) we see that the multiplicative group of GF(rm) has
an element ζ of order q. Since p \ m we see that GF(rm) has a field
automorphism σ of order p. Let G be the set of automorphisms of
R given by x-^ζ^σ^x). We see easily that G is a group of order
pq with a normal subgroup of order q. It is nonabelian since the
fixed field of σ has size rmlP and clearly g > rmlP. Thus G = R xPG
satisfies (ii).
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An interesting corollary to Theorem 6.1 is the following.

COROLLARY 6.5. Let G have r.b.3, that is every irreducible
character of G has degree at most 3. Then either G has a normal
abelian subgroup of index ^ 3 or G/Q(G) is isomorphic to one of the
following groups.

( i ) the elementary abelian group of order 8
(ii) the two groups of order 27 and period 3
(iii) the symmetric and alternating groups on 4 letters
(iv) the dihedral group of order 18 having an elementary

abelian Sylow 3-subgroup.

Proof. If G is abelian, the result is clear. If G has a.c.2 or a.c.3,
then by Theorem C of [2] either G has a normal abelian subgroup of
index ^ 3 or G/Q(G) has order 8 or 27. Since we can assume that
G/$(G) has no cyclic subgroup of index ^ 3 , we obtain (i) and (ii).

We assume now that G has characters of degree 2 and 3 and thus
Theorem 6.1 applies. If p — 3, q = 2, then case (ii) of that theorem
cannot occur since G/A is nonabelian. Since Q is nonabelian in case
(i) we see that Q/3(G) is type (2, 2) and hence G/3(G) is isomorphic to
the alternating group A4.

Now let p = 2, q = 3. If G is case (i), then as above Q/8(G) is
type (3,3). Let x,yeQ generate Q/S(G). Then (x,y)eg(G) and
(x, y) Φ 1. Since the action of G/Q on G/S(G) is nontrivial and pre-
serves this commutator, we see easily that the action must be dihedral
and we obtain (iv). If G is case (ii), then (rm - l)/(rw/2 - 1) = 3 and
so rmβ = 2. Thus G!S(G) is the extension of a (2, 2) group by the
nonabelian group of order 6 acting faithfully. Since this group has
no normal 3-complement, Burnside's transfer theorem implies that the
normalizer of a Sylow 3-subgroup contains an element of order 2.
Hence the extension is split and G/S(G) = S4, the symmetric group on
4 letters.

We close with a result which generalizes Theorem 3.5(i).

THEOREM 6.6. Let pe be a fixed power of p with e > 1 and let
G be a group with a nonabelian Sylow psubgroup. Suppose further
that if X is a nonlinear irreducible character of G, then pe | deg X
and pe+1 JfάegX. Then G is the direct product of @P(G) with an
abelian pf-group.

Proof. By induction on | G |. By Theorem 2,5 (i), G has a normal
p-complement K. Let P be a Sylow ^-subgroup of G. If PAG,
then G = P x K and clearly K must be abelian. Suppose G has a
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proper normal subgroup H with p\[G:H], Let φ be a nonlinear
irreducible character of H and let X be a constituent of φ*. Then
X\ H = a^Σjlψi and degX = atdeg(p. Since at\[G: H] we have
I deg φ\p = \ deg X \p = p\ By induction, PAH and since P is charac-
teristic in H, PAG and the result follows.

We assume now that K Φ <(Γ> and that G has no proper normal
subgroups of pf index and we obtain a contradiction. Let λ be a non-
principal linear character of K which has a linear extension μ on G.
Then G/ker μ is abelian and not a p-group and thus some H as above
exists. Since this cannot happen, we see that if φ Φ 1 is any irre-
ducible character of K, then φ* has no linear constituents. We show
now that T(φ) A G and that G/T(φ) is elementary abelian of order pe.

Note that G/K ~ P is nonabelian and has a.c.p6. Let I be a
constituent of φ*. Then X \ K = a Σ ί <pt and so t\pe. This yields
[G/K: T(φ)/K] ^ pe and % ) Δ G by Lemma 3.3 (iii). Now let ζ be
an irreducible character of T(φ) with ξ\K= b(ζ)-φ. Clearly T(ξ) =
Γ(̂ >) and hence f* is irreducible. Since ξ* is a constituent of cp*, it
is nonlinear and thus tb(~) = pe. In particular, for all such choices of
ξ, h(ξ) is the same. Now by Theorem 6 of [1], there exists ξQ with
b(ζQ) = 1. Thus t = pe and for all such ξ, b(ζ) = 1. Let β be an
irreducible character of T(φ)/K viewed as one of T(φ). Then ξ = fo/9
is irreducible and ξ\K = β(l) <p. Therefore β(l) = 1 and r(^)/i i is
abelian. As in the latter part of the proof of Lemma 3.4, we see
that G/T(φ) is elementary abelian of order p\

Now let x e K with x Φ 1 and suppose that [P: &P(x)] ^ pe. We
show that ©p(cc) Δ P and P/QZP(x) is elementary abelian of order p e .
Let τ be a nonprincipal linear character of <X>. Clearly (£P(cc) fixes τ
and hence ©P(a?) fixes f (induction to K). Since the degree of τ is
prime to p we see that (£P(a?) fixes some irreducible constituent 9? of
τ. Clearly 9 Φ 1 so Γ(^) 3 K<S,P(x) and [G : T(φ)] = pe. Hence Γ(cp) =
K&P(x) and G/T(φ) = P/QZP(x) is elementary abelian of order p e .

Let if have ά nonprincipal irreducible characters and hence k
nonidentity classes. We have shown that in the action of P on the
characters of K we have 1 + k/pe orbits. Hence by Brauer's Lemma,
the same is true for the action of P on the classes of K. In particular
there must exist a class, say Cly, belonging to an orbit of size ^pe

with y Φ 1. Let S be the subgroup of P fixing this class so that
[P S] ^ p\ Since \Cly\ is prime to p, there exists xeCly with
S S M&). Thus [ P : <£P(α)] ^ Pe and by the above P/&P(x) is elemen-
tary abelian of order p\ Clearly S = QίP(x). Since S Δ - P w e see that
P/S acts on ^ ( S ) ^ <1>. As above, if ze&κ(S) with ^ ^ 1 , then
&P(z) — S. Hence P/S acts fixed point free on &K(S), a contradiction since
P/S is elementary abelian of order pe ^ p\ This completes the proof.
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