A NOTE ON CERTAIN BIORTHOGONAL POLYNOMIALS

L. Carlitz

Konhauser has introduced two polynomial sets $\left\{Y_{n}^{c}(x ; k)\right\}$, $\left\{Z_{n}^{c}(x ; k)\right\}$ that are biorthogonal with respect to the weight function $e^{-x} x^{c}$ over the interval $(0, \infty)$. An explicit expression was obtained for $Z_{n}^{c}(x ; k)$ but not for $Y_{n}^{c}(x ; k)$. An explicit polynomial expression for $Y_{n}^{c}(x ; k)$ is given in the present paper.

1. Konhauser [2] has discussed two sets of polynomials $Y_{n}^{c}(x ; k)$, $Z_{n}^{c}(x ; k), n=0,1, \cdots, k=1,2,3, \cdots, c>-1 ; Y_{n}^{c}(x ; k)$ is a polynomial in x while $Z_{n}^{c}(x ; k)$ is a polynomial in x^{k}. Moreover

$$
\int_{0}^{\infty} e^{-x} x^{c} Y_{n}^{c}(x ; k) x^{k i} d x= \begin{cases}0 & (0 \leqq i<n) \tag{1}\\ \neq 0 & (i=n)\end{cases}
$$

and

$$
\int_{0}^{\infty} e^{-x} x^{c} Z_{n}^{c}(x ; k) x^{i} d x= \begin{cases}0 & (0 \leqq i<n) \tag{2}\\ \neq 0 & (i=n)\end{cases}
$$

For $k=1$, conditions (1) and (2) reduce to the orthogonality conditions satisfied by the Laguerre polynomials $L_{n}^{c}(x)$.

It follows from (1) and (2) that

$$
\int_{0}^{\infty} e^{-x} x^{c} Y_{i}^{c}(x ; k) Z_{j}^{c}(x ; k) d x= \begin{cases}0 & (i \neq j) \tag{3}\\ \neq 0 & (i=j) .\end{cases}
$$

The polynomial sets $\left\{Y_{n}^{e}(x ; k)\right\},\left\{Z_{n}^{c}(x ; k)\right\}$ are accordingly said to be biorthogonal with respect to the weight function $e^{-x} x^{c}$ over the interval ($0, \infty$).

Konhauser showed that

$$
\begin{equation*}
Z_{n}^{c}(x ; k)=\frac{\Gamma(k n+c+1)}{n!} \sum_{j=0}^{n}(-1)^{j}\binom{n}{j} \frac{x^{k j}}{\Gamma(k j+c+1)} \tag{4}
\end{equation*}
$$

As for $Y_{n}^{c}(x ; k)$, he showed that

$$
\begin{align*}
Y_{n}^{c}(x ; k) & =\frac{k}{2 i} \int_{C} \frac{e^{-x t}(t+1)^{c+k n}}{\left[(t+1)^{k}-1\right]^{n+1}} d t \tag{5}\\
& =\frac{k}{n!} \frac{\partial^{n}}{\partial t^{n}}\left\{\frac{e^{-x t}(t+1)^{c+k n} t^{n+1}}{\left[(t+1)^{k+1}-1\right]^{n+1}}\right\}_{t=0}
\end{align*}
$$

In the integral in (5), C may be taken as a small circle about the origin in the t-plane.

In the present note we give a generating function and an explicit polynomial expression for the polynomial $Y_{n}^{c}(x ; k)$. Moreover we show that $Y_{n}^{c}(x ; k)$ can be identified with a polynomial studied recently by S. K. Chatterjea [1].
2. We apply the Lagrange expansion in the form [4, p. 125]

$$
\begin{equation*}
\frac{f(t)}{1-w \phi^{\prime}(t)}=\sum_{n=0}^{\infty} \frac{w^{n}}{n!}\left\{\frac{d^{n}}{d t^{n}}\left[f(t)(\phi(t))^{n}\right]\right\}_{t=0} \tag{6}
\end{equation*}
$$

where

$$
w=\frac{t}{\phi(t)}, \quad \phi(t)=a_{0}+a_{1} t+\cdots \quad\left(a_{0} \neq 0\right)
$$

Take

$$
f(t)=\frac{e^{-x t}(t+1)^{c} t}{(t+1)^{k}-1}, \quad \phi(t)=\frac{(t+1)^{k} t}{(t+1)^{k}-1}
$$

Then we have

$$
1-w \phi^{\prime}(t)=\frac{k t}{(t+1)(t+1)^{k}-1}
$$

so that

$$
\frac{f(t)}{1-w \phi^{\prime}(t)}=e^{-x t}(t+1)^{c+1}
$$

Thus, by (5) and (6), we have

$$
\begin{equation*}
e^{-x t}(t+1)^{c+1}=\sum_{n=0}^{\infty} Y_{n}^{c}(x ; k)\left(\frac{t}{\phi(t)}\right)^{n} \tag{7}
\end{equation*}
$$

If we put

$$
w=\frac{t}{\phi(t)}=\frac{(t+1)^{k}-1}{(t+1)^{k}}=1-(t+1)^{-k}
$$

then

$$
t=(1-w)^{-1 / k}-1
$$

and (7) becomes
(8) $(1-w)^{-(c+1) / k} \exp \left\{-x\left[(1-w)^{-1 / k}-1\right]\right\}=\sum_{n=0}^{\infty} Y_{n}^{o}(x ; k) w^{n}$.

In the next place, we have

$$
\begin{aligned}
(1- & w)^{-(c+1) / k} \exp \left\{-x\left[(1-w)^{-1 / k}-1\right]\right\} \\
& =(1-w)^{-(c+1) / k} \sum_{r=0}^{\infty} \frac{x^{r}}{r!}\left[(1-w)^{-1 / k}-1\right]^{r} \\
& =\sum_{r=0}^{\infty} \frac{x^{r}}{r!} \sum_{s=0}^{r}(-1)^{s}\binom{r}{s}(1-w)^{-(s+c+1) / k} \\
& =\sum_{r=0}^{\infty} \frac{x^{r}}{r!} \sum_{s=0}^{r}(-1)^{s}\binom{r}{s} \sum_{n=0}^{\infty} \frac{((s+c+1) / k)_{n}}{n!} w^{n} \\
& =\sum_{n=0}^{\infty} \frac{w^{n}}{n!} \sum_{r=0}^{n} \frac{x^{r}}{r!} \sum_{s=0}^{r}(-1)^{s}\binom{r}{s}\left(\frac{s+c+1}{k}\right)_{n},
\end{aligned}
$$

where

$$
(a)_{n}=a(a+1) \cdots(a+n-1), \quad(a)_{0}=1
$$

It therefore follows from (8) that

$$
\begin{equation*}
Y_{n}^{c}(x ; k)=\frac{1}{n!} \sum_{r=0}^{n} \frac{x^{r}}{r!} \sum_{s=0}^{r}(-1)^{s}\binom{r}{s}\left(\frac{s+c+1}{k}\right)_{n} . \tag{9}
\end{equation*}
$$

3. Chatterjea [1] has defined the polynomial

$$
\begin{equation*}
T_{k}^{(\alpha)}(x)-\frac{1}{n!} x^{-\alpha} e^{x^{k}} D^{n}\left(e^{\alpha+n} e^{-x^{k}}\right) \tag{10}
\end{equation*}
$$

with $k=1,2,3, \cdots$. The case $\alpha=0$ had been discussed by Palas [3]. Chatterjea showed that (10) implies

$$
\begin{equation*}
T_{k, n}^{(\alpha)}(x)=\sum_{r=0}^{\infty} \frac{x^{k r}}{r!} \sum_{s=0}^{r}(-1)^{s}\binom{r}{s}\binom{\alpha+n+k s}{n} \tag{11}
\end{equation*}
$$

He also obtained operational formulas and a generating function for $T_{k, n}^{(\alpha)}(x)$. The assumption that k is a positive integer is not used in deriving (11).

If we replace k by k^{-1} and α by $k^{-1} \alpha$, (10) becomes

$$
T_{k}^{(-1, \alpha)}(x)=\sum_{r=0}^{n} \frac{x^{k r}}{r!} \sum_{s=0}^{r}(-1)^{s}\binom{r}{s}\binom{k^{-1}(\alpha+s)+n}{n} .
$$

On the other hand, since

$$
\frac{1}{n!}\left(\frac{s+c+1}{k}\right)_{n}=\binom{k^{-1}(s+c+1)+n-1}{n}
$$

(9) gives

$$
Y_{n}^{c+k-1}\left(x^{k} ; k\right)=\sum_{r=0}^{n} \frac{x^{k r}}{r!} \sum_{s=0}^{r}(-1)^{s}\binom{r}{s}\binom{k^{-1}(s+c)+n}{n}
$$

It follows at once that

$$
\begin{equation*}
Y_{n}^{c+k-1}\left(x^{k} ; k\right)=T_{k-1, n}^{\left(k-1_{n}\right)}(x) \tag{12}
\end{equation*}
$$

or, if we prefer,

$$
\begin{equation*}
Y_{n}^{k \alpha+k-1}\left(x^{k} ; k\right)=T_{k}^{(\alpha-1, n}(x) . \tag{13}
\end{equation*}
$$

4. It may be of interest to point out that a formula equivalent to (9) can be obtained without the use of the Lagrange expansion. In the integral representation (5), put

$$
t=(1+u)^{1 / k}-1
$$

Then (5) becomes

$$
Y_{n}^{c}(x ; k)=\frac{1}{2 \pi i} \int_{C} \frac{\exp \left\{-x\left[(1-u)^{1 / k}-1\right]\right\}(1+u)^{k-1}(c+1)+n-1}{u^{n+1}} d u
$$

where C denotes a small circle about the origin in the u-plane. The numerator of the integral is equal to

$$
\begin{aligned}
& \sum_{r=0}^{\infty} \frac{x^{r}}{r!} \sum_{s=0}^{r}(-1)^{s}\binom{r}{s}(1+u)^{k^{-1}(c+s+1)+n-1} \\
& \quad=\sum_{m=0}^{\infty} u^{m} \sum_{r=0}^{m} \frac{x^{r}}{r!} \sum_{s=0}^{r}(-1)^{r}\binom{r}{s}\binom{k^{-1}(c+s+1)+n-1}{m}
\end{aligned}
$$

Taking $m=n$, we therefore get

$$
\begin{equation*}
Y_{n}^{c}(x ; k)=\sum_{r=0}^{n} \frac{x^{r}}{r!} \sum_{s=0}^{r}(-1)^{r}\binom{r}{s}\binom{k^{-1}(c+s+1)+n-1}{n} \tag{14}
\end{equation*}
$$

Since

$$
\binom{c+n-1}{n}=\frac{(c)_{n}}{n!}
$$

it is evident that (14) is identical with (9).
5. Making use of the explicit formulas (4) and (9), we can give a rather brief proof of (3). Indeed we have

$$
\begin{aligned}
J_{n, m}= & \int_{0}^{\infty} e^{-x} x^{c} Z_{n}^{c}(x ; k) Y_{m}^{c}(x ; k) d x \\
= & \frac{\Gamma(k n+c+1)}{n!} \sum_{j=0}^{n}(-1)^{j}\binom{n}{j} \frac{1}{\Gamma(k j+c+1)} \\
& \cdot \frac{1}{m!} \sum_{r=0}^{m} \frac{1}{r!} \sum_{s=0}^{r}(-1)^{s}\binom{r}{s}\left(\frac{s+c+1}{k}\right)_{m} \cdot \int_{0}^{\infty} e^{-x} x^{k j+c+r} d x \\
= & \frac{\Gamma(k n+c+1)}{n!m!} \sum_{j=0}^{n}(-1)^{j}\binom{n}{j} \\
& \cdot \sum_{r=0}^{m} \sum_{s=0}^{r}(-1)^{s}\binom{r}{s}\left(\frac{s+c+1}{k}\right)_{m}\binom{k j+c+r}{r} .
\end{aligned}
$$

If $f(x)$ is a polynomial of degree m, it is familiar that

$$
f(x)=\sum_{r=0}^{m}\binom{x}{r} \Delta^{r} f(0),
$$

where

$$
\Delta^{r} f(0)=\sum_{s=0}^{r}(-1)^{r-s}\binom{r}{s} f(s)
$$

In particular, for

$$
f(x)=\left(\frac{x+c+1}{k}\right)_{m}
$$

we have

$$
\begin{gathered}
\left(\frac{x+c+1}{k}\right)_{m}=\sum_{r=0}^{m}\binom{x}{r} \sum_{s=0}^{r}(-1)^{r-s}\binom{r}{s}\left(\frac{s+c+1}{k}\right)_{m} \\
=\sum_{r=0}^{m}\binom{+x+r-1}{r} \sum_{s=r}^{n}(-1)^{s}\binom{r}{s}\left(\frac{s+c+1}{k}\right)_{m}
\end{gathered}
$$

For $x=-k j-c-1$ this reduces to

$$
(-j)_{m}=\sum_{r=0}^{m}\binom{k j+c+r}{r} \sum_{s=0}^{r}(-1)^{s}\binom{r}{s}\left(\frac{s+c+1}{k}\right)_{m} .
$$

Thus

$$
\begin{aligned}
J_{n, m} & =\frac{\Gamma(k n+c+1)}{n!} \sum_{j=0}^{n}(-1)^{j}\binom{n}{j} \frac{(-j)_{m}}{m!} \\
& =(-1)^{m} \frac{\Gamma(k n+c+1)}{n!} \sum_{j=0}^{n}(-1)^{j}\binom{n}{j}\binom{j}{m} .
\end{aligned}
$$

Since

$$
\sum_{j=0}^{n}(-1)^{j}\binom{n}{j}\binom{j}{m}=\binom{n}{m} \sum_{j=m}^{n}(-1)^{j}\binom{n-m}{j-m}=(-1)^{m}\binom{n}{m}(1-1)^{n-m}
$$

it is evident that

$$
\begin{equation*}
J_{n, m}=\frac{\Gamma(k n+c+1)}{n!} \delta_{n m} \tag{15}
\end{equation*}
$$

in agreement with (3). In particular

$$
J_{n, n}=\frac{\Gamma(k n+c+1)}{n!}
$$

as proved in [2].
A little more generally, we have

$$
\begin{aligned}
J_{n, m}^{\prime} & =\int_{0}^{\infty} e^{-x} x_{c} Z_{n}^{c}(x ; k) Y_{n}^{c^{\prime}}(x ; k) d x \\
& =\frac{\Gamma(k n+c+1)}{n!m!} \sum_{j=0}^{n}(-1)^{j}\binom{n}{j}\left(-j-\frac{c-c^{\prime}}{k}\right)_{m} \\
& =(-1)^{m} \frac{\Gamma(k n+c+1)}{n!} \sum_{j=0}^{n}(-1)^{j}\binom{n}{j}\binom{j+a}{m},
\end{aligned}
$$

where $a=\left(c-c^{\prime}\right) / k$. It follows that
(16) $\quad J_{n, m}^{\prime}= \begin{cases}0 & (n>m), \\ (-1)^{n+m} \frac{\Gamma(k n+c+1)}{n!}\binom{a}{m-n} & (n \leqq m) .\end{cases}$

Clearly (16) includes (15).

References

1. S. K. Chatterjea, A generalization of Laguerre polynomials, Collectanea, Mathematica 15 (1963), 285-292.
2. J. D. E. Konhauser, Biorthogonal polynomials suggested by the Laguerre polynomials, Pacific J. Math. 21 (1967), 303-314.
3. F. J. Palas, A Rodrigues formula, Amer. Math. Monthly 66 (1959), 402-404.
4. G. Pólya and G. Szegö, Aufgaben und Lehrsatze aus der Analysis, Vol. 1, Berlin, 1925.

Received May 6, 1966. Supported in part by NSF Grant GP-5174.

