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PRIME RINGS WITH A ONE-SIDED IDEAL SATISFYING
A POLYNOMIAL IDENTITY

L. P. BELLUCE AND S. K. JAIN

It is known that the existence of a nonzero commutative
one-sided ideal in a prime ring implies that the whole ring
is commutative. Since rings satisfying a polynomial identity
are natural generalizations of commutative rings the question
arises as to what extent the above mentioned result can be
extended to include these generalizations. That is, if R is a
prime ring and I a nonzero one-sided ideal which satisfies a
polynomial identity does R satisfy a polynomial identity?

This paper initiates an investigation of this problem. A
counter example, given later, will show that the answer to
the above question may be negative, even when R is a simple
primitive ring with nonzero socle. The main theorem of this
paper is Theorem 3 which states:

Let R be a prime ring having a nonzero right ideal
which satisfies a polynomial identity. Then, a necessary
and sufficient condition that R satisfy a polynomial identity
is that R have zero right singular ideal and R, the right
quotient ring of R, have at most finitely many orthogonal
idempotents.

2. In the following given a ring R, RΔ(ΔR) denotes the right (left)
singular ideal of R. Thus Rά = {x \ x e R, xr e LΔ(R)} where LΔ(R)
denotes the set of right ideals of R that meet, in a nonzero fashion,
all right ideals of R. Similarly for ΔR and JL(R).

If Q is a ring such that R is a subring of Q and qR f] R Φ 0
for each q e Q then Q is called a right quotient ring for R. Moreover
if Q = {ab"1 \a,beR,b regular} then Q is called a classical right
quotient ring. Following [2] we say that a ring R is right quotient
simple if and only if it has a classical right quotient ring Q with
Q = Dn1 Dn a ring of n x n matrices over a division ring D.

From [4] we know that if R is a prime ring with RΔ = 0 then
R has a unique maximal right quotient ring R where R is a prime
regular ring. Moreover, letting L(R) denote the lattice of right
ideals of R, there is a mapping s: A —* A8 of L(R) which is a closure
operation satisfying 08 = 0, (A Π B)8 = A8 n B8 and (or1 A)8 = ar1 A8.
The set L8(R) of closed ideals of R can be made into a lattice in a
natural way and it is shown in [4] that L8(R) = L8(R) under the
mapping A—> A Π R, AeL8(R). We shall have occasion to use the
following realization of R. Let E = {JΛeL*(R) HomΛ(A, R). On E
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define the relation, a = β if for some A e LΔ(R), A gΞ Dom a n Dom β
and a(x) = β(x) for each xeA. It is shown in [5] that = is an equiva-
lence relation and that E/= is a ring and in fact is R.

The above remarks apply similarly to a prime ring R for which
ΔR = 0.

3* In this section occur the basic results of this paper. We
will have occasion to use the result of Posner [8] stating that if R
is a prime ring with polynomial identity then R is a classical two-
sided quotient ring having the same multilinear identities as R. That
part of Posners argument that shows if R has a polynomal identity
then so does R is a very complicated argument and we take this
opportunity to present a simple alternative argument.

LEMMA 1. Let R be a prime ring with polynomial identity.
Then R has a polynomial identity.

Proof. From Posner [8] we know that R has left and right
quotient conditions and hence R is right quotient simple, with R ~Dn.
By a theorem of Faith and Utumi [2] R contains an integral domain
K with right quotient ring K = D. Since K satisfies a polynomial
identity we have by Amitsur [1] that K also has a polynomial identity.
Thus D, and hence Dn, is finite dimensional over its center; thus Dn,
so JB, has a standard identity.

LEMMA 2. Let R be a prime ring with RΔ = 0, let A e LΔ{R)
and let a e Hom^CB, R)} R considered as a right R-module. If a(A) = 0
then a = 0.

Proof. Let xeR; then we have that ar1 AeLΔ{R). lί rex~ιA
then xreA and thus a(xr) =:0. Since a is a right i?-endomorphism,
a(xr) = a(x) r: It follows that cφ^ aΓ1 A = 0, hence x"1 AQa(x)r.
Thus a(x)r e L\R) and so a(x) e RΔ. Hence a(x) = 0.

The following lemma is trivial in the case R contains a central
element. Without a central element the proof is more involved.

LEMMA 3. Let R be a prime ring with a polynomial identity.
Then HomΛ(i2, R) has a polynomial identity, if RΔ— 0.

Proof. From Lemma 1 we know that R has a polynomial identity.
Consider R realized as U A^um Ή.omB(A9R)/=. For a e RomB(R, R)
let a denote the equivalence class in R determined by a. The mapping
a —> a is a homomorphism of Hom^ϋ!, R) into R. If a = β then for
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some A e LΔ{R) a(x) = β(x), xeA. Thus (a — β)(A) = 0. By Lemma
2 we see that a = β. Thus a —> α is an injection onto a subring of
R and so HomΛ(i2, R) has a polynomial identity.

The following theorem provides a sufficient condition on the right
ideal I having a polynomial identity to ensure the whole ring has a
polynomial identity.

THEOREM 1. Let R be a prime ring having a right ideal I Φ 0,
/ satisfying a polynomial identity and Ix — 0. Then R satisfies a
polynomial identity.

Proof. By assumption Ih the left annihilator of I, is 0. Hence
/ is a prime ring itself. Considering / as a left /-module we have
by the obvious dual of Lemma 3 that Homj(I, I), (the left I-endo-
morphisms), has a polynomial identity. For xeR the mapping x —> rβ,
right multiplication by x, is an anti-isomorphism of R into Hom^I, I).
Thus R itself satisfies a polynomial identity.

THEOREM 2. Let R be a right quotient simple ring, IΦ 0 a
right ideal of R satisfying a polynomial identity. Then R satisfies
a polynomial identity.

Proof. From Goldie [3] we have that I contains a uniform right
ideal, thus we may assume I is uniform. Since RΔ = 0 it follows that
{x I x e I, xr e LΔ(R)} = 0, hence from [6] we have that K = ΈlomR(I, I)
is an integral domain. Moreover it is known ([3]) that K = D, D a
division ring, where R — Dn. To complete the proof it suffices to
show that D has a polynomial identity; the latter will hold provided
K has a polynomial identity. To this end consider the homomorphism
a —> la, left multiplication by α, of / into K. Let J denote the image
of this map. J = 0 implies P = 0 which is impossible; hence J is a
nonzero subring of K satisfying a polynomial identity. Let a e K and
let laeJ. Let xel. Then ala(x) = a(ax) = tf(α) x = ϊα(β)(ίc). Thus
tf£α = ί«(β) € J Hence / is a left ideal of K. Since K is an integral
domain we have by an obvious dual to Theorem 1 that K has a poly-
nomial identity.

We now obtain, easily, the following.

THEOREM 3. Let R be a prime ring having a nonzero right
ideal which satisfies a polynomial identity. Then, a necessary and
sufficient condition that R satisfy a polynomial identity is that
RΔ = 0 and R have at most a finite number of orthogonal
idempotents.
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Proof. Necessity is clear. Conversely, then, since R is regular
with at most finitely many orthogonal idempotents it follows from
[7] that R has the descending chain condition (d.c.c.) on right ideals.
R is prime, thus R = Dn for some division ring D. Since L*(R) = L*(R)
we see that L8(R) has d.c.c. Thus from [4] we see that JS is a
classical right quotient ring, hence Theorem 2 applies.

The following example (communicated orally to S. K. Jain by
A. S. Amitsur) shows that the extension of an identity from a right
ideal to the entire ring is not always possible. Let F be a field and
let Foo be the ring of all infinite matrices of finite rank. Let a = {Aiά)
be a matrix such that αn Φ 0 and aiά = 0 for ί,jΦl. Let I = aF^.
Then / satisfies the identity (xy — yxf = 0 but F^ satisfies no
identity at all.

4* REMARKS. In the case that R is primitive with a right
ideal I Φ 0 having a polynomial identity then it is sufficient to assume
that R has at most a finite number of orthogonal idempotents to
ensure that R also have a polynomial identity.

There are other conditions one may impose upon R and I besides
those given here, e.g. if R has at most finitely many orthogonal
idempotents and / is a maximal right ideal or if i2J = 0 and IeLJ(R).
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