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PRIME RINGS WITH A ONE-SIDED IDEAL SATISFYING
A POLYNOMIAL IDENTITY

L. P. BELLUCE AND S. K. JAIN

It is known that the existence of a nonzero commutative
one-sided ideal in a prime ring implies that the whole ring
is commutative, Since rings satisfying a polynomial identity
are natural generalizations of commutative rings the question
arises as to what extent the above mentioned result can be
extended to include these generalizations., That is, if B is a
prime ring and I a nonzero one-sided ideal which satisfies a
polynomial identity does R satisfy a polynomial identity?

This paper initiates an investigation of this problem, A
counter example, given later, will show that the answer to
the above question may be negative, even when R is a simple
primitive ring with nonzero socle. The main theorem of this
paper is Theorem 3 which states:

Let R be a prime ring having a nonzero right ideal
which satisfies a polynomial identity. Then, a necessary
and sufficient condition that R satisfy a polynomial identity
is that R have zero right singular ideal and I?, the right
quotient ring of R, have at most finitely many orthogonal
idempotents.

2. In the following given a ring R, R‘(“R) denotes the right (left)
stnguwlar ideal of R. Thus R!={x|xecR, 2" c L/ (R)} where L‘R)
denotes the set of right ideals of R that meet, in a nonzero fashion,
all right ideals of R. Similarly for ‘R and “L(R).

If @ is a ring such that R is a subring of Q@ and gqRNR = 0
for each qc Q then Q is called a right quotient ring for B. Moreover
if @={ab'|a,beR,b regular} then Q is called a classical right
quotient ring. Following [2] we say that a ring R is right quotient
simple if and only if it has a classical right quotient ring Q with
Q@ =D, D, a ring of n x n matrices over a division ring D.

From [4] we know that if R is a prime ring with R‘=0 then
R has a unique maximal right quotient ring R where B is a prime
regular ring. Moreover, letting L(R) denote the lattice of right
ideals of R, there is a mapping s: A— A*of L(R) which is a closure
operation satisfying 0° =0, (AN B)*= A*NB* and (x'A)* =z~ 4>,
The set L*(R) of closed ideals of R can be made into a lattice in a
natural way and it is shown in [4] that L*(R) = L*(R) under the
mapping A— AN R, Ae L*(R). We shall have occasion to use the
following realization of R. Let E=U sez4m Homg(A,R)., On F
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define the relation, @ = 8 if for some A€ L*R), A< Dom a N Dom B
and a(x) = B(x) for each x € A. It is shown in [5] that = is an equiva-
lence relation and that E/= is a ring and in fact is R.

The above remarks apply similarly to a prime ring R for which
‘R =0.

3. In this section occur the basic results of this paper. We
will have occasion to use the result of Posner [8] stating that if R
is a prime ring with polynomial identity then R is a classical two-
sided quotient ring having the same multilinear identities as E. That
part of Posners argument that shows if R has a polynomal identity
then so does R is a very complicated argument and we take this
opportunity to present a simple alternative argument.

LEMMA 1. Let R be a prime ring with polynomial identity.
Then R has a polynomial identity.

Proof. From Posner [8] we know that R has left and right
quotient conditions and hence R is right quotient simple, with B =D,.
By a theorem of Faith and Utumi [2] R contains an integral domain
K with right quotient ring K = D. Since K satisfies a polynomial
identity we have by Amitsur [1] that K also has a polynomial identity.
Thus D, and hence D,, is finite dimensional over its center; thus D,,
so R, has a standard identity.

LEMMA 2. Let R be a prime ring with R* =0, let Aec LYR)
and let & € Homy(R, R), R considered as a right R-module. If a(A) =0
then a = 0.

Proof. Let x e R; then we have that x™* Aec L‘R). If rex™A
then #rc A and thus a(xr) = 0. Since a is a right R-endomorphism,
a(xr) = a(x)-r: It follows that a(zx)-x™* A = 0, hence ™ AS a(x)".
Thus a(z)"€ LY(R) and so a(x)c R‘. Hence a(x) = 0.

The following lemma is trivial in the case R contains a central
element. Without a central element the proof is more involved.

LeEMMA 3. Let R be a prime ring with a polynomial identity.
Then Homg(R, R) has a polynomial identity, 1f R'= 0

Proof. From Lemma 1 we know that R has a polynomial identity.
Consider R realized as U ez Homg(4, R)/=. For aec Homg(R, R)
let @ denote the equivalence class in R determined by . The mapping
a — @& is a homomorphism of Homy(R, R) into R. If @ =3 then for
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some Ae L4R) a(x) = Bx), v A. Thus (@ — B)(4) = 0. By Lemma
2 we see that &« = 8. Thus a — & is an injection onto a subring of
R and so Homy(R, R) has a polynomial identity.

The following theorem provides a sufficient condition on the right
ideal I having a polynomial identity to ensure the whole ring has a
polynomial identity.

THEOREM 1. Let R be a prime ring having a right ideal I # 0,
I satisfying a polynomial identity and I, = 0. Then R satisfies a
polynomial identity.

Proof. By assumption I, the left annihilator of I, is 0. Hence
I is a prime ring itself. Considering I as a left I-module we have
by the obvious dual of Lemma 3 that Hom,(I, I), (the left I-endo-
morphisms), has a polynomial identity. For x e R the mapping « — 7,,
right multiplication by z, is an anti-isomorphism of R into Hom,(I, I).
Thus R itself satisfies a polynomial identity.

THEOREM 2. Let R be a right quotient simple ring, I+ 0 a
right ideal of R satisfying a polynomial identity. Then R satisfies
a polynomial identity.

Proof. From Goldie [3] we have that I contains a uniform right
ideal, thus we may assume I is uniform. Since R‘ = 0 it follows that
{e|xel, 2" L/(R)} = 0, hence from [6] we have that K = Homy([, I)
is an integral domain. Moreover it is known ([3]) that K= D, D a
division ring, where B = D,. To complete the proof it suffices to
show that D has a polynomial identity; the latter will hold provided
K has a polynomial identity. To this end consider the homomorphism
a —1,, left multiplication by a, of I into K. Let J denote the image
of this map. J = 0 implies I? = 0 which is impossible; hence J is a
nonzero subring of K satisfying a polynomial identity. Let a ¢ K and
let l,eJ. Let xel. Then al(2) = a(ax) = a(a)-x = l,,(x). Thus
al, = ly, €J. Hence J is a left ideal of K. Since K is an integral
domain we have by an obvious dual to Theorem 1 that K has a poly-
nomial identity.

We now obtain, easily, the following.

THEOREM 3. Let R be a prime ring having a mnonzero right
ideal which satisfies a polynomial identity. Then, a necessary and
sufficient condition that R satisfy a polynomial identity 1s that
R'=0 and R have at most a finite number of orthogonal
1dempotents.
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Proof. Necessity is clear. Conversely, then, since R is regular
with at most finitely many orthogonal idempotents it follows from
[7] that R has the descending chain condition (d.c.c.) on right ideals.
R is prime, thus R = D, for some division ring D. Since L*(R) = L*(R)
we see that L*(R) has d.c.c. Thus from [4] we see that R is a
classical right quotient ring, hence Theorem 2 applies.

The following example (communicated orally to S. K. Jain by
A. S. Amitsur) shows that the extension of an identity from a right
ideal to the entire ring is not always possible. Let F be a field and
let F.. be the ring of all infinite matrices of finite rank. Let a = (4;))
be a matrix such that a,, # 0 and a;; = 0 for 4,7 # 1. Let I = aF..
Then I satisfies the identity (ay — yx)* =0 but F,. satisfies no
identity at all.

4., REMARKS. In the case that R is primitive with a right
ideal I # 0 having a polynomial identity then it is sufficient to assume
that R has at most a finite number of orthogonal idempotents to
ensure that R also have a polynomial identity.

There are other conditions one may impose upon R and I besides
those given here, e.g. if R has at most finitely many orthogonal
idempotents and I is a maximal right ideal or if R = 0 and I e L4R).
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