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A CHARACTERIZATION OF GROUPS IN TERMS
OF THE DEGREES OF THEIR CHARACTERS 1I

I. M. Isaacs AND D. S. PASSMAN

In this paper we continue our study of the relationship
between the structure of a finite group G and the set of degrees
of its irreducible complex characters. The following hypo-
theses on the degrees are considered: (A) G has r.x. ¢ for some
prime p, i.e. all the degrees divide p°, (B) the degrees are
linearly ordered by divisibility and all except 1 are divisible
by exactly the same set of primes, (C) G has a.c. m, i.e., all
the degrees except 1 are equal to some fixed m, (D) all the
degrees except 1 are prime (not necessarily the same prime)
and (E) all the degrees except 1 are divisible by p¢ > p but
none is divisible by p°t!, In each of these situations, group
theoretic information is deduced from the character theoretic
hypothesis and in several cases complete characterizations are
obtained.

In situation (A), the greater complexity which can occur when
e = p is explored and a conjecture concerning p-groups with ¢ < p is
studied and certain cases of it are proved. Detailed statements are
made about groups G satisfying (B) for which the common set of
prime divisors of the degrees does not consist of a single prime for
which G has a nonabelian &, subgroup. These results are applied to
situation (C), groups with a.c. m, and such groups are completely
characterized when m is not a prime power corresponding to a non-
abelian Sylow subgroup. If m = p° and an &, of G is nonabelian
then it is shown that G must be nilpotent unless ¢ = 1 (in which case
G has r.x. 1 and has been completely characterized in [2]). This
reduces the study of groups with a.c. m to p-groups and it is shown
that a p-group G with a.c. »° must have an abelian normal subgroup
of index p° unless G has class 2 or 3. Further information is obtained
about these “special” class 2 and 8 groups. It is also shown that if
e > 1 then G must have class < p.

Groups satisfying hypothesis (D) are completely characterized and
it is shown that in this case there are at most two degrees different
from 1. Finally it is shown that if G satisfies hypothesis (E) and has
a nonabelian &, subgroup then G is nilpotent and has a.c. p°. In all
the situations considered in this paper, the group in question is shown
to be solvable.

We use here the notation and terminology of [2].

1. Groups with r.x. (p — 1). In[4] we classified all groups with
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r.x.2. As it turned out, in that study the prime p = 2 played a
special role. It now appears that in the general classification of groups
with r.x. e those primes p with p < e will again play a special role.
In the other direction, this means that groups G with r.x. ¢ and p > ¢
are somehow better behaved than the others. In this section we will
attempt to justify this last statement.

Let G have r. X. ¢ but not r.x. (¢ — 1). Then we say that ¢ = ¢(G)
is the character exponent of G. If G has a normal subgroup N of
index p with e¢(lN) = ¢(G) — 1, then in terms of the characterization
problem, G is trivial. We say that such groups are imprimitive. Other-
wise G is primitive. We note that since all groups with r.x. e are
M-groups this terminology causes no confusion.

The following result handles the nonnilpotent case. It shows
moreover that the nonnilpotent exceptional group of [4](Theorem A (ii))
belongs in some sense to a series of such groups.

THEOREM 1.1. Let e(G) =e and let &, (G) be moncentral. If
p#=2 and p s not a Mersenne prime or if p > e, then G is imprimi-
tive. If p=e, then G 1is imprimitive unless G/3(G) = G, where
G, =(Vx,C)~C,|C|=mnp, V is elementary abelian and either p =
2,/ V]=38o0r p=2*—11s a Mersenne prime and |V | = 2=,

Conversely 1f e(G) = e and G/3(G) = G, given above, then p = e
and G is primitive.

The lemma below is well known.

LEMMA 1.2. Let @ be a set of primes and let arbitrary group G
have a nmormal abelian &, subgroup A. Then A = Z X B where Z
and B are characteristic in G and Z = 3(G) N A.

Proof. Clearly A is characteristic in G and G/A acts on A. Let
6 be the endomorphism of A which is given by 6(a) = [l.eq. @°.
Clearly K = ker # and I = image # are characteristic subgroups of G
and |K|-|I|=1]A|l. If Z= 3(G)N A, then we see easily than Z2 1
and ZN K = <{1)>. The latter uses the fact that A is an &, subgroup
of G. Hence Z=1and A=27 x K.

Proof of Theorem 1.1. Let H = &, (G) and P = G/€(H). Let
H be the group of linear characters of H and let G, = H x, P where
P acts faithfully in the natural manner on H. If there exists ne H
with €,(\) = <1)> then choose N with N 2 €(H) and [G: N] = p. By
[5](8§ 8, in particular the proofs of Theorems 3.1 and 3.2), ¢(N) =
¢(G) — 1. Now this occurs by Corollary 2.4 (i) of [5] if p +# 2 and p
is not a Mersenne prime or if p > e¢(G). It also occurs for p = ¢(G)
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unless G, has G, as a homomorphic image. This follows by Theorem
2.1 of [5] and a slight modification of Lemma 1.2 of [5] since we do
not have to look at subgroups here. We consider this last possibility.
Assume G is primitive.

Now P has as a homomorphic imape P, a Sylow p-subgroup of
G,. Since [P,: PJ] = p* we see that P, has a nonabelian group of order
p® as a homomorphic image. Thus there exists K A G with K 2 €(H)
and G/K nonabelian of order »°. By [2](p. 885, equation * with m = 1)
G has a normal subgroup N with K< N<G,[G:N]=9p* and
e(N)<e(G) —1. Since p =¢>¢N) we conclude by [5] that
[N:C(H)] = p°™. Hence [G:C(H)] < p*-p*™ < pr*'. Since | P,| =p**,
it follows that [G: €(H)] = p*™* and P = P,

Let W Dbe the kernel of the homomorphism G, — G,. By the above
W < H. We show that W is central in G,. Let we W and suppose
that €, (w) < G,. It is easy to see in G, that there exists @, b eﬁ/ w
such that |, (@) | = |€,,(b) | = p and P, = (&, (@), €;,(b)>. Thus since
G, acts on ﬁ/ W and €;(w) < G, we cannot have both €, (w) 2 €, (@)
and €, (b). Say C¢(w)2C, (@). Since |C,(@)| = p we have €4 (w) N
s (@) = H. Now p-group @Gl(d)/lfl permutes the elements of the coset
aW =a and |aW| is prime to p. Hence we can choose an element
acaW which is centralized by €;(@). Consider v = aw eH If
re€C4(v) then xeC(?) = €, (@). Thus x centralizes @ and hence
€@ N Ch(w) = H. Therefore Ce(v) = H and this is a contradic-
tion since G is primitive. Thus W is central in G, and since G,/W =
Gy, W = 8(G)). By Lemma 1.2, H = W x R where R A G, and RP = G,.

Since H= W x R we have H = Q x Z. All linear characters of
Z are fixed by P and hence Z is central in G. Also QP = G, and
from the nature of G, we see easily that QP = G, Moreover C,(H) =
Q X Z x S where S = &,(C(H)). We show now that S is central in G.

Choose \, ft€ @ with | T.(\) | = | To(f2)| = p and P =< Tp(\), To(p)>.
Let @ be an irreducible character of S. View ),z and @ as characters
of €(H). Let y be a constituent of (\@)* so that y | C(H) = a 3\\(\®)..
Clearly T(n@) = T(M) N T(®) so t = p” and p® = deg x = at deg ¢ = p*
deg . Thus dege =1 and ¢ = p?. This shows that S is abelian and
that T(p) 2 T(\). Similary T(p) 2 T(¢) and hence T(p) = G. There-
fore S is central in G and 8(G) = Z x S. Hence G/3(G) = QP = G,
and the result follows.

We show conversely that all the exceptional groups discussed have
e(G) = p and are primitive. Let A = €(H). Since G/3(G) = G, we see
that A = H3(G) is abelian since H is abelian. Also [G: A] = p**.
Let y be an irreducible character of G and x| A = a X A;. Then
degy = at and ¢’t < [G: A] = p™' by Lemma 1.2 of [2]. Thusdegy <
p**t and if degy = p?** then a =1 and ¢ = p**'. The latter implies
that for » =), we have T(\) = A. We [show that this is not the
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case. Let M| 3(G) = . Then \ is a constituent of #Z (induction to
A) and G/A permutes the linear constituents of /£ since 3(G) is central.
Now G/A is a p-group and deg fZ is prime to p so there exists a con-
stituent » of @ which is fixed by G/A. Since )| 3(G) = 7| 3(G) it
follows that N = ¢ where £ is a character with &|3(G) =1. By
properties of G,, T(¢) > A and since T() = G, it follows that T(7¢) > A.
Thus ¢(G) < p. Since ¢(G,) = p we have ¢(G) = p.

Suppose G is imprimitive. Let NA G with [G:N]=p and
e(N) =p — 1. Let y be a character of G of degree p”. Since ¢(N) =
p — 1 we have y = ¢* for some irreducible character ¢ of N. This
shows that N 2 3(G). Clearly N2 &, (G) = H and therefore N 2
HB3(G) = A. Since p > e¢(N) and €,(H) is abelian, it follows from § 3
of [5] that [N: A] = p°™. Hence [G: A] = p*™*' = p*, a contradic-
tion. This completes the proof.

We now study p-groups with r.x. ¢ and p > e¢. Here our results
are not conclusive.

Let p-group G have ¢(G) = e. We set 2(G), the character kernel
of G equal to 2(G) = N ker § where 6 runs over all irreducible charac-
ters of G of G of degree p°. If 2(G) =<1), we say G is character regular.
In [6](Corollary 2 with n = p*) we showed that | 2(G)| = #(2p*™)!
We conjecture that if p > ¢(G) than G is character regular. Reasons
for studying this property can be seen in the following result.

ProposiTION 1.3. Let G be a p-group with ¢(G) = e.

(i) Let N A G with ¢(N) =e. If N is character regular then
BNN) & B(G).

(ii) Suppose G is primitive and every maximal subgroup is charac-
ter regular. If {eG — 3(G), then [G:C({)] = p*. Thus if J is a
central subgroup of G of order p, then B(G/J) = B(G)/J.

Proof. In (i) suppose B(N)<Z B(G). Then we can choose
xe (@, 3(N)) with ¢ # 1. Since NA G,xeN. Now N is character
regular so there exists irreducible character ¢ of N with degp = p°
and w¢kerp. Let y be and irreducible constituent of o*. Since
deg y < p° we have clearly y| N = ¢. Thus 8(N) is central in the
representation associated with y and (G,3(N)) S kery N N = kerop, a
contradiction.

We consider (ii). Since (¢ 3(G) we have [G:C()]=p. If
[G:€CQ)] =p, let N=E&). Then N A G, N is character regular and
e(N) = e(G) since G is primitive. By (i), 3(N) & 8(G) and hence
€ € 8(G), a contradiction. Thus[G:€({)] = p*. Clearly 3(G/J) 2 3(G)/J.
Let { € G be the inverse image of an element of 8(G/J). Then (G,{) < J
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and |J| = so [G:C()] =< p. By the above e 3(G) and the result
follows.

We say p-group G has property (*) if ¢(G) = ¢ and given any
p — e nonidentity elements of G there exists an irreducible character
x of G of degree p° which does not contain any of these elements in
its kernel. Note that if p > ¢(G) and G has property (*), than G is
character regular. In [5] we conjectured that every p-group satisfies
(*). If this is so the following shows that p — ¢ is best possible.

ProposiTioN 1.4. Given p and e. If p < e, there exists a p-group
G with ¢(G) = e and 2(G) > {1>. If p > ¢, then there exists a p-group
G with e(G) = e having p — ¢ + 1 nonidentity elements with the pro-
perty that every irreducible character of G of degree p° contains at
least one of these elements in its kernel. Moreover in both cases we
can take G to have class 2.

Proof. Let G be generated by x, -+, 2, %, +*-, ¥, 4, v all of
order p, such that % and v are central, (x;, y;) = wv’ for 1 =1, ..+ ¢,
and all other commutators are trivial. Set J = <{v). Clearly G/J is
a faithful irreducible linear group of degree p°. Since [G : 3(G)] £ p*
we see that e¢(G) = e.

Let p <e. We show that veQ(G). Let y be an irreducible
character of G with v¢ kery. Then for some ¢ =1, ---, p we have
uv' e ker y. Since p < ¢ we see that x;, y; exist and that Z; and 7, are
central in G/Kuv®). Hence G/{uv’> has r.x.(e — 1) and degy < p°.
Thus v € 2(G).

Now let p > e. Consider the p — ¢ - 1 elements v, uv°*?, -« -, wv?.
Let y be an irreducible character of G containing none of these elements
in its kernel. Then for some ¢ =1,...,¢ we have wv'ckery. As
above for such 7 < e, G/Kuv’) has r.x.(e — 1) and hence the result
follows.

We show now that at least in certain cases (*) holds. For possible
later applications we use the following general setup.

Let & be a class of p-groups closed under taking subgroups and
quotient groups. Let G be a member of . of minimal order which
does not satisfy (*) if such exists. We consider properties of this
minimal counterexample.

Let ¢(G) = ¢ and let x,, ---, x, be » = p — ¢ nonidentity elements
of G such that each irreducible character of G of degree p° contains
at least one of the x; in its kernel. We of course have » > 0 and thus
p >e. Clearly e¢ > 0 by Proposition 4.6 of [2]. Hence » < p — 1.

We can assume that the x; are central and have order p as
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follows. If xis one of the x,’s, then we can find elements y,, +--, ¥,
such that » = (x,y, -+, ¥:) is a nonidentity central element. If
h ¢ kery for some character y then clearly x¢kery. Also we can
take a suitable power of % to have order p.

We show now that all the x; are contained in @(G), the Frattini
subgroup of G. If not say z,¢ N for some maximal subgroup N of
G. Since x, is central of order p we have G = N x {z,> and clearly
e(N) = e(G) =e. Let £ be an element of order p in Z(N). Then
(L, x,> is central of type (p, p) and has p + 1 subgroups of order p. Since
r<p-—1 we can find one such subgroup J with «, ---, 2,, (¢ J.
Then G = N x J and %, ---, Z, are nonidentity elements of G/J = N,
a group with e(G/J) = e. Since G is a minimal counterexample, we
can find a character ¢ of G/J of degree p° with 7, ¢ ker . Viewing
@ as a character of G yields a contradiction.

Let N be a maximal subgroup of G. Clearly ¢(N)=e —1. If
¢(N) = e, then since x,, -+, 2, € N there exists an irreducible character
@ of N of degree p* with «; ¢ ker ¢ for all 4. If X is a constituent of
@* then since degX < p° we have degX = p° and X|N = . Thus
x; ¢ ker X for all 4, a contradiction. Therefore ¢(N) = ¢ — 1.

If y is a character of G of degree p°, then y = @* for some
irreducible character ¢ of N since ¢(N) = ¢ — 1. Thus T(p) = N and
hence 3(G) & N. Therefore 3(G) & 3(N). We show that 3(G) = B(N).
If not, choose «,,, € (G, 8(N)) with z,,, # 1. Since ¢(N) =¢ — 1 and
r+1=p— (e —1), we can choose an irreducible character § of N
of degree p* with z,¢ ker § for all 7. Let y be a constituent of 6*.
If degy = p% then w,, ---,x,¢kerX yields a contradiction. On the
other hand, if degy = p**, then y| N = ¢ and so 3(N) is central in
the representation associated with y. Hence (G, 83(N)) S kery NN =
ker 6 and this contradicts the fact that «,., ¢ ker . Thus 3(N) = 3(G).

We show now that 3(G) has two generators and is not cyclic.
Let G have as a homomorphic image G = G/K, a faithful irreducible
linear group of degree p°. Suppose B(G) N K has a subgroup of type
(p,p). Then we can find a central subgroup J of order p with x,¢ J
for all 7 and J & K. Then ¢(G/J) = ¢ and we clearly have a contra-
diction., Thus 8(G) N K is cyclic. Since B(G) is cyclic we see that
3(G) has two generators. Let (e B,(G) — 3(@) with {? € B(G). Then
the map g — (g, {) is a homomorphism of G into the elements of order
p in 3(G). The kernel is €(() and by the above [G: €({)] = p°. Hence
[G:C€)] = p* and (G, &) is abelian of type (p, »). Thus B(G) is not
cyclie.

THEOREM 1.5. If G has class at most 2, then G satisfies (*).

Proof. Let & be the family of all p-groups of class at most 2
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and let G be a minimal counterexample. Then all of the above applies.
Let J be a central subgroup of G with xz;¢ J for all «. Let X be an
irreducible character of G/J viewed as one of G and with x,J ¢ ker X.
Let K be the kernel of X. If U is the subgroup of 3(G) of type (p, )
then clearly J = KN U and thus KN 3(G) is cyclic. Let G = G/K.
We show that 3(G/K) = 3(G)/K. Let B be the complete inverse image
of 8(G) in G. Clearly B2 3(G). If B> 3(G), choose {cB — 3(G)
with {?e B3(G). Since Ze 3(G) we have (G,{) S KNU=J. Hence
[G: €()] = p, a contradiction. Since x; ¢ ker X, it follows that deg X <
p* and so [G : 3(G)] < p** by Lemma 2.3 of [2]. Hence [G: 3(G)] <
p*%* and G has r.x.(e — 1), a contradiction. Thus the theorem is
proved.

We now return to our discussion of the general minimal counter-
example. Again let { € 8,(G) — 8(G) with {? € 8(G). Thus if K = €(¢),
then we have [G: K] = p* and in fact G/K = (G, {) is abelian of type
(p, p). Let N be any subgroup of G with G > N > K. Since 3(K)Z
B(N) and K is character regular we see by Proposition 1.8 (i) that
e(K) < e(N). But ¢(K)=e(N) —1 s0 e(K)=¢N)—1=¢—2. In
rarticular ¢ = 2.

We show now that [3(K): 3(G)] = p so that 3(€(Q)) = {(3(G), .
Let 6 be an irreducible character of K of degree p°? (note that ¢(K) =
¢ — 2) with «,, ---, 2, not in its kernel and let J < ker § where J is
central in G of order p. Clearly J = (T, £) for some subgroup T' with
G>T>K. Consider G=G/J. Since %, #1 in G we see that
e(G)<e—1. But eK)=e— 2, where of course K = K/J. Also
ZeB8(T) — B(G). Hence ¢(G) > ¢(T) = e(K). This yields ¢(G) = e — 1
and ¢(T) = ¢(K) = e — 2. By Proposition 1.3 (i) we have 3(K) S
B(K) € B(T) and thus (T, 3(K)) = J. Now T = <K, ay and the map
b — (b, a) is a homomorphism of J(K) onto J with kernel €(a) N B(K) =
3(T). Hence [8(K):3(T)] = p. But 3(T) = 3(G) so [3(K): B(G)] =p.

If e = 2, then K is abelian and so 3(K) = K. Hence [G:8(G)] = p°,
a contradiction and hence ¢ = 3. If we let . be the set of p-groups
with r.x.2, then the above yields:

ProrosiTiON 1.6. If G is a p-group with r. x. 2, then G has pro-
perty (*).

We now discuss an application of the above. Let .7~ denote a
family of character regular p-groups closed under taking subgroups
and quotient groups.

ProrosiTION 1.7. Let Ge 7 with ¢(G) =e. Let X be an irre-
ducible character of G of degree p° and let Z, denote the set of
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elements of G central in the representation associated with X. Then
Z, is abelian.

Proof. 1f Z, is central the result is clear. So assume Z, £ 3(G)
and hence Z, > 3(G). Choose { € Z, — 3(G) with { € B,(G) and {? € 3(G).
Then (£, G) is central, elementary abelian and ({, G) < ker X. Clearly
&, G) =<, If | (¢ G)] = p* choose J, and J, subgroups of ({, G) of order
p with J, NJ, = {1). Since J; S ker X, we have ¢(G/J;) = e¢ and hence
by induction Z,/J; is abelian. Thus Z; & J, N J, = <1> and Z, is abelian.

Thus we can assume that ({, G) = » and hence if H =€ ({), then
[G: H] = p. Since H is character regular and 3(H) £ 3(G), Proposi-
tion 1.3 (i) yields e¢(H) =e¢ — 1. Thus X|H = 37 o; and X vanishes
off H. This latter fact implies that Z, & H. Now if ¢ = ¢,, then
degp = p*and e(H) = ¢ — 1. Thus in H, Z, is abelian. Since clearly
Z, S Z,, the result follows.

COROLLARY 1.8. Let G have class 2. If p > e(G) = e, then G has
a normal abelian subgroup of index p*.

Proof. Let .7 be the family of p-groups of class < 2 with p > ¢(G).
By Theorem 1.5 all members of .7~ are character regular. Let X be
an irreducible character of G of degree p°. Then by the above Z, is
a normal abelian subgroup of G. Since G has class 2, [G: Z,] = p*
and the result follows.

2. m-Character groups. In this section we study groups whose
irreducible characters have degrees which are powers of a fixed integer
m. In fact we consider the more general class of groups defined below.
Here 7(n) denotes the set of prime factors of integer .

DEFINITION 2.1. Let 7# be a set of primes. We say group G is a
m-character group if the following hold.

(i) The distinct degrees of the irreducible characters of G are
doy dyy v+, d, with £ > 1.

(ii) Forall2=1,d;,,|d; and n(d;) = 7.

(iii) If = = {p}, then &,(G) is abelian.

Condition (iii) above is included for convenience in order to avoid
overlap with our previous study of r.x. e groups. If H is a homo-
morphic image of G, then the degrees of the irreducible characters of
H forms subset of those of G. Hence if G is a 7m-character group,
then either H is a m-character group or H is abelian. The main result
here is as follows.
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THEOREM 2.2. Let G be a m-character group. Suppose the distinct
degrees of its irreducible characters are do, d,, -+, d, with d,_,|d,.
Then G has the following structure.

(i) G has a normal abelian &, subgroup H +# {1) with G/H =
S.(G) abelian.

(ii) A = GC(H) is a normal abelian subgroup of G of index d,.

(iii) There exists a subset {a, a, ---,a,} of {0,1, --- k} with
0=a,<a, < - <a,=k such that G/A 1is abelian of type (d,/d,,
do,fday, =+, do /Ay, ) and (d,,, /d,) | (ds/da,_ ) for all <.

ay) Cr—1 ai41

COROLLARY 2.3. Suppose the degrees of the irreducible characters
of G are all powers of a fixed integer m, with m*® the largest such
degree. Let m = m(m) and assume that || > 1. Then G has a normal
abelian subgroup A with G/A abelian of order m* and type (m®, m*,
oo, m57) for suitable integers s;. Moreover S.(G) is abelian.

The corollary is of course an immediate consequence of the theorem.
The proof of the latter will be in two parts. We first show that G
satisfies (i). Then we study groups with that property and show that
they satisfy the remaining conditions (ii) and (iii).

We start with a lemma. If X\ is a linear character of G, then the
order of A, written o(\), is its order as an element of the dual group
G//E’. If X is any irreducible character of G we set o(X) equal to o(\)
where ) = det X, the determinant of the representation associated
with X.

LeEMMA 2.4, Let p be a prime and let U = N,(G) be the minimal
normal subgroup of G having a p-quotient group. Then

Ul = Zp*o(z) X(l)z mod p.

Proof. By induction on |G|. Suppose first that G has no normal
subgroup of index p. Then G = N,(G) and G/G’ is a p’-group. Hence
for all xe(f/\G’ we have pfo(\). Therefore the above congruence
follows from the equation |G| = > x(1)%.

Now let G have a normal subgroup H of index p. Clearly 1,(G) =
U, (H) and thus by induction

l UI = Zp*o(x) 0(1)2 mOd VY

where the sum runs over the irreducible characters 6 of H. We show
now that

Sioron XA = e O(1)° mod p .

In both sums we can of course discard those y and 6 with p|x(1) and
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p|61). Also if T(¢) = H, then 6 has p conjugates 6,,0,, ---, 6.
Clearly 6,(1) = 6(1) and o(6;) = o(d). Thus the contribution of these
conjugates to the right hand sum is a multiple of p. Hence we need
only consider those 6 with T(6) = G.

Let &7, = {X|X is an irreducible character of G, p/tX(1), and
ptoX)} and &, =1{0|6 is an irreducible character of H, pft0(1),
pYo(d), and T(6) = G}. As we have shown above it suffices to prove
that

S X1y =3.,017 modp.

We will in fact show that the map y — x| H is a one-to-one map
of &7, onto &, and this will yield the result since X and X | H have
the same degree.

Let Xe.%”,. Since [G:H]=p we have that either X|H is
irreducible or X | H is the sum of p conjugates. Since pft y(1), the
latter cannot occur so X|H = 6 is irreducible. Clearly 6(1) = X(1),
o(0) | o(x) and T(#) = G and hence # € .&“,. Thus the restriction map
sends &7, into &7,.

Now let #e€.5”, and let p=detd. Since T(f) =G we have
T(#) = G and thus K = ker ¢ is normal in G. If X is such that X | H =4,
then X is a constituent of 6*. Thus to show that the restriction map
is one-to-one and onto we must find a unique constituent X of 6* with
Xes”, and X|H = 6. Let v be a nonprincipal linear character of G/H
and let X be an irreducible constituent of #*. Since [G: H] = p and
T(6) = G we see that X | H = 6 and that all the constituents of 6* are
of the form X, =X for 1 =0,1,.-.,p — 1. Let N = detX so that
M| H = p. We have clearly

det X, = det X = i)\,

Since y(1) = 6(1) is prime to p we see that det X; = det X; for ¢ = j and
hence we obtain p distinct linear characters of G which extend p.

Since T(¢) = G we see that H/K is central in G/K and since G/H
is cyclic, G/K is abelian. Also H/K is a p’-group since p } o(x) and
hence G/K =~ (H/K) x (G/H). It follows easily from this that there
are precisely p distinct linear characters of G which extend g and that
precisely one of these has order prime to p. Hence there is a unique
1, with o(y;) prime to p. Then p to(X;) and p} X; (1) since X;(1) =
6(1). Thus X; € &7, and X, |H = 6. This completes the proof.

The first two parts of the following theorem are due to John
Thompson. They generalize our original result, proved under more
restrictive assumptions.

THEOREM 2.5. Let p be a prime and © a set of primes.



THE DEGREES OF GROUP CHARACTERS II 477

(i) Suppose for every monlinear irreducible character y of G
we have p|X(1). Then G has a normal p-complement.

(ii) If the degrees of the irreducible characters of G are linearly
ordered by divisibility, then G has a Sylow tower.

(iili) Suppose for every nonlinear irreducible charactor X of G
we have ©(X(1)) = w. Then G has a normal abelian S, subgroup H.
Moreover if |w| > 1, then G/H 1is abelian.

Proof. (i) Let U be as in the preceeding lemma. Since p | y(1)
if (1) = 1 we see by Lemma 2.4 that

[U| = 3r0m ML) mod p

where the sum runs over linear characters . Clearly p } o(\) is equiv-
N
alent to ) belonging to &,(G/G’). Hence

|U| = |S,(G/G)|  modp

and so p/|U|. Thus U is a normal p-complement of G.

(ii) By induction on |G|. If G is abelian the result is clear so
assume that G is nonabelian. Let d,=1,d, ---,d, be the distinct
degrees of the irreducible characters of G with d;|d;.,. Sincek =1,
choose prime p with p|d,. Then for all : =1, p|d;. By (i), G hasa
normal p-complement H. Let X be a character of G of degree d,
and say

YNH=aS!0,.

If 0 =0, then at degd =degX =d;. As is well known at |[G:H] and
of course deg ¢ || H|. Hence clearly at = |d;|, and deg § = |d,|,.. Thus
the degrees of the irreducible characters of H are |d,|,,|d.|, |, ---,
|d.|,» and these are linearly ordered by divisibility. By induction H has
a Sylow tower and thus the result follows here.

(iii) By (i), G has a normal p-complement for all pcn. Hence
G has a normal &, subgroup H with G/H nilpotent. Let 6 be an
irreducible character of H and let X be a constituent of 6*. Then
deg 0 |deg X and deg ¢ | | H| and so deg § = 1. Thus H is abelian. Now
let 7 = {p,, Ps, ++-,p,} and supposer > 1. LetG/H =P x P,x -+ x P,
where P; = &, (G/H). If P; is nonabelian then G/H has a character
X with w(X(1)) = {p;} # 7, a contradiction. Hence for all ¢, P; is abelian
and thus G/H is abelian. This completes the proof.

Part (iii) of the above result yields (i) of Theorem 2.2. We now
study groups satisfying this latter condition.

THEOREM 2.6. Let @ be a set of primes. Let G be a group with
a normal abelian &_, subgroup H and with G/H = &.(G) abelian.
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Suppose the distinct degrees of the irreducible characters of G are
do, dyy <o+, dy with d;_,|d;. Then

(i) A= G(H) is a normal abelian subgroup of G.

(ii) There ewxists a subset {a, a, ---,a,} of {0,1, -+, k} with
0=a,<a, < -+ <a, =k such that G/A is abelian of type (d,/d,,
do,fdoy, v o0, d [d, ) so[G:A]l=d, and (d,,,,/d.)]|(d,[d,,_,) for all 5.

Cp—1 ai41

Let K be a normal subgroup of G, maximal subject to G/K being
nonabelian. If G/K = E is solvable, then in the terminology of §2
of [2], E is extra-special. By Proposition 2.2 of [2], E is either a
Case P or Case @ group. We will refer to these as Case P and Case
@ quotients of G.

Let G satisfy the hypotheses of the above theorem. Set ¢; =
d;/d;_,. These degree quotients will come into play in some later
results.

LemMA 2.7. Let G satisfy the hypothesis of Theorem 2.6. Let
KA G so that G/K is an extra-special group. Then G/K is a Case @
quotient. Let Q/K be the normal Sylow g-subgroup of G/K with G/Q
cyclic of order d. Then |d|. =d and |q|,, = q. Also there exists a
subset {b,, b, -+, b} of {0,1, ---, k} with b,<b < --+ <b, =k such
that the distinct degrees of the irreducible characters of Q are d, /d,
dbl/d’ tt dbs/do

Suppose further that q;td for all © > 1. Then d = d, and the
distinct degrees of the irreducible characters of Q are d,jd,, dj/d,, «--,
d./d,. Moreover if 0 is an trreducible character of Q, then 6* is either
1rreducible or it has all linear constituents.

Proof. Let G/K be an extra-special quotient of G. If G/K is
Case P, then G/K is a nonabelian p-group for some prime p. Since all
Sylow subgroups of G are abelian, this cannot occur. Thus G/K is
Case Q. By Ito’s theorem we have d;|[G: H] for all 7 and hence
|d;|. = d;. Since d is the degree of an irreducible character of G we
have |d|. = d. Moreover since G/K is nonabelian and &_(G) is abelian,
we see that G/K is not a 7-group. Hence |¢q|,, = q.

Let 6 be an irreducible character of @ and let ¢ be a nonprincipal
linear character of Q/K viewed as one of Q. Suppose § = 6p. If L
is the kernel of ¢ then @ > L 2 K and ¢ vanishes off L. Say ¢ |L =
a>te,. Then [0|L,6|L], = a*%. On the other hand since ¢ vanishes
off L,[6|L,0|L]l,=[Q:L]#4,06]=[Q:L]. Hence o’ is a proper power
of q. Since deg § = atdeg », we have g |degd. If X is a constituent
of 6*, then deg ¢ |deg X and so ¢ |deg X. This is a contradiction since
|degX|, =degX and g¢ . Hence 6 = 6.

Now let X, ¢ be two distinct characters of Q/K. We show that
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T(ON) N T(6p) = Q. If not we can find x € (T(ON) N T(6x)) — Q. Then
ON = (ON) = 0°\° Opr = (Op)y = 0°u”
and hence
6° = NN = Gpp”

Now M\* %= pup® since @ acts fixed point free on Q/K and A = g, Thus
6 = 6p where p = (#")(A\") # 1 and this contradicts the above. Let
% be the number of minimal subgroups of G/Q. Then this says that
there are at most % characters A of Q/K with T(f\) > Q. Clearly
u < d — 1 since each minimal subgroup is cyclic and has a nonidentity
generator. On the other hand G/Q acts fixed point free on Q/K so
there are at least d + 1 > w linear characters of @Q/K. Hence there
exists A with T(6\) = Q.

Since T(O\) = Q, it follows easily that (6\)* is irreducible. Hence
for some 1

d; = deg (ON)* = ddeg (6\) = ddeg 6 .

This implies that there exists a subset {b,, b, ---, d,} of {0,1, ---, k}
with b, < b, < +++ < b, < k such that the distinct degrees of the irre-
ducible characters of @ are d,./d,d,/d, -+-,d, /d. We show now that
b, = k. Let X be a character of G of degree d, and let & be an irre-
ducible constituent of X |Q. Then certainly deg § = d,/d. On the other
hand by the above degd = d,/d for some j. Hence d;/d = d,/d so
j =k and deg 8 = d,/d. This completes the first half of the proof.

Now assume that ¢; ' d for all ¢ > 1. Since ¢g;|d; and d > 1, it
follows that d = d,. Let X be an irreducible character of G of degree
d; for © > 0 and let & = 6, be an irreducible constituent of X | Q. We
have X |Q = a > !0, and thus if b = at then b < d and bdegd = deg X =
d;. On the other hand we know that deg ¢ = d,/d for some j. Hence
d;/b = d;/d. Since d = b, it follows that d;, = d;,. If d; > d;, then
di+, | d; and we have

d=d, = b(dj/di) = bq;+.(d;/d; 1))

and ¢;.,|d, a contradiction for ¢ > 0. Hence 7 = j and deg d = d,/d.
Moreover b = at = d and since a’t < d, in general, we have a =1,
t =d and X = 6*, Thus the distinct degrees of the irreducible characters
of Q are d,/d,, d./d,, «--,d,/d,.

Finally let ¢ be a character of @ and suppose that #* has a non-
linear irreducible constituent X. Since ¢ is a constituent of X|Q, the
above yields X = ¢* is irreducible. This completes the proof of the
lemma,
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Proof of Theorem 2.6, First A = S.(A)H, S.(A) is abelian and
H is central in A. Hence A is abelian and (i) follows. Note that
G 1is solvable. If G is abelian, then (ii) is obvious. So assume G
is nonabelian.

Let K A G with G/K an extra-special group. By the preceeding
lemma, G/K is a Case @ quotient. Using the notation of that lemma
we have [G : Q] = d; for some 7. Moreover assume that K is so chosen
that ¢ is maximal with this occuring.

In G/K we have €;x(Q/K) = Q/K. This shows that A = C,(H)SQ
and hence G (H) = €y(H) = A. Let e G/A be such that it generates
the cyclic quotient G/Q. We show that |[{«>| = d; = d;/d,. Clearly
d;||<x>]. If d; = |<{x>|, then for some prime p ¢ * we have [{z>|, >
|d;|,. For this prime let J be the subgroup of <{x> of order p. Now
&.(A) centralizes H and some &_(G) and hence &.(A4) is central in G.
Thus by Lemma 1.2 we can write A =D X C where D = €, (J) and
D,C A G and J acts fixed point free on C. Clearly C = <1>. Let :
be a nonprincipal linear character of C viewed as one of A. Then
(T(\)/A) N J = <1) and hence [G: T(\)], = |<{x>|, > |d;|,. Since C =1
this implies that the distinct degrees of the irreducible characters of
G/D are 1,d;, --- with j > ¢. Hence G/D has a Case @ quotient with
[G:Q] =d, >d; a contradiction. Thus [<{x>| =d;. Setting a, = 1,
we have by induction applied to @, that G/A is abelian of type (d,/d,,
Qofdayy **+y A fda, ) With @, = k. Also (d,;, /d.) | (ds;/d,;_ ) for j > 1
by induction. To obtain (d,,/d,)|(d./d.,) we merely note that |{z)| = d;
for all such choices of x. This implies that the period of Q/A divides
d; = d,/d,. This completes the proof.

The proof of Theorem 2.2 is now immediate. Part (i) follows from
Theorem 2.5 (iii) and from the assumption that if = = {p}, then &,(G)
is abelian. Then Theorem 2.6 yields parts (ii) and (iii).

In the remainder of this section we assume that G satisfies the
hypothesis of Theorem 2.6 and we will use the notation of the conclu-
sion of that theorem. We first note a few simple facts about the
characters of G.

LEMMA 2.8. Let X be an irreducible character of G. Then we
have

(1) X|H =3¢\, that is there is no ramification.

(ii) There exists a subgroup L 2 A and a linear character \ of
L with X =\,

(ili) If X is faithful, then L = A and degX = d,.

Proof. LetX|H = a X i\; and set L = T(\,). Clearly L 2 C(H) =
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A. As is well known there exists a character ¢ of L with y = 6* and
0|H = ax,. Let K be the kernel of 4. Then clearly H is central
modulo K. Since &_(L) is abelian this shows that L/K is abelian and
hence degd = 1. Thus a =1 and (i) and (ii) are proved.

If X is faithful then since L A G we have that L is abelian.
Hence L = G(H) = A. This yields deg X = |G : A] = d, and (iii) follows.

It is interesting to consider which subgrours L can occur in (ii) of
the above lemma. Define a Galois connectivity between groups L with
G2 L 2 A and groups B with H 2 B as follows.

L-2 (L, H) B-“{yeG|(g, H)S B}
We say L is closed if L% = L

ProrosiTioN 2.9. Using the above notation, group L has a linear
character v with \* irreducible if and only if L is closed.

Proof. We note first that (L, H) = L’. This follows since L/(L, H)
has a central &, subgroup and an abelian &, subgroup and hence is
abelian.

Now let L have a linear character )\ with \* = X irreducible.
Set M = L% so that M 2 L. Suppose that M > L. Clearly L 2 ker Z.
Since G/A is abelian, L. A\ G and hence L/ker X is abelian. Thus I/ =
(L, H) S kerX. Since degX =|[G:L] and M > L it follows that
M = (M, H)Z kerX. Thus M*= (M, H) =+ (L, H) = L*, a contradic-
tion. Hence M = L and L is closed.

Now assume L is closed. We consider G = G/(L, H) in which
L = Lj(L, H) is abelian. Since L is closed we see that G/L acts faith-
fully on D = &_(L). Thus G/L acts faithfully on D, the dual group of
D. Since these groups are abelian and have relatively prime orders,
it follows by a trivial modification of Lemma 2.2 of | 5] that there exists
reD with €37z(\) = {1). View \ as a character of L and then as
one of L. We see that T(\) = L and hence that \* is irreducible.
The result follows.

If G/A is cyclic we can obtain additional information.

THEOREM 2.10. Suppose G/A is cyclic. Let L; be the unique sub-
group of G with [G: L, =d; and L; 2 A. Then we can write A =
B, X B, X «+-+ X B, where each B, is characteristic in G, L; centralizes
B; and G/L; acts fized point free on B;,. Here B; # {1> for i+ 0.
Conversely a group with this structure has characters of degrees
do, dyy + -, d, only.

Proof. Note that A = €(H) and each L; is characteristic in G.
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Note also that &.(A) is central in G. We have
<1> S C (L) & @A(Ll) S SC(Ly)=4A4

and each of these groups is characteristic in G. By Lemma 1.2 we
can write for 1 =1,2, ---, k

@A(Li) = CS:A(Lﬂ:—-L) X Bi

where each B; is characteristic in G. Setting B, = €,(L,) = 3(G) we
have

A=B, x B, X «-+ X B,

where each B; is characteristic in G and is centralized by L,.

Let ¢ =1 and let \ be a nonprincipal linear character of B; viewed
as one of A. Since L; centralizes B; we have T(\) 2 L;. If T(\) > L;,
then by Lemma 2.8 (i) we have T(\) 2 L;_,. This implies that L,_,
centralizes an element of B! which is not the case by definition of B;.
Hence T(\) = L; and G/L; acts fixed point free on B; and hence on B;.

We show now that B; = <1) for ¢ = 0. Let X be an irreducible
character of G of degree d, and let A be an constituent of X | A.
Since there is no ramification, [G: T(\)] = d; and hence T(\) = L,.
Write X = A\, -+ - A, Where \; is a character of B; viewed as one of
A. As we showed above, L, fixes no nonprincipal character of B; for
j>1. Hence » = A\ +++ N, If A; = 1, then clearly T(\) =2 L,_, which
is not the case. Hence \; # 1 and B; #* 1. The completes the forward
half of the proof.

Conversely let G have the structure described above. Since A is
abelian and G/A is cyclic we know that there is no ramification. Let
X be an irreducible character of G with A = A\, --- A\, a constituent
of X|A. Then degX =[G:T(\)]. If =1, then degX =1=4d, If
A # 1 choose j maximal with A; = 1. Clearly T(\) = L; and deg X = d;.
This completes the proof.

We now seek sufficient conditions to guarantee that G/A is cyclic.

THEOREM 2.11. Each of the following will guarantee that G/A
1s cyclic.

(i) difd..f

(ii) For all 1 < j,q;%q;.

(iii) For all 7, q;; > q;.

(iv) There exists a prime p e such that |q.., |, > 1q;l, for all 1.

Proof. We consider (i) first. This is a simple corollary of Theorem
2.6. If G/A is not cyclic, then there exists b < a < k with (d,/d,) | (d./d,).
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Thus d, | d? and since d, | d,_, this yields d,|di_,, a contradiction.

Now assume G satisfies condition (ii). We prove the result by
induction on |G|. If k£ =1, the result follows by (i) above so we
assume k£ > 1. Let X be a character of G of degree d,. By Lemma
2.8 (iii), G/ker X has characters of degrees 1 and d, only. Choose
KAG,K2kerX with G/K a Case @ quotient. Using the notation
of Lemma 2.7, it is clear that [G:Q] = d, = ¢q,. Since ¢; td, for all
j>1, it follows by Lemma 2.7 that the distinet degrees of the
characters of @ are d,/d,, d,/d,, ---, d,/d,. Hence @ has degree quotients
Qs G, **+, ¢, and we can apply induction to Q. Thus Q/A is cyeclic.

Theorem 2.10 applies to @ and thus A contains a characteristic
subgroup B on which Q/A acts fixed point free. Then B A G and also
B =+ {1>. Let ) be a nonprincipal linear character of B viewed as one
of A. Then X (induction to Q) is an irreducible nonlinear character
of @ since &k > 1. By Lemma 2.7, X* = A* is irreducible. This shows
that G/A acts fixed point free on B and hence G/A is cyclic.

Parts (iii) and (iv) follow immediately from (ii).

3. Groups with a.c.m. In this section we study nonabelian
groups G having the property that every nonlinear irreducible character
has degree m for some fixed integer m. We say these groups have
a.c. m (all characters m). As an immediate consequence of Theorems
2.2 and 2.10 we have the following.

THEOREM 3.1. Let G have a.c. m with @ = mw(m). Suppose that
either || > 1 or m = {p} and an &, subgroup of G s abelian. Then
G has the following structure.

(i) G has a normal abelian &, subgroup H + {1y with G/H =
S(G) abelian.

(ii) A =C(H) is a normal abelian subgroup of G with G/A
cyclic of order m.

(ili) A = B(G) x B where BAG,B +<1) and G/A acts fixed
point free on B.

Conversely any group G having this structure has a.c. m.

Therefore we need only consider the case in which m = p° for
some prime p with &,(G) nonabelian. Actually the e =1 case has
already been studied in [2]. However there is little additional work
involved in handling it so we will consider it again here. As we will
see, the structure of those groups with ¢ > 1 is much more restrictive
than the structure with ¢ = 1. We start with several lemmas.

LEMMA 3.2, Let G have a.c. m with m = p° and &,(G) nonabelian.
Then we have the following.
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(i) G has a normal abelian &, subgroup H.

(ii) G has a Case P quotient E.

(ili) If E 1s any Case P quotient of G, then E is a p-group with
E/B(E) elementary abelian of order m*. Also any abelian subgroup
B of E satisfies [E: B] = m.

Proof. Since G has r.x. ¢, Proposition 3.4 of [2] yields (i). Now
G/H = &,(G) is nonabelian. Thus we can choose K A G, K 2 H and
maximal with G/K nonabelian. Clearly G/K is a Case P quotient and
(ii) follows. Now let E be any Case P quotient of G. Then E has
a.c. m and hence E is a p-group and E/3(E) is abelian of order m?
by Proposition 2.2 of [2]. Since E has an irreducible character of
degree m, it follows that E has no abelian subgroup of index less than m,
We need only show that E/8(F) is elementary abelian. Given z, yc E.
Since E has class 2 and E’ has period p we have (z*,y) = (z,y)* = 1.
Thus 2 € 8(F) and E/3(F) has period p.

LemMmA 3.3. Let G have a.c. m. Then we have the following.

(i) Let &7 be a permutation representation of G with deg 7 < m.
Then G' S ker 7.

(ii) If |G| =m, then G’ = B(G).

(ili) Let L be a subgroup of G with [G:L] <m. Then G S L
and hence L A\ G. Moreover if [G:K]=m and K< L E G, then
K, Ly=L'=G.

Proof. Let 6 be the character corresponding to &?. Then deg 8 < m.
We have 6 = 3, a,X; where each X; is an irreducible character of G.
Now if X, = 1, then a, = 1 and hence for all 7, deg X; < m. Since G
has a.c. m, degX; =1 and G' < ker X; and hence G' < ker &#. This
yields (i).

Suppose |G'| £ m. Let zeG. Clearly |Clx| < |G| £ m, where
Clz denotes the class of . Now G permutes the elements of Clx
by conjugation and this representation has degree < m. Hence by (i)
& is in the kernel of the representation and thus G’ centralizes x.
Since x was arbitrary, G’ = 3(G) and (ii) follows.

Now let L £ G with [G: L] £ m. We see that G permutes the
right cosets of L by right multiplication and this representation has
degree < m. Thus by (i), G’ is in the kernel and hence G' = L. Now
let [G:K]=m and L > K. Since both K and L are normal in G so
is H= (K, L). If H< G’, then G/H is nonabelian and thus has a.c. m.
Since K’ & H, K/H is abelian and is centralized by a properly larger
subgroup. Thus G/H has an abelian subgroup of index < [G: K] = m.
This contradicts the existence of an irreducible character of G/H of
degree m. Hence H = G’. Since G’ 2 L' 2 (K, L), the result follows.
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LEMMA 3.4. Let G have a.c.m where m = p° and S, (G) is non-
abelian. Let A2 H = &,(G) be a normal self-centralizing subgroup
of G. If G has a faithful irreducible character X then G/A is ele-
mentary abelian of order m.

Proof. Since A2 H,G/A is a p-group and hence there exists
subgroup L and linear character N of L with G2 L 2 A and X = \*.
Since degX = m, [G: L] = m and hence by Lemma 3.3 (iii), L A G.
Thus % | L has only linear constituents. Since X is faithful L is abelian
and since A is self-centralizing L = A. Thus G/A has order m.

By Lemma 3.2(ii), G has a Case P quotient £ = G/K. Let Z/K =
B(&). Then (AZ)/K is an abelian subgroup of £ so [G: AZ] = m by
Lemma 3.2 (iii). Since [G: A] = m, we have A 2 Z and hence G/A is
elementary abelian.

We now reduce the study of these groups to a study of p-groups.

THEOREM 38.5. Let G have a.c. p° with P = &,(G) nonabelian.
Let H be the normal abelian &, subgroup.

(1) If e > 1, then H is central and hence G = H X P.

(il) If e =1, then either H 1is central or G has a normal abelian
subgroup of index p.

Proof. We start with the case ¢ > 1. Suppose first that G has
a faithful irreducible character. By the preceeding lemma, G has
a normal abelian subgroup A with G/A elementary abelian of order p-.
Then A = B X H where B = &,(4) A G. We consider G/B and show
it is abelian. If not, then G/B has a.c. p°. Now &,(G/B) = G/A is
abelian and thus Theorem 3.1 applies. Hence since A/B = &,.(G/B) we
see that (G/B)/€(A/B) is cyclic of order p°. This implies that €(4/B) =
A/B and therefore that G/A is cyclic of order p°. Since G/A is ele-
mentary abelian this is a contradiction for ¢ > 1. Thus G/B is abelian.
Since H A G this yields (G,H) S BNH =<1) and H is central.

Now let G be arbitrary with e > 1. We show that H is central.
If not choose xe P’, ye (G, H) with z,y =+ 1. By Proposition 4.6 of
[2] there exists an irreducible character X of G with z, y ¢ ker X. Hence
G/ker X has a.c. p°, a nonabelian Sylow p-subgroup and a noncentral
&, subgroup. Since G/ker X has a faithful character this contradicts
the above and (i) is proved.

Now let ¢ = 1 and suppose that H is not central. Since p > 1 = ¢,
G is imprimitive by Theorem 1.1, Thus there exists A A G with[G: A] =
p such that e(4) = ¢(G) — 1 = 0. Hence A is abelian and (ii) follows.

It is easy to construct examples to show that H need not be central
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in G if e =1. For example, let @ be an abelian ¢-group (¢ # p) which
has an automorphism of order p. Let G = @ X, P where P has order
»* and P acts on @ in such a way that P, a subgroup of index p
centralizes @ and P/P, corresponds to the automorphism of order p.
Since A = QP, is an abelian subgroup of G of index p, G has a.c. p.
Finally Q = &,.(G) is not central and P = &,(G) can be chosen to be
nonabelian.

In the remainder of this section and in the next two sections we
will consider only p-groups.

LeEMMA 3.6. Let G have a.c. m. Then we have the following.

(i) @(G), the Frattint subgroup of G, is abelian.

(i) If G has two distinct abelian subgroups A and B of index
m, then |G’ | £ m and hence G has class 2. Moreover if |G’ | = m, then
B3(G) = AN B and [G: B(G)] = m’.

(iii) If G’ is not central, them C(G') is abelian.

Proof. We consider (ii) first. Choose x € B — A with 27 ¢ A and
set L = (A, z)». Then [G: L] = p°* where m = p°. Thus by Lemma
3.3 (i), ' =G'. Clearly L' = (4,2) and |G'|=|L"|=[A4:C(x)].
Since C,(x)2 ANB and [A:ANB]<m, we have |G'| < m. By
Lemma 3.3(ii), G has class 2. If |G'| = m, then[4A: ANB]=m and
so [AB:B]=m. Thus G = AB and since A and B are abelian
B8(G) 2 AN B. On the other hand A and B must be maximal abelian
subgroups so A4, B 2 3(G). Thus 3(G) = AN B and (ii) follows.

If @(G) is not abelian, then there exists an irreducible character
X of G with @ & ker X. Hence @(G/ker X) is nonabelian. Now G = G/ker X
has a normal abelian subgroup A with G/A elementary abelian by
Lemma 3.4. Hence ¢(G) < A, a contradiction and (i) follows.

Now assume G’ is not central. If €(G’) is not abelian we can
choose z, y € €(G') with (x, ) = 1. Choose z € (G, G’) with z # 1. Then
there exists an irreducible character X of G with (2, y), # ¢ ker X. There-
fore it suffices to assume that G has a faithful irreducible character.
Since G’ is abelian, we can extend normal abelian subgroups <z, G">
and {y, G"> to normal self-centralizing subgroups 4 and B. By Lemma
3.4,[G:A] =[G :B] = m. Since x€ A4, ye Band (z, y) # 1, we see that
A = B. By (ii) above G has class 2, a contradiction. This completes
the proof of the lemma.

THEOREM 3.7. Let G be a p-group with a.com. Then either G
has a normal abelian subgroup A with G/A elementary abelian of order
m or G has class at most 3.

Proof. By induction on |G|. If B(G) is cyclic, then G has a
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faithful irreducible character and the result follows by Lemma 3.4.
Hence we can assume that 3(G) is not cyclic and thus 3(G) has at least
three distinct subgroups .J,, J,, J, of order p. We can clearly assume
that G has class > 3. Since the subgroups J; are disjoint it follows
that at most one quotient G/J; has class < 3. Hence say G/J, and
G/J, have class > 3. By induction, for 7 =1, 2, G/J; has a normal
abelian subgroup A./J; with G/A; elementary abelian of order m. Set
U=JJ, so that U< 8(G). If A, # A, then A,/U and A,/U are two
distinct abelian subgroups of G/U of index m. By Lemma 3.6 (ii), G/U
has class <2 and thus G has class < 3, a contradiction. Therefore
A, = A, =A. Since 4,/J; is abelian, 4’ = J, N J, = {1) and A is abelian.
This completes the proof.

Let 7'G denote the 7th term of the lower central series of G. Thus
TG =G, Y@ = (7'G, G) and the class of G is the minimal ¢ with
7°G = ).

LEMMA 3.8. (i) Let G be an arbitrary p-group having a normal
abelian subgroup A with G/A abelian of order m. Suppose for all
subgroups H with G 2 H > A and [H: A] = p we have H' = G’ # {1).
Then G has a.c.m.

(ii) Let G have a.c. m. and a normal abelian subgroup A with
G/A abelian of order m. If G’ is not central, then K = G X, (G/A)
has a.com. Moreover let x € G/A have order p. Then for all 4 >0,
VG = A0,

Proof. We consider (i). Let X be an irreducible character of G.
Since [G: A] = m we have deg X < m. We assume deg X < m. Since
A is normal and abelian, X is induced from a linear character of some
subgroup L 2 A. Clearly L > A and we can choose H with L2 H> A
and [H: A] = p. Since G/A is abelian, . A G. Thus kerX 2 L' = H’
and since H' = G', ker X 2 G'. Thusdeg¥X = 1. Since |G’'| # 1, G has
a.c.m.

Now let G have a.c.m and a normal abelian subgroup A of index
m. Set K =G x,(G/A). Then K has a normal abelian subgroup G’
with K/G' = G/A abelian of order m. Let x have order p in G/A and
set H = {4, y> where y is an inverse image of z in G. Then HA G
and (z,G) = (H,G)AG. Now G = G/(x,G) is nonabelian since
(@, G') < G’ and thus G has a.cm. Clearly G(G’) 2 H/(z,G’) so
[G: €(G")] < m. Now G cannot have an abelian subgroup of index < m
and hence by Lemma 3.6 (iii), G’ < 3(G). Therefore (x, G') = (G, (") =
(G/A, G"). Thus we see that K satisfies the hypothesis of (i) above,
since (G, G') # {1> by assumption. Thus K has a.c.m.

Let K be as above. We know that for 7 > 1
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¥G = (4, G/A, G/A, ---, G/A)
and YK = (G, G/A, G/A, --,G/A)

where G/A occurs 1 times in each of the above. This follows using
Lemma 3.3 (iii) for ¢+ = 1. Since G’ = (4, G/A) we have for 7 = 2,
7@ = 7K.

Let 2 € G/A have order p. We show that for ¢ > 1, v'G = A*—*
by induction on 4. If ¢ =1, the result follows from Lemma 3.3 (iii).
Let ¢ = 2 so that v*G = v*'K. By induction, since ¢ — 1 = 1, we have
yi-lK = (G")"~""", Since G’ = A" the result follows.

ExAMPLE 3.9. Let D be an additive elementary abelian group of
order m = p° and let 4, 4,, --+, A, be p distinct groups isomorphic to
D. Say a,: D— A, is an isomorphism,

Let F' be a field of endomorphisms of D with |F| = m. In fact
F' corresponds to the regular representation of GF(p®) on its additive
group. For o< F define 0;: A; — A,., by 0,(a;) = a;,0a7a;) for 7 =
1,2, ---,p—1and 0,: 4,—-<0>. Let A=A 4+ A, 4 ---+ A4, and
define 6 on A by 6 =0, + 0, + --- + 0,. Clearly ¢» = 0.

Let 0,7 F. Weshow that 67 =75, Leta;cA;. Ifi=p—1lor
p then 67(a;) = 0 = 7o(a;). Now let 7 < p — 1. Then

07T (;) = 0,4,75(0;) = a;0a7h0,,7a7(a;) = a;,0Ta7'(a;) .

Since o7t = 7o we have clearly 67 = 74.

Now for e F set 2, =1 + &. Since 67 = 0 and A is elementary
abelian we have x? = 1. Also for ¢, 7 ¢ F we have z,x, = 2.2,.

Let 0, 0, +++, 0, be a basis of F' over GF(p) and set x; = «,, for
convenience. Let B be the elementary abelian group of automorphisms
of A generated by the z,. Clearly |B| < p°. Set S = {x,}. Since
xx, =1+ 6+ 7T +0o7 it follows that when restricted to

A= (A + Ao+ oo+ A (Asa + -0 + A4y)

S is a group of order p°. Here 1=1,.--,p—1 and if ¢t =p—1
then the denominator of the quotient is the group <0>. Clearly B and
S restricted to this quotient are isomorphic and hence |B| = p°.

Now let xe B with © %« 1. Then there exists o F, o #+ 0 such
that « and x, act the same way on A; above for all 7. Since o is an
onto map we see that

[ —a)(A + Ay + -+ + A)N(Aia + -+ + 4))
= (A + -+- + 4)

for 1 =1,2,---,p — 1. This clearly yields
-2 A=A+ 4+ - +4).
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Thus by Lemma 3.8(i), G = A x, B has a.c.m. Moreover as is easily
seen, G has class ».

The following result exhibits another difference between the e =1
and ¢ > 1 cases.

THEOREM 3.10. Let G have a.c.p® with e > 1. Then G has class
at most p and G’ is elementary abelian.

Proof. By induction on [G|. If 3(G) is not cyclic choose J,, J,
subgroups of 3(G) with J, N J, = <{1)>. By induction G/J; has class < p
so "G S J,NJ,=<1). Also (G/J;) has period p so clearly G’ is ele-
mentary abelian.

Now assume 3J(G) is cyclic. By Lemma 3.4, G has a normal
abelian subgroup A with G/A elementary abelian of order p°. Let
H = G/A so that I(H), the group ring of H over the rational integers
I, acts on A. If S is a subset of H we let S denote the sum of the
elements of S in I(H). Let K be a nonidentity subgroup of H.
Choose xe¢ K with # = 1. By Lemma 3.8 (ii), G’ = A"~®. Hence

(Gr)%' — A(l—x)]’? _ <1>

since (1 — #)K = 0 in I(H). Thus K annihilates G.

Since ¢ = 2 we can choose K to be a subgroup of H of order
Let K, K,, -+, K, be the subgroups of K of order p. Note that K is
elementary abelian. Now in I(H)

20=(Z€K})—K

and hence p annihilates G’. Thus G’ has period p.
Now let J be a subgroup of H of order p with J = <{x)>. Then
as is well known

J=1+4+x+ -+ + ' = (1 — 2)*" mod pI(H) .
By Lemma 3.8 (ii),
.YpG — A(l—:c)l’ — A(l—x)u—z)p'—l — (G')(I—-x)l""l .

Since G’ has period p we can take (1 — x)*~* modulo pI(H) in the above,

Therefore "G = (G')7 = {1>and G has class < p. This completes the
proof.

ExampLE 3.11. If ¢ = 1, the above result is false. For example,
let A =<a)y x<a,yx +++ x{a,> where each «; has order p*. Let
J =<x> be cyclic of order p and let J act on A by af = «;,, for
1=1,2,«-,p—1and af =a,. If G=A x,J, then G has a.c.p.
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Now a,a;' € G’ and hence if a > 1 we see that G’ is not elementary
abelian. Moreover as we see below G has class a(p — 1) + 1. First
in I(J)

A—-2)yt—-—J=0 mod pI(J)

and hence

~

[A -zt —=J]*=0 mod p°I(J) .
Since (1 — z)J = J(1 — ) = 0 and (J)* = pJ, the above yields
1 — 2)°- = (—p)*J  mod p°I(J).

Now A has period p* and hence (1 — 2)**= and (—p)*~J act the same
way on A. Since J(1 — z) = 0 we see from the nature of the action

of x on A that
DG = AUt o AenetT o I
and FEP-DHG = A-PeTV s 1>,

Hence G has class a(p — 1) +1 and this can be arbitrarily large.

4. Special class 3 groups. Let G be a p-group with a.c.p’.
We say that G is special if it does not have a normal abelian subgroup
of index p°. By Theorem 3.7 if G is special, then G has class 2 or 3.
As is expected the structure of the special class 8 groups is quite
restrictive. We study these latter groups in this section.

THEOREM 4.1. Let G be a special class 3 group with a.c.m. Then

we have the following.

(i) [G:7G] = m and ¥*G = G' N B(G).

(il) [G:C(G")] = m* and &(G') s a normal self-centralizing sub-
group.

(iii) [G: 3(@)] = m.

(iv) If H=G/3(@), then H = 3(H) is elementary abelian of
order m and H has two normal abelian subgroups of index m whose
intersection is equal to H'.

We start with a lemma.

LeEMMA 4.2. Let G have a.c.m and class 3.
(i) If G is cyclic or if [G :7*G] > m, then G has an abelian

subgroup A of index m.
(il) [:GNBG@]=m and [G: B(G)] = m’.

Proof. By induction on |G|. Suppose that ¥’G is cyclic. Then
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there exists an irreducible character X of G with "G Nker X = (1.
By Lemma 3.4, G/ker X has an abelian subgroup A/ker X of index m
with A 2 G’. Then (4,G) S *GNkerX =<{1> so A< €(G'). Since
G has class larger than 2, €(@”) is abelian by Lemma 3.6 (iii) and hence
A is abelian,

Now suppose [G':7*G] > m. If ¥*G is cyclic, then the result
follows by the above. Thus we can assume that ¥’G contains distinct

subgrours J, and J, of order p. Since VG S 3(G), J, and J, are
normal in G. By induction G/J; has an abelian subgroup A;/J; of index
m. Set U=JJ,ESvG. If A + A, then A /U and A,/U are two
distinct abelian subgroups of G/U of index m. Hence | (G/U) | £ m by
Lemma 3.6 (ii). Since U Z~*G this yields [G' : ¥*G] < m, a contradiction.
Thus A, = A, = A and hence A’ = J, N J, = {1)>. Therefore A is abelian
and (i) follows.

We consider (ii). The result is obvious if m = p and hence we
assume m = p° with ¢ > 1. By Theorem 8.10 G’ is elementary abelian.
If G’ N B(G) is not cyclic, there exists subgroup J of G’ N 3(G) with
J 2 v*G. Hence G = G/J has class 3. By induction [G':G' N 8(G)] = m.
Now G’ = ’/J and G’ N 3(G) 2 (G’ N B(G))/J. Thus the result follows
in this case. Now let G'N 3(G) be cyclic. Since G’ is elementary
abelian |G' N B(G)] = p. Now G has class > 2 and thus by Lemma
3.3(il), |G’| = pm. Hence [G': G N B(G)] = m.

Let W/v*G be the center of G/7*G. Since G/7*G has a.c.m we see
that [G: W] = m’. Clearly 3(G) & W and G’ = W. Hence

[W:B3@]=z[WnG:3G)NnGEF1=[G:3G)NGFl=m.
Therefore [G : 3(G)] =[G : W][W : 8(G)] = m® and the lemma is proved.

Proof of Theorem 4.1. We assume throughout that G is a special
class 3 group with a.c.m. Since ¥G S G’ N 3(G) we have [G': V*G] = m
by Lemma 4.2 (ii). Moreover since G is special [G': ¥*G] < m by Lemma
4.2 (i). Hence [G':¥*G] = m and (i) follows.

Let K, K, -+, K, be all the proper subgroups of ¥*G with v*G/K;
cyclic. Clearly N K; = <1). By the preceeding lemma, G/K; has a
normal abelian group B;/K; of index m. By Lemma 3.3 (iii) B; 2 G’. Since
G/K; has class 3, Lemma 3.6 (iii) yields B,/K; = €(G’/K;). Thus for all
i, B; 2 A =€(G"). Set B= (1B, so that B2 A. Since (B, G) < K,
we have (B,G) =S N K; = 1>. Thus B = A.

Choose L A G with G/L a Case P quotient. Let Z/L be the center
of G/L so that [G:Z]= m’. Clearly L 27*G. Since B;Z/L is an
abelian subgroup of G/L of index < m we must have B; 2 Z by Lemma
3.2 (iii). Thus B2 Z and [G: A] < m’. Now if B = B,, then clearly
B is an abelian subgroup of G of index m and this does not occur.
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Thus say B, # B,. Then G/v*G has two distinct abelian subgroups
B,/¥*G and B,/v*G of index m. Since |G'/Y*G|=m we see that
[G: B, N B,] = m* by Lemma 3.6 (ii). Hence [G: A] = m’. This proves
(ii) and the part of (iv) concerning the existence of two abelian sub-
groups of H of index m.

We prove (iii) by induction on |G|. Say |7*G| = p". By the pre-
ceeding lemma +*G is not cyclic and hence r = 2. Let J be a subgroup
of ¥*G of order p. Suppose that G/J has an abelian subgroup B/J of
index m. Then B is nonabelian so B’ = J and B has class 2. Clearly
B 2 €(G’) and €(F) is a maximal normal abelian subgroup of B. Since
[B:€(G")] = m, it follows that B has a.c.m and [B:3(B)] = m* by
Lemma 2.3 of [2]. Let weB with 1. Then there exists an
irreducible character X of B with z, y ¢ ker X where J = {y>. Hence
X is nonlinear and deg X = m. This says that B is character regular.
Since ¢(B) = ¢(G) = ¢ where m = p°, it follows by Proposition 1.3 (i)
that B3(B) & B(G). Since clearly 3(G) € €(G') = B we have 3(G) =
B(B) and thus [G : 3(G)] =[G : B][B: 3(G)] =m* Thus the result follows
in this case. Note that if » = 2 the ¥*G/J) is cyclic so the result
follows here.

We assume that » =3 and that for all subgroups J of +*G of
order p the quotient G/J is a special class 3 group. Since ¥*G is not
cyclic, let J, and J, be two such subgroups of order p and set U = J,J,.
Thus |U| = p* < p” = |¥*G | and U < ¥*G. By induction G/J; has center
Z/J; of index m® If Z, + Z, then we see that (Z,Z,)/U is central in
G/U and has index < m®. Since U < ¥*G, G/U has class 3 and a.c.m
and this violates Lemma 4.2 (ii). Thus Z, = Z, = Z. Since (Z;, G) & J;
it follows that (Z, G) S J, N J, = <1 and hence Z = 3(G). This yields
(iii).

Finally we know that |H| = m} [H: 3(H)] = m? 3(H) 2 H' and
|H"| =z m. The latter follows since [G':G' N B(G)] = m. Hence we
must have equality throughout. Now H has a.c.m with m = p°. If
e >1, then H' is elementary abelian by Theorem 3.10. If e¢=1,
then |H'’| = p and the result is clear here. Thus the theorem is
proved.

We used simple facts about GF(p°) to obtain Example 3.9. In
order to construct special class 8 groups we will need the following
interesting fact about these fields. The authors would like to thank
Walter Feit for his help with the proof of this result.

ProprosITION 4.3. Let E be a finite field of characteristic p > 2
and let F' be a subfield. Then there exists a basis of E over F' with
respect to which every matrix of the regular representation of E over
F is symmetric.
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Proof. Let w = {w,, w,, ---, w,} be a basis of E over F and let
R, be the matrix form of the regular representation with respect to
this basis. Let ¢ € E be a primitive element so that £ = F(6). Then
the characteristic polynomial of R,(6) is irreducible over F. Note that
all matrices below are over F.

By Theorem 1 of [8] there exists a matrix S with S'R,(6)S =
R,(0)'. Here '’ denotes the transpose operation. As is well known the
norm map from E to F is onto and hence there exists ac E with
det S = Nyp(@) =det R (). If T =R, (a™")S, then T'R,0)T =
R,() since R,(a) and R, () commute. Moreover det T = 1. By Theorem
2 of [8], T is symmetric.

Now T is symmetric and det T = 1, a square in F. Since F isa
finite field of characteristic p > 2, there exists a matrix U with T =
UU’'. Let A= U"R,(0)U. Then

A =UR,0)U)'=UTR,0O)T(U")™
=U"R,(0)U=A.

Hence if we let U be a change of basis matrix, U: w — v, then A =
R,(0) is symmetric. Since E = F(6), the result follows.

THEOREM 4.4. Special class 3 groups with a.c.p’ exist for all
p>2 and e. No such groups exist for p = 2.

Proof. Letp =2. If ¢ > 1, then by Theorem 3.10 groups G with
a.c.p® have class < p = 2. Hence no special class 3 groups exist. If
e =1 and G is a special class 3 group, then [G : 8(G)] = 8 by Theorem
4.1. Therefore H = G/3(G) is nonabelian of order 8. Such groups all
have cyclic subgroups of order 4. Thus if A < G with A/8(G) cyclic
of order 4, then A is an abelian subgroup of G of index 2 and hence
G is not special, a contradiction.

Now let » > 2 and let e be arbitrary. By the previous proposi-
tion there exists a basis w,, ---, w, of GF(p°) over GF(p) such that for
all Be GF(p%), R,(B) is symmetric. Let o; = [@] be the matrix ¢, =
R, (w;). These ¢ matrices of size e X ¢ over GF(p) have the following
properties.

(1) af =ad.

(2) af = a¥ and af = ay.

(3) If 3. f.0, is singular for f; e GF(p), then we must have f, =
fo=-r=f,=0.

Condition (1) follows since R, (w;) is symmetric and (3) follows since
W, W, -+, W, are a basis of field GF(p°) over GF(p). Finally o,(w,) =
R, (w;)-w; = w,w; and hence o,(w;) = o;(w;). This yields «;? = a?.
The remaining equality in (2) follows from this and symmetry.

Let
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A= gp<w19 Lay = >y Loy Y1y Yzy ** 5 Yo 71/,?)[
w=yr=ur =0 =1,
# and v are central
(@ %) = (Y5, ;) = 1
¥, ©;) = u’i)
where d,; =0 for ¢+ j and §,;, =1 for ¢ =j. Clearly |A| = m’p’
where m = p° and A’ = {u)y. Let 7; act on A by
U= U V=
3=yt
. o)
w;"' = x](H y,”)’w,-j
where

W5 = (u“‘v)wmg{) .

Here division in the exponent is performed modulo p.
We show first that z; defines an automorphism of 4. To do this
it suffices to show the following.

(@) = W5y = (w7 = (79 = 1
u% and v% are central in A4
(i yi) =1
(W5, a) = (u)se = ubs
(x5, x3i) = 1.
Now A has class 2 and p > 2 so A is regular. Since it is generated
by elements of order p, it has period p. Hence the first equation

holds. Since A has class 2, the next three equations are obvious. We
consider the last one now. We have

. ) o2
i = wi(Hr Y.’ >wu Tt = xk(Hr Y )wik
SO

. ) (1) LD ROBNG)
(x5, «ff) = (0, Y;* )5, @) = w7 =

by (1). Thus 7; is an automorphism of A.

We show now that as an automorphism z; has order p. Clearly
7, += 1. Now 7; fixes u and v and y;' = y,v"%, Thus 7 fixes y,.
Finally
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" () () g (m—1)
x;t — xa(]:[ yj]r)nvaun n—1 /zw;(bj .
So for p > 2, 77 fixes x; and hence 7; has order p.
We know that 7, v;€ Aut A. We show that 7,7; = 7,7;. Clearly
U = U = YT, p = YT = it and YT = y, 0% %k = ¢t Finally

(%)
wiivi = [@u (11 y:kr YW ]
29 (4) @i
=z, (IT . )w;(11 YT w0
and
wii = [2 (1] v, )w ;i ]
. B ol
= (Il ¥ w11 . Hwiv ™ .

These two expressions are equal since aff = aff) by (2).

Let E = gp<z, 2, +++,2 |22 = (2;,2;)=1> and set G=A x.E,
the semidirect product of A by E, where 7:E— Aut A is the map
induced by z; — 7;. We note some elementary properties of G. Clearly
|G| =m*p*, G’ =Yy, Yoy * * 1Y ., U, v and V*G = {u, v) so that G has class 3.
We show that €(G’') = G’ so that [G : €(G')] = m*. Since G’ is abelian
we have €(G') 2 G’. On the other hand if

h = o(TT 22T 249 € (&)

with g € G’, then for all j,1 = (y;, k) = u*v’ and hence a; = b, = 0.
Thus €(G') = G'.

Since [G: A] = m, we see easily by (3) and Lemma 3.8 (i) that
G/Y*G has a.c.m. Set B = <Yy, Ysy ***y Yoy 1y %oy ***, 2, U, V). We see
that 3(4) = 8(B) = <{u, v), A’ = {u) and B’ = {v). Since [4: 3(4)] =
[B: 8(B)] = m* we conclude by Lemma 2.3 of [2] that both A and B
have a.c.m. Let X be an irreducible character of G with v*G & ker X.
Then either uw ¢ ker X or v¢ ker X or both. If say w¢ker X, then X | A
is faithful on A’ and hence deg ¥ = m. Similarly if v¢ker X. Thus
in either case deg X = m.

For each integer ¢ set E, = {z,af, 2%, - -+, z.2) and J, = {vu*) so
that E, = E. We show that £ =& J,. Now

(z:at, 2;@8) = o7t (2o
= w72 2 (w11 y:g))wﬁ)t]x?
: &S 2D e—1y)2 ¢
= a7 [zol(IL v, )'u ™ w5;]%
= witzi a7tz abate{ )

where
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t (J Ve(t—1)/2 t
{ } - [(H yr" * wst]zj

e au)m_lm ,

= ([ v" s Wi
Hence
(2.}, 2505) = wi'(a7)wiai-{ }

= a1 6 ywos] ot )

= wrwi (I 6w~ et )

— Wi (I SR
Since af) = a{? by (2) and since all terms in the last line above
commute, it follows that the y, terms drop out. Thus

(J) (z) () _,(3));2
(2%, 2;@%) = whwiiu* Py (5= 5)r .

Now a{f = a}? and i = aif’ by (2) and so

(e, 2%) = [wiwguesy (o

o)
where t/2 is viewed as division in GF(p). Finally using w} =(u="v) *
we obtain

G)_ o)
(zaat, zgat) = (out) P e g,

Thus E; < J,.

Set B, =<G', E;>. Then [G:B,]=m and B;=J,. The latter
follows since G’ is abelian, E/ = J, and (y,, 2;25) = (vu')’i. We show
now that G is a special class 3 group with a.c.m. Let y be an irre-
ducible nonlinear character of G. If ker X 2 7*G, then X is a character
of G/Y*G and hence has degree m. Assume kery 2 v*G. As we
showed above deg X = m. Let J = ker X N v*G so that G is a character
of G/J. If J = <u), then G/J has an abelian subgroup A/J of index
m and if J = {wvu®) = J, then G/J has an abelian subgroup B,/J of
index m. Thus degX < m and hence deg X = m. This shows that G
has a.c.m. Since G has class 3 and [G: €(G’)] = m? we see that G is
a special class 3 group. This completes the proof of the theorem.

5. Special class 2 groups. In this section we study special class
2 groups with a.c.m (m = p°). As is to be expected, the structure of
these groups is less restrictive than in the class 3 case. Let G have
a.c.p’. We say G is imprimitive if it has a normal subgroup H of index
p with a.c.p**. Otherwise G is primitive. We first note the following,
Let G have a.c.p’and let HA G with[G: H] = p. If H has a.c.p*,
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then certainly e¢(H) = ¢(G) — 1. Suppose now that e(H) = ¢(G) — 1.
If ¢ is a nonlinear irreducible character of H and if X is a constituent
of @*, then deg X = p° so deg » = p~*. Hence H has a.c.p*'. Thus
the concepts of imprimitivity as an r.x.e group and as an a.c.p® group
are entirely equivalent. We now relate this idea to a certain chara-
cteristic subgroup of G.

ProroSITION 5.1. Let G have a.c.m and class 2. Set
S=28G)=<9eG|(g,G) <G).

Then we have the following.
(i) If [G:S(@®! < m, then G is a special class 2 group.
(ii) G is primitive if and only if G = S(G).

Proof. (i) Suppose that G has a normal abelian subgroup A of
index m. If xe G — A, then by Lemma 3.3 (iii), (x, A) = G’ and hence
(x, ) = G’. Thus S(G) € A and [G: S(G)] = m, a contradiction.

(ii) We show that G > S(G) if and only if G is imprimitive.
Suppose first that G > S(G). Choose subgroup H with G > H 2 S(G)
and [G: H] = p. Let ¢ be a nonlinear irreducible character of H and
let X Dbe constituent of p*. If 2 G — H, then (2, G) = G £ ker X and
thus = is not in the center of the representation associated with X.
Since x € By(G), this yields X(xz) = 0. Thus X vanishes off H and so
X = @*. This yields pdegp = deg o* = deg X = p° and thus H has
a.c.p*! and G is imprimitive.

Now let G be imprimitive so that G has a normal subgroup H of
index p with a.c.p*'. We show that S(G) & H. If not, there exists
2eG — H with W = (z, G) < G’. Note that x is central modulo W
and we have G/W = (H/W)3(G/W). Since W < G’ we see that G/W
has a.c.p® and that H/W is either abelian or has a.c.p®. Let X be a
nonlinear irreducible character of G/W. The above implies that X = ¢*
for some irreducible character ¢ of H/W. Thus

H/W = T(p) 2 (H/W)B(G/W) = G/W ,
a contradiction. Therefore G > H 2 S(G).

We now consider an example.

ExampPLE 5.2. Let Z be an elementary abelian group of order
p*tt with s > 0. Set k = (p*** — 1)/(p — 1) and suppose that E,, E,, - - -,
E, are k nonabelian groups of order »°. Let Z; = {z;> be the center
of E;., We define a homomorphism

Ti=2y X Zy X ooe X Lyy— 7
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by sending each z; onto a generator of the k distinet subgroups of Z
of order p. Let N be the kernel of z. Then N is central and hence
normal in = FE, X E, x --- X E,. Set G = E/N.

It is clear that Z = 3(G) = G’. Let X be a nonlinear irreducible
character of G so that X|Z = (deg X\)» with X\ 5= 1. By way of the
homomorphism E— G, X can be viewed as a character of E and as
such X = 6,0, --- 0, where 6; is a character of E, and hence has degree
1 or p. Moreover degd;, = p if and only if Z,N/N & kerx. Thus
there are precisely (p*** — p°)/(p — 1) = p* such 6; with degd, = p and
hence deg X = p**. Thus G has a.c.p”.

Now since | Z| > p we have clearly E;N/N & S(G) for all . Thus
S(G) = G and by Proposition 5.1, G is primitive and therefore special.
Note finally that if ¢ = p°, then G has a.c.p® and [G: B(G)] = p*
with £ > e.

The above example shows that special class 2 groups with arbi-
trarily large commutator subgroups and central quotients do in fact
exist. However the above construction required that we let m get
arbitrarily large. We will show in Theorem 5.5 that this is typical of
the general situation. We first obtain a generalization of Theorem B

of [2].

THEOREM 5.3. Let G be a p-group with e(G) = e. Then either G
has a normal abelian subgroup of index p° or G has a subgroup H
of index " with [H: 3(H)] = pbd.

Proof. By Theorom B of [2], there exists subgroups N and A of
G with [G: N] =9 A= 3(N) and [N:A] £ p*®, If €(A) > N,
then we can choose subgroup H with €(4) 2 H > N and [H: N] = p.
With this H the result follows. So assume €(4) = N.

Suppose now that N is not normal in G. Let N*% N. If B =
AN A7, then €(B) 2 (N, N°> > N. Since [N:B] < p*++c the re-
sult follows also in this case.

Thus we can assume that N A G and hence that AAG. If N =
A, then G has a normal abelian subgroup of index p°. Hence we can
assume that N is nonabelian. Since N is a p-group and A = 3(N)
we can choose subgroup J with JEN'NA and |J| =p. Set n=
min {{A: € (x)] |z ¢ N}. We compute as in Lemma 4.4 of [2].

Clearly

rA) = [N+ (G| - [N]/n.

Now let v be a character of A. If )\ has p° conjugates, then since
T(A) 2 N we have T(\) = N. Thus if X is a constituent of \*, then
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there exists character » of N with X = »* and \ a constituent of
7| A. Since degX < p°, we see that degy = 1. Hence A = 7| 4 and
kern2N'Nn42=2J. Thus we see that

s(A) = [A:J]/p* + (A = [A:JT]D/p".
By Lemma 4.3 of [2], 7(A) = [G: A]s(4). Thus
P+ Q=0 )nzp 4+ 1 - pT)p.
Hence
P >p - D/ —-1)=zn.

Choose € G — N with [A: € (x)] = n and set K = (N, 2> > N.
Then 3(K) = € (x) so

[N: 8] = [N: AJ[4: € (@)] = p*esop'st < proesot.

If H is chosen with K2 H > N and [H:N] = p, then the result
follows.

We now return to our study of class 2 p-groups with a.c.m.

LEMMA 5.4, Let G have a.c.om and class 2. Then G' and G/3(G)
are both elementary abelian.,

Proof. We show that G’ is elementary abelian by induction on
|G|. Of course G’ is abelian since G' = 3(G). If B(G) is not cyelie,
let J, and J, be two distinct subgroups of 3(G) order p. By induction
G'J;/J; has period p and hence so does G'. Now let 3(G) be cyeclic.
By Lemma 3.4, G has a normal abelian subgroup A with G/A elementary
abelian of order m. If xe G — A, then G’ = (¢, A) by Lemma 3.3 (iii).
Let ye A. Since 2? ¢ 4 and G has class 2, we have (z, y)* = (2%, y) =1
and thus G’ is elementary abelian.

We show now that G/3(G) is elementary abelian. The quotient is
of course abelian. Let x, y € G. Since G has class 2 and G’ has period
p, we have (27, y) = (x, ¥)” = 1. Thus 2” € 3(G) and G/3(G) has period
p. This completes the proof.

We will use the following notation throughout this section. Let
W be a subgroup of G'. Set
Ly = {geG](g,G)__C._ W}

so that Z,/W = B(G/W). We let T denote a hyperplane in G’ and J
denote a line (that is, [G': T] = pand |J| = p). We have [G: Z,] = m*
by Lemma 2.3 of [2] and S(G) = {Z,|all T.
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THEOREM 5.5. Let G have a.c.p® and class 2. Suppose that |G'| =
p* and [G: 3(G)] = »°. Then

(i) z=Ze(s+1) and s < 32(z — 1)

(ii) of G s special, then z < 18¢%(e + 3)* and s < 18¢*(e + 3)°.

Proof. (i) Let T, and T, be two hyperplanes in G'. We show
first that [Z; :Z; N Z;]<p°. Let X, be a nonlinear irreducible
character of G/T; for i = 1,2. Since X; vanishes off Z,, we see that
XX, vanishes off N = Z, N Z;,. Also degX; = p°so that XX, | N = p*\
where )\ is a linear character of N. Now let # be an irreducible
constituent of XX, so that 6| N = (deg 6)». Then

1 <[4, 0] = (L/[G : ND[XX | N, 6| Ny = p*(deg 6)/[G : N] .

Since deg ¢ < p° we have [G: N] < p* and hence [Z, :Z; N Z;] < p.

Let T, T, ---, T, be hyperplanes. We show that [G:N!Z;,] =
pe+VY by induction on u. For 4 = 1,2 we have result by the above
so let w=3. Set U= {"Z; so that by induction [G:U] < p™.
Hence since U & Z;, we have

G:UnZ =G:UNU:UNZ = G:UNZ,: Z, N Z2 ]
< ppt = peety

and this follows.
Since |G'| = p°, we can find s hyperplanes T, T, ---, T, with
N T; = 1). Clearly N Z;, = 3(G). By the above

p* =[G:B(@)] =[G: N Z;,] < pe

and hence z < ¢(s + 1). Now let 2, x,, ---, 2,€ G generate the quo-
tient G/3(G). We see easily that the commutators (x;, ;) with ¢+ < j
generate G’. Since G’ is abelian and has period p, this yields s < 4z(z — 1)
and (i) follows.

(ii) We apply Theorem 5.3. Since G is special we see that G has
a subgroup H of index p°! with [H: 3(H)] £ p*“*». By Lemma
3.3(il), H' =G'. If [H:3(H)]=9»" and |H'|=|G'| = p°, then as
above we have

s = $t(t — 1) < 3t* < 18e(e + 3)%.
Finally by (i) we obtain
z=e(s + 1) < 18e%e + 3)°

and the theorem is proved.

The above result is of course qualitative in nature. The bounds
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are no where near best possible. If G has an abelian subgroup of
index m, the following example shows that |G’| and [G : 3(G)] can be
arbitrarily large for fixed m.

ExXAMPLE 5.6, Let group G have a.c.m and a normal abelian
subgroup A of index m. Given integer k, set B = A, 4 A, + --- | A,,
the direct sum of % copies of A. Set H = B x,(G/A) where G/A acts
on B in the natural way. If xeG/A with  # 1, then (z, A) = G'.
Hence clearly (z, B) = H’. By Lemma 3.8 (i) we see that H has a.c.m.
Moreover |H'| = |G'|¥ and [B: 8(H)] = [A: 3(G)]".

If we now take G to be an extra-special Case P group with
[G: 3(G)] = m’, then G has a.c.m and |G'| = p. Also G is nonspecial
so the above construction yields nonspecial groups H with |H’| and
[H: B(H)] arbitrarily large.

LEMMA 5.7. Let G and H have class 2 with |G'|=| H'|. Suppose
that G has a.c.m and H has a.c.n. Let K be the product of G and
H with G and H' identified. Then K has class 2 and a.c.mn. Also
with G and H naturally embedded in K we have 3(K) = B(G)3(H)
and S(K) 2 S(G)S(H).

Proof. By Lemma 5.4, G' = H' and so K clearly exists. Let X
be a nonlinear irreducible character of K. By way of the map E =
G X H— K we can view X as a character of E. As such X = 6o where
0 is a character of G and @ is one of H. In K, ker X 2 K’ and thus
in B, kerX 2 G and ker y 2 H’. Hence both ¢ and @ are nonlinear.
Thus deg § = m,deg » = » and deg X = mn. Therefore K has a.c.mn.
The remaining results are obvious.

The following proposition considers minimal special groups.

ProPOSITION 5.8. Let G be a primitive group with a.c.p® and
class 2. Suppose that for all J S G’ with |J| = » the quotient G/J
has an abelian subgroup of index p°. Then either |G'| = p* and p|e
or |G| = p°. Moreover for all p, e (with p|e in the first case) such
groups exist.

Proof. We show first that |G’'| =< p*. Suppose by way of contra-
diction that |G'| = p*. Let T, and T, be two not necessarily distinct
hyperplanes in G’. Since |G'| = p* we have |T,N T,| = p*. Let J,
and J, be two distinct subgroups of T, N T, of order p. By assump-
tion G/J; has an abelian subgroup A4,/J; of index m = p°*. This implies
that S(G/J)) & A/J; and so Z;;, = Z,,/J; and Zp,,;, = Z;,/J; are both
contained in A4;/J;. This yields (Z;, Z;,) S J,NJ. =<1). Now G is
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primitive so G = S(G) = {Z;>. Since (Z;, Z;,) = {1) for all T, and T,
we see that G is abelian, a contradiction. Thus |G| < p°.

By Lemma 3.4, we must have |G’'| = p* or p°. We consider the
case |G'| = p* now. Let T, T, ---, T, be the subgroups of G’ of
order p and set Z; = Z;,. Since G is primitive, G = S(G) = Z,Z, - -- Z,.
Consider

W=2N(4Zy+++ Z; Ly, *++ Zp) .

Note that for ¢ # 4,(Z;, Z;) S T; N T; = 1> so Z; and Z; commute
elementwise. Since W S Z;, we see that C(W)R Z,Z, +++ Z; 1 Z;1y +++
Z, and since W& Z,Z, -+ Z;_,Z;., -+ Z, we see that C(W) =2 Z,.
Thus €(W) = G. Since clearly W 2 3(G) we have W = 3(G). This
says that

G/3(®) = Iz Z,/3(G) .

Now [G:Z;] = p* so that | Z;| = |Z;|. If [Z;:3(G)] = p/ then the
above direct product yields

P’ = [G: B(R)] = [G: Z][Z,: B(Q)] = >

and hence 2¢ = pf. If p # 2, then clearly p|e. If p = 2, then f =
e=1, Clearly 3(Z) = 3(G) and Z] = T,. Hence by Lemma 2.3 of
[2],[Z,: B(Z))] = »* is a square. Thus 2|f,f=e¢ and the result
follows.

We show now that all such groups exist. Consider first |G’ | = p*
and ¢/p = f, Example 5.2 with s =1 yields a group H with a.c.p?,
S(H) = H and | H'| = p*. Let G be the product of f copies of H with
their commutator subgroups indentified. By Lemma 5.7 and induction,
G has a.c.p’” = a.c.p’°, S(G) =Gand |G'|=p’. If JES G with |J|=p,
then G/J has a cyclic commutator subgroup and hence an abelian sub-
group of index p°. Thus G is the required example.

Now we consider |G'| = »°. Let F be the group of Example 3.7
of [2]. Then |F'| =9 |F| = p* and S(F) = F. Also it is easy to
see that if J is a subgroup of F”’ of order p, then F/J has an abelian
subgroup of index p. Let G be the product of e¢ copies of F' with
their commutator subgroups identified. Since F' has a.c.p, Lemma 5.7
and induction show that G has a.c.p®, |G'| = »* and S(G) = G. LetJ
be a subgroup of G’ of order ». Then each factor in G/J has an
abelian subgroup of index » so G/J has an abelian subgroup of index
p°. This completes the proof.

‘We now apply the above results to improve the bounds in Theorem
5.5 in case p > e.
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THEOREM 5.9. Let G be a spectal class 2 group with a.c.p®. Sup-
pose that |G'| = p* and [G:3(@)] =p°. If p>e, then z =< 4¢* and
s < 4e — 1.

Proof. Let T be a hyperplane in G'. We show first that p > e
implies that Z, is abelian. This of course a consequence of Theorem
1.5 and Proposition 1.7. However we can give an alternate inductive
proof as follows. Suppose first that | T| = »*. Then we can choose
distinct subgroups J, and J, of T of order p. By induction Z,, =
Z.|J; is abelian and hence Z; = J, N J, =<1)>. Thus we need only
consider |T|=1,p. If |T| =1, then certainly Z, = 3(G) is abelian.
Now let |T| = p so that |G’| = p°. Note that groups G with a.c.p’
and |G’| = p* have the property that if J is any subgroup of G’ of
order p, then G/J is nonspecial. Hence since p > e, Proposition 5.8
and induction easily imply that G is nonspecial. Therefore Z, is
contained in an abelian subgroup of G of index p° and thus Z, is abelian.

We show now that s < 4e — 1. Suppose first that G is imprimi-
tive. Choose H A G with [G: H] = p and such that H has a.c.p*".
Since G is special, H is special and hence ¢ > 1. By Lemma 3.3 (iii),
|H'| =|G"|. By induction |H'| < p**~* and so the result follows
here. Now let G be primitive so that G = S(G) = <Z,). We assume
that |G’| = p* and derive a contradiction. Let T, and T, be two not
necessarily distinct hyperplanes and let x€ Z; and ye Z,. We show
that  and y commute. Since each Z, is abelian of index p* we see
that |(z,G)| < p* and |(y,®)| = p*. If (2, G)N(y,G) =<1, then
certainly (x,y) = 1. Thus we can suppose that (x, G) N (y, G) > <.
This yields | (2, G)(y, G)| < p**~* < |G’| and thus we can choose hyper-
plane T with T 2 (z, G)(y, G). Clearly z, ye Z, and so ¢ and y com-
mute. Since G = {Z,), the above shows that G is abelian, a contradic-
tion. Hence |G'| < p*. Finally by Theorem 5.5 (1) z < e(s + 1) < 4¢?
and the result follows.

6. Additional results. We generalize our r.x.1 results in another
direction now.

THEOREM 6.1. Let G be a group with the property that every
nonlinear irreducible character has prime degree. Suppose further
that at least two distinct primes occur. Then there exists primes
p # q such that G has one of the following two normal series.

(1) G>Q> B(G)

= =
with G/B(G) and Q@ both monabelian.
(ii) G>Q@>A=3(G) xR
e L

P q
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with both G/A and Q nonabelian. Here R is elementary abelian of
order r™ for some prime r and Q/A acts irreducibly on it. Also
(r™ = D/(r™? — 1) = q.

Conversely vf group G has either of the above structures and if
X is an irreducible character of G, then degX =1,p or q and all
three degrees occur.

We start with two lemmas.

LEMMA 6.2. Let G be a group with the property that every
nonlinear irreducible character has prime degree. Then every normal
subgroup and quotient group of G has this property.

Proof. The result is clear for quotient groups. Let N A G and
let # be a nonlinear irreducible character of N. If X is a constituent
of o*, then X|N =aX!®;, and hence deg X = at deg . Since deg X
is a prime, af = 1 and deg @ = deg X is a prime.

LEMMA 6.3. Let G satisfy the hypothesis of Lemma 6.2. Then
G 1s solvable.

Proof. Since this property is inherited by normal subgroups and
quotient groups, it suffices to show that G cannot be a nonabelian
simple group. Thus suppose G is nonabelian and simple. Let X be a
nonlinear irreducible character of minimal degree p. Since G is simple,
% is faithful. If p = 2 and if e G is a nonidentity involution, then
since det X = 1 we see that the eigenvalues of « in this representation
are both —1. Hence 3(G) # <1), a contradiction. Thus p > 2.

Let 7 = {deg @ | @ is irreducible and deg® > p}. Then 7 is a set
of primes and ¢ € 7 implies that ¢ > p + 1. If 7 is empty, then G has
r.x.1 for prime p and is therefore solvable. Hence we have |7 | = 1.
Since X is faithful, a result of Blichfeldt ([7] Satz 196) shows that G
has an abelian &, subgroup H = {1).

Let xe H%: Then |Clxz| is prime to the degree of every irre-
ducible character @ of degree different from p. By Burnside’s Lemma
([7] Satz 168) since G is simple we have @(x) = 0. If p is the regular
character of G, then we have 0 = p(z) = > X;(1)X:(x) = 1 + pa where
« is an algebraic integer. This is impossible and the result follows.

We now proceed to prove the theorem.
Proof of Theorem 6.1. We know that G is solvable. Choose

A A G with G/A extra-special. We show first that A is abelian. If
not let @ be a nonlinear irreducible character of A and let X be a
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constituent of @*., Then X|A = a3 ®; and deg X = atdeg p. Since
deg X is a prime we must have ¢ = ¢ = 1. Let # be a nonlinear irre-
ducible character of G/A viewed as one of G. Then X6 is irreducible
(see Lemma 5.5 of [2]) and deg X6 = (deg X)(deg ) is not a prime, a
contradiction.

If G/A is a Case P quotient for prime p, then by Ito’s Theorem
the degrees of the irreducible characters of G are powers of p which
is not the case. Thus G/A is Case @. Let Q/A be the normal Sylow
g-subgroup of G/A. Since G/A has an irreducible character of degree
[G: Q] we see that G/Q is cyclic of prime order p =+ q.

Note that @ is nonabelian. Otherwise G would have r.x.1 for
prime p. Now G/A has trivial center so 3(G) S A S Q. We show
that 3(Q) = B(G). Clearly 3(G) = 3(@Q). If xe3(Q) — 3(G), then
there exists y € G with (x, y) # 1. Now Q is nonabelian and z = (z, y) # 1
so there exists a nonlinear irreducible character ¢ of @ with z¢ ker .
As above, there exists an irreducible character X of G with X |G = .
Since x is in the center of the representation associated with ¢ and
since X | Q@ = @ we see that (x, y) cker X N Q = ker », a contradiction.

Hence 3(G) = 3(Q).

Case 1. |Q/A|=¢*. Let neA. Then clearly [G: T(\)]is1lora
prime. If |Q/A| = ¢° then the only subgroup of G/A having prime
index is @/A. Hence T(\) 2 Q. This implies that €,;(A) 2 Q and hence
Q@ is nilpotent of class 2. Let @ be a nonlinear irreducible character
of @ and let W = W(p) denote the subgroup of @ mapping into the
center of the representation. Since clearly deg @ =g we have [Q: W] =
q* by Lemma 2.3 of [2] and also W 2 A. Now T(®) = G so W/ AA G/A.
Hence W(p) = A and [Q:A] = ¢*. We saw above that 4 & 3(Q).
This clearly implies that A = 3(Q) = 3(G) and G satisfies (i).

We assume now that |Q/A| = ¢q. Since Q is nonabelian, €,(4) 2 Q
and hence €,;(A) = A. Suppose A =M x N with MAG and NA G
and N, M + <{1>. We show that either M or N is central in G. Say
N & 3(G) = 8(Q). Choose ne N so that T\ NQ = A. If pel,
then T'( ) = T(\) N T(p) and [G: T(\p)] is a prime. Hence T(z) 2 T(\)
and so C,(M) 2 T(\). Since €4(M) A G, this implies that €,(M) = G
and M < 3(G). In particular we see that precisely one Sylow sub-
group of A is noncentral. Hence A/3(G) in an r-group for some
prime 7.

Case 2. q # r. Since Q/A is cyclic of prime order, we can write
A = 3(Q) X R where Q/A acts fixed point free on R by Lemma 1.2,
Also 3(Q) = B(G) and R A G since Q A G. Let » be a nonprincipal



506 I. M. ISAACS AND D. S. PASSMAN

linear character of R. Then T\ NQ = A and [G: T(\)] is a prime.
Hence | T(\)/A| = p. Thus G/A acts half transitively but non fixed
point free on R. By Theorem I of [3], R is elementary abelian and
G/A acts irreducibly on it. Let G = G/A4, @ = Q/A and let P = &,(G).
Let W be an nonidentity irreducible @-submodule of B. If ne W?,
then G = Q(T(\)/A) and thus W is a G-module. Hence Q acts irre-
ducibly on R.

We view R as a vector space over GF(r) of dimension m and we
find dim €(P). This dimension is clearly invariant under field exten-
sion so we can extend to the algebraic closure F' of GF(r). If Q = (),
then since B is an irreducible @-module, all eigenvalues of z are
distinet and not equal to 1. Let S be an irreducible G-submodule of
F® R. By Clifford’s theorem, this representation restricted to @
breaks up into either p distinct conjugates or all equivalent represen-
tations. If the latter occured then since all eigenvalues of « are dis-
tinct, dim S =1 and hence @ = @’ is in the kernel. This contradicts the
fact that x has no eigenvalue equal to 1. Thus the former case must
always occur. From this we see easily that p | m and dim €3(P) = m/p.

Now G contains ¢ conjugate subgroups P, ---, P, of order p.
We have Cp(P,) NCx(P;) =<1> for i#j and R = CxP). Since
| €4(P;)| = r™» we obtain from this disjoint union (r™ — 1) = g(r™/» —1).
Finally since B is elementary abelian and @ acts irreducibly, we see
that the same is true for R. Thus G satisfies (ii).

Case 3. q = r. Here @ is clearly nilpotent. Let R = &,(4). As
above we have

)

= Cx@Q) U L:J #(P)
Let W = €3(G) and set
[B:W]=r"[CpQ):W] =7 and [CxDP):W]=r".
Note since all the P, are conjugate this is well defined. Now
(B = W) = ©xQ — W) UU Cu(P) - W)
is a disjoint union so
" —1=7r"—=1+q(r*—1)

and since r = ¢, r™ — r* = ¢**' — ¢, Again since the union is disjoint,
we have a + b < m and 2b < m. Finally m > a since €,(4) = 4 and
hence the above equation yields m = b + 1,a = 1. Since 20 < m we
have m = 2 and b = 1,

Since m =2,a =1 we have [R:C4Q)] =¢. Thus |(Q,B)|=q
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and @’ is eyclic of order q. This shows that [Q: 3(Q)] = ¢¢ by Lemma
2.3 of [2]. Thus G satisfies (i). (Note, the difference between Cases
1 and 3 is that in the former G/Q acts irreducibly on Q/8(G) and in
the latter it does not.)

We show now that groups with structure (i) or (ii) have characters
of degree 1, p and ¢ only. Let G satisfy (i) and let X be an irreducible
character of G. By Ito’s Theorem degX|p¢* and also (deg X)* <
[G:B(G)] = pg*. Since G/3(G) is nonabelian we see easily that p < ¢ + 1.
This yields degX = 1, p or q. Since G/3(G) is nonabelian, it has a
character of degree p and since @ is nonabelian it has a character of
degree q. Thus G does not have a.c.p or a.c.g and hence G has
characters of degree 1, p and q.

Now let G satisfy (ii) and let X be an irreducible character of G.
By Ito’s theorem, deg X | pg and hence degX =1, p, ¢ or pq. We show
that the latter cannot occur. If degX = pg and X | A = a >}i\; then
at = pg and also a* < pq. Thus ¢ =1 and ¢ = pg. Let A =\, and
write A = e where ne 2@ and cc R. This implies that 4 = T(\) =
T(s). As in our Case 2 computation above, we see that J¢ C;(P;) is
a disjoint union and |€4(P;) | = »™'*. Hence |J?! Cn(P) | = q(r™?) + 1 =
rm, Thus for every ec R we have T(¢) > A, a contradiction and
deg X == pg. Now G/A being nonabelian has a character of degree p
and @ has a character of degree q. Thus G has characters of degree
1, »p and ¢q. This completes the proof of the theorem.

The following are essentially canonical examples of the above.

EXAMPLE 6.4. First let @ be a nonabelian group of order ¢®. If
q = 2, let Q be the quaternion group and if ¢ > 2, let @ have period
q. As is well known, the group of automorphisms of Q, fixing 3(Q),
is isomorphic to SP(2, q) = SL(2, q) and hence has order ¢(q — 1)(g + 1).
If we choose prime p with p|(¢ — 1)(¢ + 1) then we can find an
appropriate automorphism group P of @ of order p. Clearly G =@ x,P
satisfies (i).

Now suppose we are given primes p,q,r with p+#q and
(r™ — 1))(r™* — 1) = q. Let R be the additive group of GF(r™).
Since ¢ | (r™ — 1) we see that the multiplicative group of GF(r™) has
an element { of order ¢q. Since p|m we see that GF(r™) has a field
automorphism ¢ of order p. Let G be the set of automorphisms of
R given by x— (f-0i(x). We see easily that G is a group of order
pq with a normal subgroup of order q. It is nonabelian since the
fixed field of o has size "/* and clearly ¢ > »"/». Thus G = R x,G
satisfies (ii).
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An interesting corollary to Theorem 6.1 is the following.

COROLLARY 6.5. Let G have r.b.3, that is every irreducible
character of G has degree at most 3. Then either G has a normal
abelian subgroup of index < 3 or G/B3(R) is isomorphic to one of the
Jollowing groups.

(i) the elementary abelian group of order 8

(ii) the two groups of order 27 and period 3

(iii) the symmetric and alternating groups on 4 letters

(iv) the dihedral group of order 18 having an elementary
abelian Sylow 3-subgroup.

Proof. If G is abelian, the result is clear. If G has a.c.2 or a.c.3,
then by Theorem C of [2] either G has a normal abelian subgroup of
index <38 or G/8(G) has order 8 or 27. Since we can assume that
G/3(G) has no cyclic subgroup of index <3, we obtain (i) and (ii).

We assume now that G has characters of degree 2 and 3 and thus
Theorem 6.1 applies. If p = 3, ¢ = 2, then case (ii) of that theorem
cannot occur since G/A is nonabelian, Since @ is nonabelian in case
(i) we see that Q/3(G) is type (2, 2) and hence G/3(G) is isomorphic to
the alternating group A,.

Now let p = 2,9 =38. If G is case (i), then as above Q/3(G) is
type (3,3). Let z,ycQ generate Q/8(G). Then (z,y)e 3(G) and
(x, y) # 1. Since the action of G/Q on G/3(G) is nontrivial and pre-
serves this commutator, we see easily that the action must be dihedral
and we obtain (iv). If G is case (ii), then (™ — 1)/(r™* — 1) = 3 and
so r™* = 2, Thus G/8(G) is the extension of a (2,2) group by the
nonabelian group of order 6 acting faithfully. Since this group has
no normal 3-complement, Burnside’s transfer theorem implies that the
normalizer of a Sylow 38-subgroup contains an element of order 2.
Hence the extension is split and G/3(G) = S,, the symmetric group on
4 letters.

We close with a result which generalizes Theorem 3.5(i).

THEOREM 6.6. Let p° be a fized power of p with ¢ > 1 and let
G be a group with a nmonabelian Sylow p-subgroup. Suppose further
that ©f X is a monlinear irreducible character of G, then p°|deg X
and ptydegX. Then G is the direct product of &,(G) with an
abelian p'-group.

Proof. By induction on |G|. By Theorem 2.5 (i), G has a normal
p-complement K. Let P be a Sylow p-subgroup of G. If PAG,
then G = P x K and clearly K must be abelian. Suppose G has a



THE DEGREES OF GROUP CHARACTERS II 509

proper normal subgroup H with p}[G: H]. Let ¢ be a nonlinear
irreducible character of H and let Z be a constituent of ¢*. Then
XIH=aS!p, and degX = atdegp. Since at|[G:H] we have
|deg ¢ |, = |deg X |, = p°. By induction, P A H and since P is charac-
teristic in H, P A G and the result follows.

We assume now that K =+ <1> and that G has no proper normal
subgroups of p’ index and we obtain a contradiction. Let N be a non-
principal linear character of K which has a linear extension ¢ on G.
Then G/ker ¢ is abelian and not a p-group and thus some H as above
exists. Since this cannot happen, we see that if @ = 1 is any irre-
ducible character of K, then o* has no linear constituents. We show
now that T(¢) A G and that G/T(p) is elementary abelian of order p‘.

Note that G/K = P is nonabelian and has a.c.p°. Let X be a
constituent of @*. Then X|K =a >\, and so ¢|p°. This yields
[G/K: T(p)/K] < p° and T(p) A G by Lemma 3.3 (ili). Now let & be
an irreducible character of T(p) with &| K = b(8)-p. Clearly T(§) =
T() and hence &* is irreducible. Since &* is a constituent of ¢*, it
is nonlinear and thus tb(3) = p°. In particular, for all such choices of
&, b(é) is the same. Now by Theorem 6 of [1], there exists & with
b(&) = 1. Thus ¢ = p° and for all such & (&) =1. Let 8 be an
irreducible character of T(p)/K viewed as one of T(p). Then & = &8
is irreducible and &| K = B(1)-p. Therefore 5(1) =1 and T(p)/K is
abelian, As in the latter part of the proof of Lemma 3.4, we see
that G/T(p) is elementary abelian of order p°.

Now let xe K with « = 1 and suppose that [P: C.(x)] < p°. We
show that €.(x) A P and P/€,(z) is elementary abelian of order p-.
Let = be a nonprincipal linear character of <{z>. Clearly €,(x) fixes ¢
and hence €.(x) fixes 7 (induction to K). Since the degree of 7 is
prime to p we see that €.(z) fixes some irreducible constituent ¢ of
7. Clearly ¢ = 180 T(p) 2 K€,(x) and [G: T(p)] = p°. Hence T(p) =
K€ ,(x) and G/T(p) = P/€,(x) is elementary abelian of order p°.

Let K have k nonprincipal irreducible characters and hence £
nonidentity classes. We have shown that in the action of P on the
characters of K we have 1 + k/p° orbits. Hence by Brauer’s Lemma,
the same is true for the action of P on the classes of K. In particular
there must exist a class, say Cly, belonging to an orbit of size <p°
with y = 1. Let S be the subgroup of P fixing this class so that
[P:S] < p°. Since |Cly| is prime to p, there exists zeCly with
S & €x(x). Thus [P:Cx(x)] = p° and by the above P/€,(x) is elemen-
tary abelian of order p°. Clearly S = €,(x). Since S A P we see that
P/S acts on €4(S) = <1>. As above, if 2e€,(S) with z 1, then
€(z) = S. Hence P/S acts fixed point free on €.(S), a contradiction since
P/S is elementary abelian of order p° = p®. This completes the proof.
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