# SOME DUAL SERIES EQUATIONS INVOLVING LAGUERRE POLYNOMIALS 

John S. Lowndes

## In this paper an exact solution is found for the dual series equations

(1) $\sum_{n=0}^{\infty} C_{n} \Gamma(\alpha+\beta+n) L_{n}(\alpha ; x)=f(x), \quad 0 \leqq x<d$,
(2) $\sum_{n=0}^{\infty} C_{n} \Gamma(\alpha+1+n) L_{n}(\alpha ; x)=g(x), \quad d<x<\infty$, where $\alpha+\beta>0,0<\beta<1, L_{n}(\alpha ; x)=L_{n}^{\alpha}(x)$ is the Laguerre polynomial and $f(x)$ and $g(x)$ are known functions.

In a recent paper Srivastava [3] has solved the equations

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left\{A_{n} / \Gamma(\alpha+1+n)\right\} L_{n}(\alpha ; x)=f(x), \quad 0 \leqq x<d \tag{3}
\end{equation*}
$$

(4) $\sum_{n=0}^{\infty}\left\{A_{n} / \Gamma(\alpha+1 / 2+n)\right\} L_{n}(\alpha ; x)=g(x), \quad d<x<\infty, \alpha>-1 / 2$,
by considering separately the equations when $(a) g(x) \equiv 0,(b) f(x) \equiv 0$, and reducing the problem in each case to that of solving an Abel integral equation. Srivastava's equations are a special case of (1) and (2) with $\beta=1 / 2$ and $A_{n}=\Gamma(\alpha+1+n) \Gamma(\alpha+1 / 2+n) C_{n}$.

The solution presented in this paper employs a multiplying factor technique which is more direct than the method given in [3] and is similar to that used by Noble [2] to solve some dual series equations involving Jacobi polynomials.
2. In the course of the analysis we shall use the following results.

From [1, p. 293(5), p. 405(20)] it is readily shown that

$$
\begin{equation*}
\int_{0}^{y} x^{\alpha}(y-x)^{\beta-1} L_{n}(\alpha ; x) d x=\frac{\Gamma(\beta) \Gamma(\alpha+1+n)}{\Gamma(\alpha+\beta+1+n)} y^{\alpha+\beta} L_{n}(\alpha+\beta ; y) \tag{5}
\end{equation*}
$$

where $-1<\alpha, \beta>0$, and

$$
\begin{equation*}
\int_{y}^{\infty}(x-y)^{-\beta} e^{-x} L_{n}(\alpha ; x) d x=\Gamma(1-\beta) e^{-y} L_{n}(\alpha+\beta-1 ; y), \tag{6}
\end{equation*}
$$

where $1>\beta, \alpha+\beta>0$.
The orthogonality relation for the Laguerre polynomials is

$$
\begin{equation*}
\int_{0}^{\infty} x^{\alpha} e^{-x} L_{n}(\alpha ; x) L_{m}(\alpha ; x) d x=\frac{\Gamma(\alpha+1+n)}{\Gamma(n+1)} \delta_{m n}, \alpha>-1 \tag{7}
\end{equation*}
$$

where $\delta_{m n}$ is the Kronecker delta.
3. Solution of the problem. Multiplying equation (1) by $x^{\alpha}(y-x)^{\beta-1}$, equation (2) by $(x-y)^{-\beta} e^{-x}$ and integrating with respect to $x$ over $(0, y)$ and $(y, \infty)$ respectively we find on using the results (5) and (6)
(8) $\sum_{n=0}^{\infty} C_{n} \frac{\Gamma(\alpha+1+n)}{(\alpha+\beta+n)} L_{n}(\alpha+\beta ; y)=\frac{y^{-\alpha-\beta}}{\Gamma^{\prime}(\beta)} \int_{0}^{y} x^{\alpha}(y-x)^{\beta-1} f(x) d x$, where $0<y<d, \alpha>-1, \beta>0$, and

$$
\begin{align*}
& \sum_{n=0}^{\infty} C_{n} \Gamma(\alpha+1+n) L_{n}(\alpha+\beta-1 ; y) \\
& \quad=\frac{e^{y}}{\Gamma(1-\beta)} \int_{y}^{\infty}(x-y)^{-\beta} e^{-x} g(x) d x \tag{9}
\end{align*}
$$

for $d<y<\infty, 1>\beta, \alpha+\beta>0$.
If we now multiply equation (8) by $y^{\alpha+\beta}$, differentiate with respect to $y$ and use the formula

$$
\begin{equation*}
\frac{d}{d x}\left\{x^{\alpha} L_{n}(\alpha ; x)\right\}=(n+\alpha) x^{\alpha-1} L_{n}(\alpha-1 ; x), \tag{10}
\end{equation*}
$$

we find

$$
\begin{align*}
& \sum_{n=0}^{\infty} C_{n} \Gamma(\alpha+1+n) L_{n}(\alpha+\beta-1 ; y) \\
& \quad=\frac{y^{1-\alpha-\beta}}{\Gamma(\beta)} \frac{d}{d y} \int_{0}^{y} x^{\alpha}(y-x)^{\xi-1} f(x) d x \tag{11}
\end{align*}
$$

where $0<y<d, \beta>0, \alpha>-1$.
The left hand sides of equations (9) and (11) are now identical and using the orthogonality relation (7) we see that the solution of equations (1) and (2) for $\alpha+\beta>0,0<\beta<1$, is given by

$$
\begin{equation*}
C_{n}=\frac{\Gamma(n+1)}{\Gamma(\alpha+1+n) \Gamma(\alpha+\beta+n)} B_{n}(\alpha, \beta ; d), \tag{12}
\end{equation*}
$$

where

$$
\begin{align*}
& B_{n}(\alpha, \beta ; d)=\frac{1}{\Gamma(\beta)} \int_{0}^{d} e^{-y} L_{n}(\alpha+\beta-1 ; y) F(y) d y \\
& \quad+\frac{1}{\Gamma(1-\beta)} \int_{d}^{\infty} y^{\alpha+\beta-1} L_{n}(\alpha+\beta-1 ; y) G(y) d y \tag{13}
\end{align*}
$$

and

$$
\begin{equation*}
F(y)=\frac{d}{d y} \int_{0}^{y} x^{\alpha}(y-x)^{\beta-1} f(x) d x \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
G(y)=\int_{y}^{\infty}(x-y)^{-\beta} e^{-x} g(x) d x \tag{15}
\end{equation*}
$$

To obtain the solution of Srivastava's equations (3) and (4) we write $\beta=1 / 2, A_{n}=\Gamma(\alpha+1+n) \Gamma(\alpha+1 / 2+n) C_{n}$ in (12) and find that

$$
\begin{align*}
A_{n}= & \frac{\Gamma(n+1)}{\Gamma(1 / 2)}\left\{\int_{d}^{d} e^{-y} L_{n}(\alpha-1 / 2 ; y) F_{1}(y) d y\right. \\
& \left.+\int_{d}^{\infty} y^{\alpha-1 / 2} L_{n}(\alpha-1 / 2 ; y) G_{1}(y) d y\right\}, \tag{16}
\end{align*}
$$

for $\alpha>-1 / 2$, and where $F_{1}(y)$ and $G_{1}(y)$ are given by equations (14) and (15) respectively with $\beta=1 / 2$.

Comparing the above solution with that obtained in [3] it can be seen that they are in agreement except for the form of the function $G_{1}(y)$. The limits on the integrals of equations (4.7) and (4.8) in Srivastava's paper are wrong and should read $(x, \infty)$ and $(u, \infty)$ respectively. When these corrections have been made we find that his term corresponding to $G_{1}(y)$ can be written in the notation of the present paper as

$$
\begin{equation*}
-\frac{d}{d y} \int_{y}^{\infty}(x-y)^{-1 / 2} d x \int_{x}^{\infty} e^{-u} g(u) d u . \tag{17}
\end{equation*}
$$

After inverting the order of integration, carrying out the integration in $x$ and performing the differentiation with respect to $y$ it is found that (17) is equal to $G_{1}(y)$. Hence with this simplification Srivastava's solution reduces to that given by equation (16).
4. It is also possible without computing the coefficients $C_{n}$ to find the values of series (1) and (2) in the regions where their values are not specified. We define (1) to have the value $h(x), d<x<\infty$, and (2) to have the value $k(x), 0 \leqq x<d$.
(a) Calculation of $h(x)$. Substituting for $C_{n}$ from equation (12) into (1) and interchanging the order of integration and summation we find

$$
\begin{align*}
h(x) & =\frac{1}{\Gamma(\beta)} \int_{0}^{d} e^{-y} F(y) S_{1}(x, y) d y \\
& +\frac{1}{\Gamma(1-\beta)} \int_{d}^{\infty} y^{\alpha+\beta-1} G(y) S_{1}(x, y) d y, \quad d<x<\infty, \tag{18}
\end{align*}
$$

where

$$
\begin{equation*}
S_{1}(x, y)=\sum_{n=0}^{\infty} \frac{\Gamma(n+1)}{\Gamma(\alpha+1+n)} L_{n}(\alpha ; x) L_{n}(\alpha+\beta-1 ; y) . \tag{19}
\end{equation*}
$$

Using the results (6) and (7) it is easily shown that

$$
\begin{equation*}
S_{1}(x, y)=\frac{e^{y} x^{-\alpha}(x-y)^{-\beta}}{\Gamma(1-\beta)} H(x-y) \tag{20}
\end{equation*}
$$

where $H(x)$ is the Heaviside unit function.
From equations (18) and (20) we see that $h(x)$ is given by

$$
\begin{align*}
& \Gamma(1-\beta) x^{\alpha} h(x)=\frac{1}{\Gamma(\beta)} \int_{0}^{d}(x-y)^{-\beta} F(y) d y  \tag{21}\\
& \quad+\frac{1}{\Gamma(1-\beta)} \int_{d}^{x} e^{y} y^{\alpha+\beta-1}(x-y)^{-\beta} G(y) d y
\end{align*}
$$

for $d<x<\infty$, where $F(y)$ and $G(y)$ are given by equations (14) and (15).
(b) Calculation of $k(x)$. Using the differentiation formula

$$
\begin{equation*}
e^{-x} L_{n}(\alpha ; x)=-\frac{d}{d x}\left\{e^{-x} L_{n}(\alpha-1 ; x)\right\} \tag{22}
\end{equation*}
$$

we may write equation (2) as

$$
\begin{gather*}
\frac{d}{d x} e^{-x} \sum_{n=0}^{\infty} C_{n} \Gamma(\alpha+1+n) L_{n}(\alpha-1 ; x)  \tag{23}\\
=-e^{-x} k(x), \quad 0 \leqq x<d
\end{gather*}
$$

Substituting for $C_{n}$ and interchanging the order of integration and summation we find

$$
\begin{gather*}
e^{-x} k(x)=-\frac{d}{d x} e^{-x}\left\{\frac{1}{\Gamma(\beta)} \int_{0}^{d} e^{-y} F(y) S_{2}(x, y) d y\right. \\
\left.\quad+\frac{1}{\Gamma(1-\beta)} \int_{d}^{\infty} y^{\alpha+\beta-1} G(y) S_{2}(x, y) d y\right\} \tag{24}
\end{gather*}
$$

for $0 \leqq x<d$, and

$$
\begin{align*}
& S_{2}(x, y)=\sum_{n-0}^{\infty} \frac{\Gamma(n+1)}{\Gamma(\alpha+\beta+n)} L_{n}(\alpha-1 ; x) L_{n}(\alpha+\beta-1 ; y) \\
& \quad=\frac{1}{\Gamma(\beta)} e^{x}(y-x)^{\beta-1} y^{1-\alpha-\beta} H(y-x) \tag{25}
\end{align*}
$$

where the series has been summed using the results (6) and (7).
Substituting for $S_{2}(x, y)$ in (24) we see that $k(x)$ is given by

$$
\begin{align*}
\Gamma(\beta) e^{-x} k(x) & =-\frac{d}{d x}\left\{\frac{1}{\Gamma(\beta)} \int_{x}^{d} e^{-y}(y-x)^{\beta-1} y^{1-\alpha-\beta} F(y) d y\right.  \tag{26}\\
& \left.+\frac{1}{\Gamma(1-\beta)} \int_{d}^{\infty}(y-x)^{\beta-1} G(y) d y\right\}
\end{align*}
$$

when $0 \leqq x<d$.
It is perhaps interesting to note that the expressions for the functions $k(x)$ and $h(x)$ do not involve Laguerre polynomials.

## References

1. A. Erdélyi et al., Tables of Integral Transforms, Vol. 2, McGraw-Hill, 1954.
2. B. Noble, Some dual series equations involving Jacobi polynomials, Proc. Camb. Phil. Soc. 59 (1963), 363-372.
3. K. N. Srivastava, On dual series relations involving Laguerre polynomials, Pacific J. Math. 19 (1966), 529-533.

Received April 14, 1967.
University of Strathclyde
Glasgow, Scotland

