
PACIFIC JOURNAL OF MATHEMATICS
VoL 25, No. 1, 1968

NOTE ON AN EXTREME FORM

MANORANJAN PRASAD

The purpose of this paper is to find a positive definite
quadratic form fn(xu Xzf xn) which is extreme and for which
each of the binary form fz(Xh Xj) is an extreme form. In
other words we intend to seek an extreme n ary form
fnixu Xz, '" Xn) which remains extreme when it is reduced to
a binary form f2(Xi, xj)9 by setting all but two of the x'a equal
to zero.

Let fn(xu x2j xn) be a quadratic form in n variables,

(1.1) x19 x2i xs xn : fn(χ19 x2, xn) = Σ « i Λ « i

with determinant D — \ ai3 | and ai3- — aόi fn{xu x2 xn) is positive-
definite that is the roots of the characteristic equation

(1.2) \ai3- - XδiS\ = 0

are all positive, where

δid = 1 if i = j ; δi3 = 0 if i Φ 3 .

Let M denote the minimum value of fn(xl9 x2 xΛ) for integers
x19 x2, xn9 not all zero. This M is the same for all forms derived
from fn(xlf x2 xn) by unimodular linear transformations. Let 2s denote
the number of times this minimum is attained that is the number of
solutions of the Diophantine equation:

(1.3) /•(»!, a?*, •••,&») - M

Let 2s sets of (1.3) be given by

(1.4) X = ±Mk = ±(m l f c, m2fc, , mnk)

(known as minimal vectors) where k = 1, 2, , s.
Taking one of the two sets, considered not distinct, we have

Y,ai5mikmuk = M

We consider (1.5) as equations in ai3 and suppose that (1.5) has an
infinitude of sets of solutions in ai3-. This means that the auxiliary
equation

(1.6) ΣVifl&i = 0

with Pij = pJi9 has an infinitude of sets of solutions.

167



168 MANORANJAN PRASAD

Let us define g(X) = ^Pifi&j a n d write h(X) as

(1.7) h(X) = f(X) + pg(X)

h(X) is positive-definite if p lies in a certain interval — δ' <p < δ.
If δ = + oo we then find that — δ' is finite and then changing g(X)
to g( — X) we get the interval — δ < p < δ'. G. Voronoi has shown
that the set h(X) with 0 < p < δ contains a form

(1.8) Γ(X) = /(X) + Plflr(X)

such that the minimum of f2(X) is also M and has all the representa-
tions of f(X) and at least one more representation. Hence there is
a series /, f\ / 2, / 3, of positive definite quadratic forms such that
if Sr is the number of representations of the minimum M of fr then

(1.9) S < SL < S2 - - < Sr< Sr+1

It is known that the number of representations of the minimum of
an w-ary positive definite quadratic form is at most 2n — 1. Hence
the series (1.9) terminates say with / r , then fr is determined by its
minimum and the representations of its minimum. It is obvious that
(1.5) has a unique solution if

(1.10) S ^ in(n + 1)

We call fr a perfect form.
A perfect form f(X) is said to be extreme if and only if it is

eutactic, i.e; if its adjoint F(X) is expressible as

(1.11)
1

where all the ρk are positive.

2* We may replace /2, if need be, by an equivalent f2 (by apply-
ing an unimodular integer substitution) to secure that f2(Xi, Xj) is
reduced. Combined with xr—*xr (r Φ i or j), the substitution is uni-
modular and integer in the full n variables and therefore converts fn

to an equivalent fn. Since extreme forms remain extreme under the
group of unimodular integer transformations, fn and f2 still remain
extreme. Finally we may take

(2.1) f2(xis Xj) = aux\ + 2aijxixj + aάόx)

which is reduced and extreme for every ί Φ j.

3* By the principle of homogeneity, we may take, without loss
of any generality the minimum M of fn{x19 x2 xn) as unity.
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It is well-known that all binary extreme forms constitute a single
class of forms equivalent to x2 + xy + y*. Two positive definite binary
quadratic forms / and / ' of the same determinant are equivalent if
and only if their respective reduced forms φ and φr are either identical or
form one of the special pairs of equivalent reduced forms. Therefore
the form (2.1) and x2 + xy + y2 are of the same determinant and (2.1)
is equivalent to x2 + xy + y2 if and only if the form (2.1) is identical
with either of x2 ± xy + y2. Alternatively, as a{ix\ + 2aijxixj + aάjx)
is reduced we have

(3.1)

and also

2dij g au djj ^ au

ai
1 4

4 1

Also it is known that a perfect form is a multiple of an integral form
and the minimum of (2.1) is unity, 2aiό is an integer, say b.

Thus the above relation gives rise to the Diophantine equation of
the type (where aUi ajΊ and b are integers)

or

ad,-, - b2 = 3

ί i α i i = 3 +

This shows that 4 | 3 + b2; therefore b is an odd integer, say 2m + 1,
where m is integer.

Adudjj = 3 + 4m2 + 4m + 1

auaj:j ~ m2 + m + 1 .

Also form (3.1) we have

diidjj >̂ b2 — Am2 + 4m + 1

m2 + m + 1 Ξ> 4m2 + 4m + 1

3m(m + 1) ^ 0

that is m = 0 or —1.
Thus the form (2.1) becomes

(3.3) X% z i l XjXj ~τ~

The two forms are equivalent and extreme. We now distinguish
the various cases.
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4* Case 1.

In this case

(4.1)

a i 3 = 1 if i = y
α o = - i if ίΦ j

fn(xl9 x2 - xn)

T 2

(for all ΐ and j)

The determinant of (4.1) is

(4.2) Δ =

1

- ί
~~ 2

-4
1

-i

-i •••
2 # * *

1 . . .

-i
2

- i . J _ . 3 - . ( ^ _ 3)
2 %

- i - i - i •••

From (4.2) it is clear that (4.1) does not serve our requirement in
general.

5. Case 2.

aiά = 1 iί i = j
aiό = 1/2 if i Φ j (for every ί and j).

In this case the form is

X\

(5.1)
+ ίc| +

+

The determinant of (5.1) is

(5.2) A =

i 1 i
i i 1 ^ r < * + 1 )
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Clearly we have the following S = \n(n + 1) representations

Xi = 1 Xj = 0 i Φ j

(Xi,Xj) = (1, -1) i ^ j"

and the rest zero.
We notice that

171

(5.3) = χ\ — χ\ — χ2χ3

has determinant l/2n (w + 1) and is equivalent to (5.1). In this case

t h e minimal vectors are:

( 1 , 0 , 0 , 0 , . . . , 0)^ , (1 ,1 ,0 ,0 , . - . , 0 ) ^ , . . . , ( 1 , 1 , 1 , . . . , 1 , 0 ) ,

and ( 1 , 1 , 1 , «, l)u where (xu x2j , xn)t represents t h e minimal

vectors obtained by t h e cyclic permutation of the variables 0 , 1 , 2 , 3 , •••,

t — 1 times. Let uφn = φn_γ — xtxn + it(l — u~ι)x\

(5.4) (n = tu - 1 > 1, u > 1) .

It is known that the reciprocal of (5.3) is n+ιφn and n+1φn can be ex-
pressed in the form (1.11) and hence (5.1) is extreme, and serves our
purpose.

In this connection, it is interesting to note that (5.1) does serve
our purpose but its equivalent (5.3) does not serve the requirement of
§ 2 as can be seen by /2(*τ1? x3) — x\ + x\ which is disjoint, hence not
perfect.

6* Case 3.

aiό = 1 i = j
aiά = 1/2 or -1/2 ί Φ j (in arbitrary manner).

LEMMA. Let

v — a —
/γ
•Λ/

a — x

a — x h

h b — x f
9 f X !

(6.1) a — x

h

h

9

I

f
m

g

f
c - x

n

I

m

n
and so on.

d — x

Then the roots of

(6.2) Δ, = 0, Δ2 = 0, Λ3 = 0, J 4 = 0 αmZ so o^
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are all real and the roots of any one of them are separated by those
of the preceding equation.

The set (6.2) coincides with those of the characteristic equations
of quadratic form for various values of n. The lemma tells that all
the roots are real, but not necessarily positive in this case when
2ai5 = + 1 or - 1 arbitrarily. Further from the lemma it follows that
if At — 0 has a zero root or a negative root then none of the equations

- 0, At+2 = 0, At+3 = 0 and so on

has all roots positive. We therefore first ascertain the condition under
which At = 0 has all roots positive and then examine the possibility
that the equation At+1 = Q has all roots positive. In this connection
we note that if in Ar we put x = 0 and Ar is negative then the cor-
responding quadratic form is not positive-definite and in this case the
roots of Ar = 0 are not all positive.

For n = 2 we have only x2 ± xy + y2 which are equivalent and
the determinant of the form is

For n = 3 we consider the determinant

A = ii

α23

23

2 1 2α 1 3

1 2 2α 2 3

2α 1 3 2α 2 3 2

We put 2α13 = ίx; 2α23 = t2 where the numerical value of t{(i = 1, 2) is
unity.

A = (l/24){9 - (2t2 - t,)2}. The permissible values of tγ and t2 which
keep A nonzero and positive are

or

The corresponding positive definite ternary forms are equivalent. We
may have then

1

i
i

i
1

4

i
i
1

Similarly
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A) - 1}]

Where, as before, 2au = t{ i = 1, 2, and 3 and the numerical value of
ti is unity. The permissible values of tlf t2, t3 which keep D4 positive,
are obtained by tλt2 + t2t3 + Utγ — 3. We get again two quaternary
positive definite forms which are equivalent. Proceeding in this way
we have

2 1 1

1 2 1

1 1 2

1 1 1

= (» + !)
(Γ. = 2*Dn)

And we investigate

τn+1 =

2 1 1 1

1 2 1 1

1 1 2 1

1 1 1 1

^ 1 ^ 2 ^ 3

2

iliy is the cofactor of ai5 in | ai3 \ where Tn = \ ai51. From easy calcu-
lation it follows that, in this case Ai5 = n for every i and Aiβ = — 1
for i = j

Tn+1 - 2Tn - {n(t\ + t\ + ίl +

= 2(n + 1) - {n2 - 2(ί1t2

+ ft) - 2(ίA + ίi« + *2*s +•••)}

We have n quantities ί< where the numerical value of each tt = 1 say
r of them are each + 1 and the remaining s are each — 1; so r + s = n
(r, s are positive integers) then the value of the expression (t{t2 +
txtn + t>£3 + ) is

r(r - 8(8 -

= _» ί?_ _ 2

2 2
[r and s are not zero simultaneously]

Therefore
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Γn+1 = 2(n + 1) - K - (n2

= 4s2 - 4ns + n + 2 .

4rs)}

This expression is to be positive.
Therefore s < a or s > β where a and β (where a < β) are the

roots of

4s2 - 4ns + (n + 2) = 0

— >n-l
+ l/V -

if w > 2

in this case s = n

n — Vn2 — n — 2

2
if w > 2

in this case s = 0

(s = w) and (s = 0) give two equivalent forms and

2 1 1 . . .

•*• n + ί —

1 2 1

1 1

From the above discussion it follows that the solutions of the problem
of this paper are given by the forms

(6.3) (x, ± x2 ± . . . ± xn)
2}

The forms (6.3) are all equivalent to the form Un of Korkine and
Zolotareff.

7* REMARK. In this connection it is worth-while to note that
the problem of this paper is capable of the following generalization.
Find a positive definite (extreme) form fn such that each fr(xi9 xόi «« , xk)
is extreme (when the number of variables in fr(xi9 xr, •••,#*) is r;
r < n).

It is clear that the form (5.1) gives one answer in every case.
Other forms may also be admissible.

For r = 3 the problem may be tackled in more or less the same
way as it is known that all ternary quadratic extreme forms are equiv-
alent to a single class.

When r = 4, 5 and 6 the problem may be tackled with great dif-
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ficulties as we know that
(a) When r = 4 there are two classes of extreme forms equiv-

alent to

( 1 ) X\ + X\ + X\ + X\ + XχX
2
 + %lXz + Xχ%4 + %2%3 + %2%4 + %3%4

( 2 ) X
2
l + Xl + Xl + Xt ± X1X4 ± #2̂ 4 ± #3̂ 4

(b) When r = 5 there are three extreme forms

8Ϊ + X\ + ^3 + X\ + ^5 + ^^g + XLX3 + 1̂̂ 4 + XlXδ + ^2^3

~T~ X2X4 I ^2*^5 ~l~ X3X4 ~T~ X3X5 ~Γ X4PO5

\ X% \ X± 1 X5 ~τrX]Xi ~~z~X\'*j'z> ~zτ~XιX<i ~7Γ~* î
Δ Δ A Δ

( 2 ) 1 1 _ 1
Δ Δ Δ

X\ + Xl + X\ + X\ + X\
( 3 )

-γ- X2X5 ~Γ

(c) When r = 6 Professor Barnes has shown that the following
extreme forms exist.

( 1 )

( 2 )

( 3 ) φ
X

' 3 - 0 I

P o -

+ XδXβ) (Kneser and Barnes).

(Coxeter).

( 5 ) 02 = Φo — XlX* — %lX*

( 6 ) 06 = 0o — —(2x^2 + ^£3 + ^i^6 + x2xδ + 4̂̂ 6 + 2x5α;6) (Barnes).
Δ

For r ^ 7 the number of extreme forms is not known (for still higher
values of r(r ^ l l)/ r is in a genus of more than one class) and even
if these are known, the problem becomes very complex as the number
of extreme forms increases with r.

I wish to thank the referee for his helpful suggestions.
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