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COMPLEX INVERSION FOR THE GENERALIZED
CONVOLUTION TRANSFORMATION

J. N. PANDEY AND A. H. ZEMANIAN

The complex inversion theory for the convolution trans-
formation, which is due to Hirschman and Widder, is extended
to certain generalized functions. This is accomplished by
transferring the complex inversion formula onto the testing
function space for the generalized function under considera-
tion and then showing that the limiting process in the result-
ing formula converges with respect to the topology of the
testing function space.

The Hirschman-Widder convolution transformation [1] has recently
been extended to certain classes of generalized functions [2], and their
real inversion formula |1; pp. 127-132] has been shown to be still valid
when the limiting operation in that formula is understood as weak
convergence in the space <’ of Schwartz distributions [3]. The
purpose of the present work is to extend the complex inversion formula
[1, Th. 7.1b, p. 231] in a similar way to the generalized convolution
transformation.

The notation and terminology of this work follows that of [2].
2 denotes the real one-dimensional euclidean space, and all testing
functions herein are defined on <2 Throughout this work, ¢ and
are variables in < A function that possesses continuous derivatives
of all orders every-where on <7 is called smooth. If fis a generalized
function on .Z# the notation f(t), where te .22 is used merely to
indicate that the testing functions, on which f is defined, have ¢ as
their independent variable; it does not mean that f is a function of
t.{f, > denotes the number assigned to some element ¢ in a testing
function space by a member f of the dual space. Sometimes we write
(), @(t, x)»,. This means that, for each fixed x, @(t, x) as a function
of t is a testing function to which the generalized function f is being
applied; the subscript ¢ is used to emphasize which variable is the
independent variable for the testing functions of f. The Fkth deriv-
ative of an ordinary or generalized function f(t) is denoted alternatively
by D*f, DEf(t), or f%(t). Finally, D is the space of smooth functions
on < having compact supports. The topology of D is that which
makes its dual the space D’ of Schwartz distributions on &Z [3; Vol.

I, p. 65].

2. The spaces ., and <. ;. The generalized functions appear-
ing in this paper were discussed in [2; §3]. We briefly review their
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definition and paramount properties here.
Let ¢ and d be two fixed real numbers, and let &, ,(t) be a fixed
smooth positive function defined on —co < ¢ < o such that

Rty = & Ets e
et —oo <t < —1

7.4 is defined as the linear space of all complex-valued smooth func-
tions @(tf) on — oo <t < oo such that for each £k =10,1,2, .-

(1) E) = ToaslP) = 20D [ £eaBPTE)| < oo

We assign to .7, the topology generated by the collection of semi-
norms {¥.}r-. -Z%,a is a sequentially complete Hausdorff locally convex
topological linear space. Differentiation is a continuous linear mapping
of <7, into 1tself

The dual <., of &, is also sequentially complete. Under the
customary deﬁmtlon of dlfferentiation of generalized functions, namely,

<f(1)ygj>:<f7_¢(l)> fe {/ody@e-:—cda

differentiation is a continuous linear mapping of <~!, into itself. The
generalized functions with which we shall be concerned in this work,
are the members of &~ , for various choices of ¢ and d.

The restriction of any fe &2, to & is in &’ because & C &,
and the topology of < is stronger than that induced on it by .&.,.
Similarly, if ¢ <« and b <d, then &, <, and the topology of
., is stronger than that induced on it by <2, ,. Consequently, the
restriction of any fe 7., to &4, is in &7, ,.

3. The generalized convolution transformation. Let us first
specify the type of kernel for which our complex inversion theory
has been constructed. Let s be a complex variable. Following
Hirschman and Widder [1; p. 212], we set

(2) B = Ti(1 - =)
k=1 a’,

where the a, are real numbers such that 0 < a, <a, < a, < --- and
lim % — 0 0< Q< o).
k—oco ak

Also, let
1 = e~ .

3 G(z) = _S £ g -
(3) ) = 577 ) ie B(S) s z2=u+
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G(z — t) will be the kernel of our convolution transformation.
Hirschman and Widder [1; pp. 213-214] have proven

LeMMA 1. A, Let o =Re sand v =Im s. Then,

| E(o + i7)| = O(e7!) | 7] oo

’

and, for each 1 >0,

| E(0 + 47) [7" = o(e™™*7"1™) [T]—e0

b

where both estimates hold uniformly for o in any finite interval.
B. G(z) is an analytic function in the strip |v| < wR, where
v = Im=z.
C. Let w=Rez, and let p be the multiplicity of the zero of
E(s) occurring at the point s = a,. Then,

G(2) = p(2)e™ + R.() ,
G(2) = p(—2)e* + R_(2) ,

where p(z) is a polynomial of degree p — 1 and where, for each
nonnegative integer n,

RP(2) = Ofe~+) w— o,
R(2) = O(e"r ) U o

b

for some ¢ >0, uniformly in every proper substrip |v| = (2 — 1)
of the strip |v| < wl.

By the above estimates on G(z), if ¢ < a, d > —a, and z is a
fixed point in the strip [v| < x@, then G(z — t) as a function of ¢ is
in 22, Consequently, we can define the convolution transform F(z)
of a generalized function fe &7, by

(4) F(z) = {f(t), Gz — 1) | Imz| < Q.

Thus, under the stated restrictions on ¢,d, and z, our generalized
convolution transformation maps 2°,, into the space of ordinary
functions defined on the strip |Imz| < nQ.

THEOREM 1. Let G(z) be defined by (2) and (3). Also, let ¢ < a,,
d> —a, and fe ¥ .. If F(z) is defined by (4), then F(z) is analytic
on the strip |Imz| < 7@, and

(5) F () = {f (1), GV — 1)) | Imz] <7Q.

Proof. Let z be a fixed point of the strip [Imz| < nQ. Also,
let C and C, be two concentric circles lying entirely within the said



150 J. N. PANDEY AND A. H. ZEMANIAN

strip and having centers at z and radii » and », respectively, where
0<7r< 7. Finally, let 4z be a complex increment such that

0 < |4z| < r, and consider

L P 1 d2) — F@)] — <F (1), GOz — ) = {F(1), 0.0

Az
where

0,.(t) = _2’17 [G(z + 4z — 8) — Gz — )] — GY(z — 1) .

Our theorem will be proven when we show that 6,,({) — 0 in &~ ; as
[4z|— 0. By using Cauchy’s integral formulas, we may write

_ k() (=1)*
2T

- 1 1 1 1 ] -
(k) (f — = _ _ dg
XSCLG (s )[AZ<C—Z'“AZ C_z> (C__z)z

(=1)*4z S £ed)GPE =) g
2t Jon (L — 2z — 42)(C — 2)°

K.,qo(1)05 (t)

By Lemma 1C, there exists a constant B, not depending on ¢ or
{ e C, such that

£, t)GPEC — 1) | < B, —c <t<oo,(eC,.
Moreover, |{ —z — 4z| >r, —r and |{ — 2| =, if {eC,. Therefore
Vel04()] = _Beldal |4z |—0,

ri(r, — 1)

which completes the proof.

4. Complex inversion. With E(s) being defined by (2), set
(6) K(z) = ki;; E®(0)z*" .

It is a fact that K(z) is analytic and single-valued in the z-plane slit
along the imaginary axis from —i72 to wQ2. Moreover,

(7) E(s) = -—271r—iSCK(z)e”dz

where C is a closed rectifiable curve going in the positive direction

around the segment [—i7®2, iw2] on the imaginary axis [1; p. 223].
Now let C, be a closed rectifiable curve lying entirely within the

strip | Im z | < 27/0(0 < p< 1) and going in the positive direction around
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the segment [ —izQ2, i7n2] on the imaginary axis. The complex inversion
formula for the convolution transform (4) is

(8) fit) = lim —zjargcpK(z)F(t + p2)dz

where weak convergence in <’ is understood. Note that, since ¢ is
real, 0 < p < 1, and |Imz| < 7Q/p, it follows from Theorem 1 that
F(t + pz) is analytic on C,. Hence, the integral in (8) converges.

THEOREM 2. Let E(s) be defined by (2), G(z) by (3), and K(z) by
(6). Also, let C, be the curve described above. If fe <., where
c<a, and d> —a, and tf F(z) is the convolution transform of f in
accordance with (4), then, for each o€ <7 and as p—1 —,

(9) (oo ), K@@ + 0232, 90 ) — <1, 9

271

This theorem will be proven by justifying the steps in the follow-
ing manipulation:

(10) (oo K@F( + 020z, 2(0) >

an = {ot, | K@K, Gt + 0z - wdz >
a2 =L e, (@), Gt + pz — @)>dz
1) =] K@K @), <), Gt + oz — wp.dz
(14) = (F@), |, K@<, 6t + oz — ada y.

(15) — (@), P> p—1—

First of all, by the analyticity of K(z) and F(¢ + pz), the integral
on C, inside (10) is an analytic function of ¢[4; p. 99]. Consequently,
(10) has a meaning for @ € & and is, in fact, an ordinary integration
on ¢t. That (10) is equal to (11) is obvious. Next, (11) becomes (12)
upon interchanging the integrations on ¢ and 2, a process that is
justified by the facts that o(t) is smooth and of compact support. K(z)
is analytic on C,, and {f(x), G(w — 2))> is analytic for |Imw| < Q.

Our next objective is to show that (12) is equal to (13). Assume
that the support of @(t) is contained in the closed finite interval
[4, B]. For each m = 1,2, 3, ---, we partition [4, B] into m subinter-
vals whose lengths are 4t, (v =1, ---, m). Let , . be a point in the
v th subinterval, and assume that the maximum of the 4t¢,, tends to
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zero as m tends to infinity. Then,

$p(t), {F@), Gt + pz = 2> = | @OF @), Glt + oz — wadt
16)  =1lim 3 9L @), Glom + 02 = ©)dtm

— Tim  £(@), 3 PG + 02 — 0) e ) .

m—oo

If we can show that the sum within the last expression converges in
Foa to Spr(t)G(t + pz — x) dt as m — oo, then the fact that fe !,
A
will imply that (16) is equal to
{f @), Lp(t), G(t + 0z — @))),
which in turn will prove that (12) truly equals (13).

For any fixed £ = 0,1, 2, ---, fixed ze C,, and fixed o(0 < p < 1),
set
A, 1) = Fos@DE | £ PCm) G + 02 = 3,
B
- S o(t) G(t + 0z — x)dt]
(17)

= (~ D sl@) [ £ P m) G G + 07 = )t
- SB P(t)GH(t + pz — x)dt] ;

differentiation under the integral sign is permissible here. We need
merely show that A(x, m) tends uniformly to zero on — o < 2 <
as m— oo,

By virtue of the asymptotic properties of G*(t + pz — ) (Lemma
1C) and the conditions ¢ < a, and d > —a,, for an ¢ > 0 we can choose
X so large that

Es@)G(t + 0z = )| < S[| It 1dt]

for A<t<Band |z|> X. Therefore, for |z| > X

£, q() SB P()GP(t + pz — x)dt) < %
and
| £0s(®) 3 ()G (G + 07— D)4
(18) -

<<[[1em1dt] S o
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We can now choose m, so large that for all m > m, the right-hand
side of (18) is no greater than 2¢/3. Thus, for || > X and m > m,,
| A(x, m)| < e; i.e., A(x, m) tends uniformly to zero for |z| > X as
m — oo,

Now, @(t)G*®(t + pz — «) is a uniformly continuous function of
(t, ) on the domain A <t < B and —X <2 < X. Consequently, the
quantity within the brackets on the right-hand side of (17) tends
uniformly to zero on — X <o < X as m— . The same is true for
A(x, m) because k.4 (x) is bounded on —X < x < X. This completes
the proof of the equality between (12) and (13).

That (13) is equal to (14) is proven in the same way. Indeed,

{p(t), G(t + pz — 2))

is also analytic for |Im pz| < w2 and possesses the same asymptotic
properties as x — =+ o as does G(¢t + pz — z). Consequently, we can
partition the curve C, into m arcs and proceed exactly as before.

The last step, namely that (14) tends to (15) as p — 1 —, is estab-
lished by proving that

1 S K@Kp(t), Gt + 0z — w)pdz
2ry Je,

converges in &7, to ¢(x) as p— 1 —. To do this, we first prove three
lemmas.

This simple proof of the next lemma was suggested to the authors
by the referee.

LEMMA 2. Let K(z) and G(z) be defined as before, then

(19) _L{_mmlau+m—xmmzl
21 Je,

for all —o < o < oo, (Here, 1 represents the function that is iden-
tically equal to 1 on — oo <t < o0.)

Proof. By Cauchy’s theorem and Lemma 1C
(20) <LGu+pz—m>:S“Gu+pz—@mzl,
while it follows from (7) with s = 0 that

(21)

l,ngwzl,
271 Je,

if0<p<1.

LEMMA 3. Let
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_ 1 (= E(0s) .
(22) G(o, 1) = — S_,-w e ends

If c<a,d> —a, and 6 > 0, then, as p— 1—, e*'G(p, t) tends uni-
formly to zero on —oco < t < —9, and e *G(p, t) tends uniformly to
zero on 0 < t < oo,

Proof. We shall prove the assertion only for e~**G(p, t) since the
proof for e~%G(p, t) differs in only trivial ways.

If ¢ £0, then e**G(p, t) is nonnegative and monotonic increasing
on —oo <t <0 according to [1; Th. 4.2, p. 221]. Consequently, it
converges uniformly to zero on —c <t < —9J as p— 1— since it con-
verges to zero at ¢t = 6 [1; Corollary 4.2, p. 222].

Next, assume that 0 < ¢ < a,. By [1; p. 220], for |Re s| < a,

- E(ps)
23 S 'G(o, t)dt = ==L
(23) ~eGlo, it = S
We may differentiate (23) with respect to s under the integral sign
any number of times because each such differentiated integral con-

verges uniformly in every compact subset of the open strip |[Res| < a,,
in view of [1; Th. 4.1D, p. 219]. Hence,

- . Eps)
(24) S_wte Glo, it = D; ZES).

When s is restricted to real values with —a, < s < a,, we may use
logarithmic differentiation to compute (24) [4; p. 16].

p Elos) _ E(03) py 1,5 £(03)

s

" El(s) E(s) E(s)
(25) = 280D, 5 llog (0t ~ ") — log (ah — )
__ E(OS) 2 & ai
~Ew T R @ e =

The term by term differentiation of a series used herein is valid
because the result converges uniformly in compact subsets of

—a1<s<a1.

Another term by term differentiation, which is again valid, shows that

e B(0s) _ 4 _
(26) D: ) (1 = ) M(s, 0)

where the function M(s, p) tends to a finite limit as o — 1— for every
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real s such that —a, < s < a,.

Finally, choose the real number a such that 1 < « < a,/e. Then,
since G(po, t) is nonnegative and monotonic increasing on —co <t < 0
[1; Th. 4.2, p. 221], for t < 0

J— 3 la oo
0=(e—-1) (—f—) e'G(p, t) < St we=*G(p, u)du < S u'e=*G(p, u)dw
t —oo

= (1 — ) M(ca, p)
or

27 o, t) < & = 0)M(ea, 0)
0 e = G —tay

By our previous results, this quantity tends uniformly to zero on
—oo <t <0 as p—1—, which is what we wished to show.

LEMMA 4. Let pe &7, ¢c < a,d > —a,, and G(o,t) be defined by
(22). Then, for each fixzed nonnegative integer k,

(28) NG, 0) = £ou@ | [9(0) = 9 @)1G(o, ¢ — o)t
tends to zero as o — 1— uniformly on —eco < & < oo,

Proof. We break up the integration in (28) into integrations on
—w <t< e —0,x —0<t<x-+06; and x + 6 <t < o (6 >0), and
denote the corresponding quantities by I(x, o), L(z, p), and Iz, o)
respectively.

N(x, ) = L(v, p) + Lz, p) + I, 0) .

First of all, since G(p, ¢ — @) > 0 and Sm G(p,t — x)dt =1 [1; p.
219],

L, )] = [ste) | 1990) = o “@)1G(o, ¢ — a)dt

< k@) sup [p0(1) = 9P @)]

= k.4®)0 sup  |p* (7).
z—8<r<2+d

Now, ¢ is smooth and of compact support. Consequently, the last
quantity is bounded by 6B where B is a constant with respect to =
and 0 when 6 is restricted to 0 < 6 < 1. Therefore, given an

e >0, | Iz, 0)|

is bounded by e for ¢ = min(l, ¢/B) and for 0 < p < 1. Fix ¢ this
way.
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Next, consider \
L) = xc,dmg PE ()G (o, t — w)dt

—o0

(29) s
— Fous@p(@) | Glo, t — @) at .

Using the fact again that G(p, f) is nonnegative everywhere, we may
write

x—8 1 -8 1 —8
0= {76t —mat == | 6o, yay = - |7 wGlo, vy

= —317 g:yzG(p, y)dy .

According to [1; Th. 4.1A, p. 219], the last quantity is equal to
5721 — 09 S
k=1

which tends to zero as o—1—. Since &, (x)p" (x) is bounded for all
%, this shows that the second term on the right-hand side of (29)
converges uniformly to zero on —oo <o < as p—1—.

Now, let J(x) denote the first term on the right-hand side of (29),
and assume that the support of ¢ is contained in the closed finite
interval [4, B]. For —oco <2 —0 =< A, J,(x) =0. On the other hand,
for A < x — 0 < o, we have that & ,(x) < Pe**, where P is a constant,
and therefore

@) = Pt | 1900 et G o, £ — )it
A

§PSB|cp<">(t)le”dt sup | e~0G(p, t — )] .
A <t k)

—r<—

—c0

By Lemma 3, the right-hand side tends to zero uniformly on — co < & < o
as p—1—.

Thus, we have shown that I(x) tends to zero uniformly on
—oo < < o, A similar argument demonstrates that I,(x) does the
same as 0 — 1—. Altogether then, we have proven that

lim|[N(@, p)|=e —o <o < oo,
pol—
and, since ¢ is arbitrary, our lemma is proven.

We are finally ready to prove that (14) tends to (15) as p—1—.
For any fixed nonnegative integer k, consider,

(30 k@Dt <L K@), Gt + oz — e — o) ] .

Because p ¢ &, {p(t), G(t + pz — %)), is a continuous functions of (z, x)
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for ze C, and — o < & < o, and an analytic function of x for every
zeC,. Consequently, we may interchange the differentiations with
respect to © with the integration on C, [4; p. 99], and then inter-
change it once again with the integration on ¢. Some integrations by
parts then show that (30) is equal to

1
2T

Foslt) | K@<o" (0, Gt + pz = 0>z — k. o(@)p (@) -

By using [1; Th. 6.1a, p. 226], this expression can be rewritten as
) r [9(8) — o (@)]G(o, t — w)dt
(31)

+ Fa@e @) [ | K@)<L Gl pz — )z — 1]

2my Je,
By virtue of Lemmas 2 and 4, (31) tends uniformly to zero on
—co <2< > a8 p— 1—. Hence, the testing function in (14) truly
converges in 7, to o(z), and our proof of Theorem 2 is complete.
This theorem can be proved even without using Lemma 2.

REFERENCES

1. I. I. Hirschman, Jr. and D. V. Widder, The Convolution Transform, Princeton
University Press, Princeton, New Jersey, 1955.

2. A. H. Zemanian, A generalized convolution iranmsformation, J. STAM Appl. Math.
15 (1967), 324-346.

3. L. Schwartz, Théorie des distributions, vols. I and II, Hermann, Paris, 1957 and
1959.

4. E. C. Titchmarsh, Theory of Fuwnctions, second edition, Oxford University Press,
1939.

Received December 20, 1966. This work was supported by the Air Force Cambridge
Research Laboratories, Bedford, Massachusetts, under Contract AF 19(628)-2981.

UNIVERSITY OF ALBERTA
AND
STATE UNIVERSITY OF NEW YORK AT STONY BROOK








