ON A CLASS OF CONVOLUTION TRANSFORMS

Zeev Ditzian

In this paper the convolution transform

$$
\begin{equation*}
f(x)=\int_{-\infty}^{\infty} G(x-t) \varphi(t) d t \equiv\left(G^{*} \varphi\right)(x) \tag{1.1}
\end{equation*}
$$

whose kernel $G(t)$ is the Fourier transform of $[E(i y)]^{-1}$ where $E(s)$ is defined by

$$
\begin{align*}
& E(s)=e^{b s} \prod_{k=1}^{\infty}\left(1-s / a_{k}\right) \exp \left(s R e a_{k}^{-1}\right) \tag{1.2}\\
& \quad R e b=b \text { and } \sum\left|a_{k}\right|^{-2}<\infty
\end{align*}
$$

will be studied. An inversion theory similar to that achieved when a_{k} of (1.2) are real will be obtained. The results will show that under certain rather weak conditions, an infinite subsequence $a_{k(i)}$ of a_{k} can satisfy

$$
\min \left\{\left|\arg a_{k(i)}\right|,\left|\arg -a_{k(i)}\right|\right\} \geqq \frac{\pi}{4} .
$$

Classes of transforms will be introduced that allow the occurrence of $\min \left\{\left|\arg a_{k}\right|,\left|\arg -a_{k}\right|\right\} \geqq \pi / 4$ for all k.

We hope this will partly answer a problem set by Dauns and Widder [1] in Remark 1, page 441.

The inversion operator $P_{m}(D)$ is defined by

$$
\begin{equation*}
P_{m}(D)=\exp \left(\left(b-b_{m}\right) D\right) \prod_{k=1}^{m}\left(1-\frac{D}{a_{k}}\right) \exp \left(\left(R e \frac{1}{a_{k}}\right) D\right) \tag{1.3}
\end{equation*}
$$

where $D \equiv d / d x, \exp (k D) f(x)=f(x+k)$ and $\lim _{m \rightarrow \infty} b_{m}=0$.
The inversion formula will be

$$
\begin{equation*}
\lim _{i \rightarrow \infty} P_{m(i)}(D) f(x)=\varphi(x) . \tag{1.4}
\end{equation*}
$$

This inversion formula was achieved under general conditions on $\varphi(x)$ in the case a_{k} were real by I. I. Hirschman and D. V. Widder in a series of papers and in their book, "The convolution transform" [7]. Hirschman and Widder [6] also found a slightly changed version of (1.4) when $\sum_{r=1}^{\infty}\left(\operatorname{Im} \alpha_{k} / \operatorname{Re} \alpha_{k}\right)^{2}<\infty$. A. O. Garder [5] showed that if $a_{2 k-1}=\bar{a}_{2 k}$ then $\arg a_{2 k}$ can tend to 0 or π slower than is required in [6]. Dauns and Widder [1] showed that if $a_{2 k-1}=-a_{2 k}, 0 \leqq$ $\operatorname{Re} a_{2 k-1} \in \uparrow$ and $\left|\arg a_{2 k-1}\right|<(\pi / 4)-\eta$, where η is independent of k, then (1.4) can be achieved.

It will be noted that in [1] and [5] the a_{k} 's were in a special order. The order of the a_{k} 's, though having no influence on $E(s)$,
may be quite important when treating (1.4) as discussed with some examples in [2] and [4].

We shall define class $A(2)$ (that will depend also on the order of the a_{k} 's). The sequence $\left\{a_{k}\right\}$ belongs to class $A(2)$ if $\operatorname{Re} a_{k} \neq 0$,

$$
\begin{align*}
& \sum_{k=1}^{\infty}\left(\operatorname{Im}\left(a_{2 k-1}^{-1}+a_{2 k}^{-1}\right)\right)^{2} /\left(\left|a_{2 k-1}\right|^{-2}+\left|a_{2 k}\right|^{-2}\right)<\infty \tag{1.5}\\
& (1-\theta)\left(\left|a_{2 k-1}\right|^{-2}+\left|a_{2 k}\right|^{-2}\right)+4 \operatorname{Im} a_{2 k-1}^{-1} \operatorname{Im} a_{2 k}^{-1}>0 \tag{1.6}
\end{align*}
$$

for $k>k_{0}$ for some $\theta, 0<\theta<1$ where θ is independent of k, and

$$
\begin{equation*}
\frac{\left(\operatorname{Im}\left\{\overline{\left(a_{2 k-1}^{-1}+a_{2 k}^{-1}\right)} a_{2 k-1}^{-1} a_{2 k}^{-1}\right\}\right)^{2}\left|a_{2 k-1} a_{2 k}\right|^{2}}{\left|a_{2 k-1}\right|^{2}+\left|a_{2 k}\right|^{-2}+4 \operatorname{Im} a_{2 k-1}^{-1} \operatorname{Im} a_{2 k}^{-1}}<1-\eta \tag{1.7}
\end{equation*}
$$

for $k \geqq k_{1}$ for some $\eta, 0<\eta<1$ where η is independent of k.
A transform belongs to $A(2)$ if there is an order under which $\left\{a_{n}\right\} \in A(2)$. Class $A(2)$ includes the transforms of [1], [5] and [6].

Lemma 1.1. $\quad \sum_{k=1}^{\infty}\left(\operatorname{Im} a_{k} / \operatorname{Re} a_{k}\right)^{2}<\infty$ implies $\left\{a_{k}\right\} \in A(2)$ (and the order does not matter).

Proof. $\quad \sum_{k=1}^{\infty}\left(\operatorname{Im} a_{k} / \operatorname{Re} a_{k}\right)^{2}<\infty$ implies $\sum_{k=1}^{\infty}\left(\operatorname{Im} a_{k} \| a_{k} \mid\right)^{2}<\infty$ which implies $\sum_{k=1}^{\infty}\left(\operatorname{Im} a_{k}^{-1}\right)^{2} /\left|a_{k}\right|^{-2}<\infty$ which implies (1.5). To prove that a_{k} satisfies (1.6) and (1.7) is not difficult.

Remark. The inversion operator introduced by Hirschman and Widder [6] was slightly different from (1.4) but since

$$
\sum_{k=1}^{\infty}\left\{\left(\operatorname{Re} a_{k}\right)^{-1}-\operatorname{Re} a_{k}^{-1}\right\}=\sum_{k=1}^{\infty} \frac{\left(\operatorname{Im} a_{k}\right)^{2}}{\left|a_{k}\right|^{2} \operatorname{Re} a_{k}}<\infty,
$$

the difference is a change in b and b_{m} without changing $\lim _{m \rightarrow \infty} b_{m}=0$.
LEMMA 1.2. Let $a_{2 k-1}=-a_{2 k}$, let $\operatorname{Re} a_{2 k}>0$ and $\left|\arg a_{2 k}\right|<$ $(\pi / 4)-\eta_{1}$ for $k>k_{2}$, where η_{1} satisfies $0<\eta_{1}<\pi / 4$ and η_{1} is independent of k, then $\left\{a_{k}\right\} \in$ class $A(2)$.

Proof. It is easy to see that the sum in (1.5) is equal to zero and the right side of (1.7) is equal to zero. $\left|\arg a_{2 k}\right|<(\pi / 4)-\eta_{1}$ implies (1.6), with $\theta=1-2\left(\operatorname{Sin}\left((\pi / 4)-\eta_{1}\right)\right)^{2}$, for $k>k_{2}$.

This shows that the transforms treated in [1] are included in class $A(2)$.

Lemma 1.3. Let $a_{2 k-1}=\overline{a_{2 k}}$ and let $\min \left\{\left|\arg a_{2 k}\right|,\left|\arg -a_{2 k}\right|\right\}<$ $(\pi / 4)-\eta_{2}$ for $k \geqq k_{2}$ where $\eta_{2}, 0<\eta_{2}<\pi / 4$, is independent of k, then $\left\{a_{k}\right\} \in A(2)$.

Proof. It is easy to see that the sum in (1.5) and the right side of (1.7) are equal to zero. One can show that $\min \left\{\left|\arg \alpha_{2 k}\right|\right.$, $\left.\left|\arg -a_{2 k}\right|\right\}<(\pi / 4)-\eta_{2}$ implies (1.6) with $\theta=1-2\left(\operatorname{Sin}\left((\pi / 4)-\eta_{2}\right)\right)^{2}$ for $k \geqq k_{2}$.

Lemma 1.3 shows that the transforms treated by A. O. Garder [5] belong to class $A(2)$. Some cases which do not belong to class $A(2)$ will be treated, among them will be the case when $a_{2 k-1}=-a_{2 k}$ and $\min \left\{\left|\arg a_{2 k}\right|,\left|\arg -a_{2 k}\right|\right\}=\pi / 4$ (see Remark 2, [1], p. 442) where estimates different from those achieved for class $A(2)$ will be obtained.

For the definition of $G(t)$

$$
\begin{equation*}
G(t)=\frac{1}{2 \pi i} \int_{-i \infty}^{i \infty}[E(s)]^{-1} e^{s t} d t \tag{1.8}
\end{equation*}
$$

we have to assume that the integral on the right converges.
For the convergence of (1.8) we shall have to estimate $E(i y)$ and to these estimates the various classes correspond.
2. Estimates for $E_{2 m}(s)$ when $\left\{a_{k}\right\} \in$ class $A(2)$. In previous papers (see [1] and [6] for example) it was found useful and important to estimate $E_{m}(s)$ which is defined by

$$
\begin{equation*}
E_{m}(s)=e^{b_{m} s} \prod_{k=m+1}^{\infty}\left(1-s / a_{k}\right) \exp \left(s \operatorname{Re} a_{k}^{-1}\right) . \tag{2.1}
\end{equation*}
$$

In order to estimate $E_{m}(s)$ we shall estimate one term first.
Lemma 2.1. Let $\left\{a_{k}\right\} \in$ class $A(2)$ then for $k \geqq K$

$$
\begin{align*}
& \left|\left(1-i y / a_{2 k-1}\right)\left(1-i y / a_{2 k}\right)\right|^{2} \\
& \quad \geqq\left(1+\alpha y^{2} /\left|a_{2 k-1}\right|^{2}\right)\left(1+\alpha y^{2} /\left|a_{2 k}\right|^{2}\right)\left(1-\alpha^{-1}\left[\left(\operatorname { I m } \left(a_{2 k-1}^{-1}\right.\right.\right.\right. \tag{2.2}\\
& \left.\left.\left.\left.\quad+a_{2 k}^{-1}\right)\right)^{2} /\left(\left|a_{2 k-1}\right|^{-2}+\left|a_{2 k}\right|^{-2}\right)\right]\right) .
\end{align*}
$$

where $0<\alpha<1$ and α is independent of k. (α does depend on θ and η of the definition of class $A(2))$.

Proof. By a simple calculation we get

$$
\begin{aligned}
I_{k} \equiv & \left|\left(1-i y / a_{2 k-1}\right)\left(1-i y / a_{2 k}\right)\right|^{2}=1+2 y \operatorname{Im}\left(a_{2 k-1}^{-1}+a_{2 k}^{-1}\right) \\
& +y^{2}\left\{\left|a_{2 k-1}\right|^{-2}+\left|a_{2 k}\right|^{-2}+4 \operatorname{Im} a_{2 k-1}^{-1} \operatorname{Im} a_{a_{2 k}^{-1}}^{-1}\right\} \\
& +2 y^{3} \operatorname{Im}\left\{a_{2 k-1}^{-1} a_{2 k}^{-1}\left(a_{2 k-1}^{-1}+a_{2 k}^{-1}\right)\right.
\end{aligned}+y^{4}\left|a_{2 k-1}\right|^{-2}\left|a_{k 2}\right|^{-2} .
$$

We assume $K \geqq k_{1}$ and therefore by (1.7) we get

$$
\begin{aligned}
& \frac{\left(\operatorname{Im}\left\{\overline{\left(a_{2 k-1}^{-1}+a_{2 k}^{-1}\right)}\left(a_{2 k-1}^{-1} \cdot a_{2 k}^{-1}\right)\right\}\right)^{2}}{\left[\left(1-\frac{\eta}{2}\right)\left(\left|a_{2 k-1}\right|^{-2}+\left|a_{2 k}\right|^{-2}+4 \operatorname{Im} a_{2 k-1}^{-1} \operatorname{Im} a_{2 k}^{-1}\right)\right] \cdot\left[\left(1-\frac{\eta}{2}\right)\left|a_{2 k-1} \cdot a_{2 k}\right|^{-2}\right]} \\
& <(1-\eta) /\left(1-\eta+\frac{\eta^{2}}{4}\right)<1-\frac{\eta^{2}}{4} .
\end{aligned}
$$

It is easy to see that $y^{2}\left(A+2 B y+C y^{2}\right) \geqq 0$ whenever $A>0$, $C>0$ and $B^{2}<A C$. We substitute

$$
\begin{aligned}
& A-\left(1=\frac{\eta}{2}\right)\left\{\left|a_{2 k-1}\right|^{-2}+\left|a_{2 k}\right|^{-2}+4 \operatorname{Im} a_{2 k-1}^{-1} \operatorname{Im} a_{2 k}^{-1}\right\} \\
& B=\operatorname{Im}\left\{\left(\overline{\left.a_{2 k-1}^{-1}+a_{2 k}^{-1}\right)} a_{2 k-1}^{-1} a_{2 k}^{-1}\right\} \quad\right. \text { and } \\
& C=\left(1-\frac{\eta}{2}\right)\left|a_{2 k-1} a_{2 k}\right|^{-2}
\end{aligned}
$$

We use (1.6), (1.7) and the above calculation to show that, for $k>\max \left(k_{0}, k_{1}\right), A>0, C>0$ and $B^{2}>A C$. By omitting $y^{2}(A+$ $2 B y+C y^{2}$) from the right side of the equation defining I_{k} we obtain

$$
\begin{align*}
I_{k} \geqq & 1+2 y \operatorname{Im}\left(a_{2 k-1}^{-1}+a_{2 k}^{-1}\right) \\
& +\frac{\eta \theta}{2} y^{2}\left(\left|a_{2 k-1}\right|^{-2}+\left|a_{2 k}\right|^{-2}\right)+\frac{\eta y^{4}}{2}\left|a_{2 k-1} a_{2 k}\right|^{-2} \tag{2.3}
\end{align*}
$$

by minimum consideration

$$
1+2 y \operatorname{Im}\left(a_{2 k-1}^{-1}+a_{2 k}^{-1}\right)
$$

$$
\begin{equation*}
+\frac{\eta \theta}{4} y^{2}\left(\left|a_{2 k-1}\right|^{-2}+\left|a_{2 k}\right|^{-2}\right) \geqq 1-\frac{\frac{4}{\eta \theta}\left(\operatorname{Im}\left(a_{2 k-1}^{-1}+a_{2 k}^{-1}\right)\right)^{2}}{\left(\left|a_{2 k-1}\right|^{-2}+\left|a_{2 k}\right|^{-2}\right)} \tag{2.4}
\end{equation*}
$$

the last term tends to 1 for large k because of (1.5). Using (2.3), (2.4) and letting the coefficients of y^{2} and y^{4} be smaller, we obtain (2.2) with $\alpha=\eta \theta / 4$.

Lemma 2.2. Suppose $\left\{a_{k}\right\} \in$ class $A(2)$. Then for $k>K$ there exist A and $B, 0<A<B<1$ independent of k (but they depend on η and θ) so that for any $r, r<\min \left(\left|a_{2 k-1}\right|,\left|a_{2 k}\right|\right)$, we shall have:
(a) For $|\sigma| \leqq A r$ and $|y| \leqq B r$

$$
\begin{aligned}
H_{k}(\sigma) \equiv & \left|\left(1-(\sigma+i y) / a_{2 k-1}\right)\left(1-(\sigma+i y) / a_{2 k}\right)\right|^{2} \exp \left(2 \sigma \operatorname{Re}\left(a_{2 k-1}^{-1}+a_{2 k}^{-1}\right)\right) \\
& \geqq 1-2 \alpha^{-1} \frac{\operatorname{Im}\left(a_{2 k-1}^{-1}+a_{2 k}^{-1}\right)}{\left|a_{2 k-1}\right|^{-2}+\left|a_{2 k}\right|^{-2}}-\frac{r^{2}}{4}\left(\left|a_{2 k-1}\right|^{-2}+\left|a_{2 k}\right|^{-2}\right) \\
& -4 \sigma^{2}\left(\operatorname{Re}\left(a_{2 k-1}^{-1}+a_{2 k}^{-1}\right)\right)^{2} .
\end{aligned}
$$

(b) For $|\sigma| \leqq A r$ and $|y| \geqq B r$

$$
\begin{aligned}
H_{k}(\sigma) \geqq & \left(1+\frac{\alpha}{4} y^{2}\left|a_{2 k-1}\right|^{-2}\right)\left(1+\frac{\alpha}{4} y^{2}\left|a_{2 k}\right|^{-2}\right) \\
& \times\left(1-\frac{2}{\alpha} \frac{\left(\operatorname{Im}\left(a_{2 k-1}^{-1}+a_{2 k}^{-1}\right)\right)^{2}}{\left|a_{2 k-1}\right|^{-2}+\left|a_{2 k}\right|^{-2}}\right)
\end{aligned}
$$

where α is that of Lemma 2.1.

Proof. By a simple calculation

$$
\begin{aligned}
& \left|\left(1-\frac{\sigma+i y}{a_{2 k-1}}\right)\left(1-\frac{\sigma+i y}{a_{2 k}}\right)\right|^{2}=\left|\left(1-\frac{i y}{a_{2 k-1}}\right)\left(1-\frac{i y}{a_{2 k}}\right)\right|^{2} \\
& \quad-2 \sigma \operatorname{Re}\left(a_{2 k-1}^{-1}+a_{2 k}^{-1}\right)+\left[\sigma^{2}\left(\left|a_{2 k-1}\right|^{-2}+\left|a_{2 k}\right|^{-2}+4 \operatorname{Re} a_{2 k-1}^{-1} \operatorname{Re} a_{2 k}^{-1}\right)\right. \\
& \quad+\sigma^{4}\left|a_{2 k-1} a_{2 k}\right|^{-2}+2 \sigma^{2} y^{2}\left|a_{2 k-1} a_{2 k}\right|^{-2}-4 \sigma y \operatorname{Im}\left(a_{2 k-1}^{-1} a_{2 k}^{-1}\right) \\
& \quad-2\left(\sigma^{2}+y^{2}\right) \sigma \operatorname{Re}\left\{\overline{\left(a_{2 k-1}^{-1}+a_{2 k}^{-1}\right)} a_{2 k-1}^{-1} a_{2 k}^{-1}\right\} \\
& \left.\quad+2 \sigma^{2} y \operatorname{Im}\left\{\overline{\left(a_{2 k-1}^{-1}+a_{2 k}^{-1}\right)} a_{2 k-1}^{-1} a_{2 k}^{-1}\right\}\right] \equiv I_{k}-2 \sigma \operatorname{Re}\left(a_{2 k-1}^{-1}+a_{2 k}^{-1}\right)+J_{k}
\end{aligned}
$$

For the estimation of J_{k} we shall recall that

$$
\begin{equation*}
\left|\left(a_{2 k-1}^{-1}+a_{2 k}^{-1}\right) a_{2 k-1}^{-1} a_{2 k}^{-1}\right| \leqq 2\left(\left|a_{2 k-1}\right|^{-3}+\left|a_{2 k}\right|^{-3}\right) \tag{2.5}
\end{equation*}
$$

and

$$
\begin{align*}
& \left|a_{2 k-1}\right|^{-2}+\left|a_{2 k}\right|^{-2}+4 \operatorname{Re} a_{2 k-1}^{-1} \operatorname{Re} a_{2 k}^{-1} \geqq-2\left|\operatorname{Re} a_{2 k-1}^{-1} \operatorname{Re} a_{2 k}^{-1}\right| \tag{2.6}\\
& \quad \geqq-\left(\left|a_{2 k-1}\right|^{-2}+\left|a_{2 k}\right|^{-2}\right)
\end{align*}
$$

To prove (a) assume $|\sigma| \leqq A r,|y| \leqq B r$. Using (2.5) and (2.6) and dropping positive terms we obtain for $A<B$

$$
\begin{aligned}
J_{k} \geqq & \left(-A^{2}-\mid 2 A B\right) r^{2}\left(\left|a_{2 k-1}\right|^{-2}+\left|a_{2 k}\right|^{-2}\right) \\
& +\left(-4\left(A^{2}+B^{2}\right) A-4 A^{2} B\right) r^{3}\left(\left|a_{2 k-1}\right|^{-3}+\left|a_{2 k}\right|^{-3}\right) \\
\geqq & \left(-3 B^{2}-12 B^{3}\right) r^{2}\left(\left|a_{2 k-1}\right|^{-2}+\left|a_{2 k}\right|^{-2}\right)
\end{aligned}
$$

Choosing $A<B$ and (for instance) $B=3^{-2}$ and using Lemma 2.1 with $y=0$ we obtain

$$
\begin{aligned}
H_{k}(\sigma) \geqq & \left(1-\frac{\alpha^{-1}\left(\operatorname{Im}\left(a_{2 k-1}^{-1}+a_{2 k}^{-1}\right)\right)^{2}}{\left|a_{2 k-1}\right|^{-2}+\left|a_{2 k}\right|^{-2}}-\frac{1}{9} r^{2}\left(\left|a_{2 k-1}\right|^{-2}+\left|a_{2 k}\right|^{-2}\right)\right. \\
& \left.-2 \sigma \operatorname{Re}\left(a_{2 k-1}^{-1}+a_{2 k}^{-1}\right)\right) \exp \left(2 \sigma \operatorname{Re}\left(a_{2 k-1}^{-1}+a_{2 k}^{-1}\right)\right) \\
\geqq & 1-2 \alpha^{-1}\left(\operatorname{Im}\left(a_{2 k-1}^{-1}+a_{2 k}^{-1}\right)\right)^{2}\left[\left|a_{2 k-1}\right|^{-2}+\left|a_{2 k}\right|^{-2}\right]^{-1} \\
& -\frac{1}{4} r^{2}\left(\left|a_{2 k-1}\right|^{-2}+\left|a_{2 k}\right|^{-2}\right)-4 \sigma^{2}\left(\operatorname{Re}\left(a_{2 k-1}^{-1}+a_{2 k}^{-1}\right)\right)^{2}
\end{aligned}
$$

(The coefficients in the above estimation are not the best but they are convenient). To prove (b) (for which we are free to choose $A, A<B$) we recall that for $A \leqq \beta B, 0<\beta<1$ and $|\sigma|<A r$ we
have

$$
\begin{aligned}
& \left.\mid 2 \sigma^{2} \operatorname{Re} a_{2 k-1}^{-1} \operatorname{Re} a_{2 k}^{-1}\right) \mid \leqq \beta^{2} B^{2} r^{2}\left(\left|a_{2 k-1}\right|^{-2}+\left|a_{2 k}\right|^{-2}\right), \\
& \mid 2 \sigma^{2} y \operatorname{Im}\left\{\left(\overline{\left(a_{2 k-1}^{-1}+a_{2 k}^{-1}\right)} a_{2 k-1}^{-1} \cdot a_{2 k}^{-1}\right\} \mid\right. \\
& \quad \leqq \sigma^{2} y^{2}\left|a_{2 k-1} a_{2 k}\right|^{-2}+2 \sigma^{2}\left(\left|a_{2 k-1}\right|^{-2}+\left|a_{2 k}\right|^{-2}\right), \\
& \left|2 y^{2} \sigma \operatorname{Re}\left\{\left(\overline{(a} 2 k-1_{-1}^{-1}+a_{2 k}^{-1}\right) a_{2 k-1}^{-1} a_{2 k}^{-1}\right\}\right| \\
& \quad \leqq \beta y^{4}\left|a_{2 k-1} a_{2 k}\right|^{-2}+2 \beta y^{2}\left(\left|a_{2 k-1}\right|^{-2}+\left|a_{2 k}\right|^{-2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \left|2 \sigma^{3} \operatorname{Re}\left\{\overline{\left(a_{2 k-1}^{-1}+a_{2 k}^{-1}\right)} a_{2 k-1}^{-1} a_{2 k}^{-1}\right\}\right| \\
& \quad \leqq \sigma^{4}\left|a_{2 k-1} a_{2 k}\right|^{-2}+2 \sigma^{2}\left(\left|a_{2 k-1}\right|^{-2}+\left|a_{2 k}\right|^{-2}\right)
\end{aligned}
$$

Choosing β so that $5 \beta^{2}+4 \beta<\alpha / 4$ and K so that

$$
\alpha^{-1}\left(\operatorname{Im}\left(a_{2 k-1}^{-1}+a_{2 k}^{-1}\right)\right)^{2} /\left(\left|a_{2 k-1}\right|^{-2}+\left|a_{2 k}\right|^{-2}\right) \leqq \frac{1}{4}
$$

for $k \geqq K$ we obtain by the above estimations

$$
\begin{aligned}
& H_{k}(\sigma) \leqq\left(1+\frac{\alpha}{2} y^{2}\left|a_{2 k-1}\right|^{-2}\right)\left(1+\frac{\alpha}{2}\left|a_{2 k}\right|^{-2}\right)\left(1-\frac{1}{\alpha}\left(\operatorname{Im}\left(a_{2 k-1}^{-1}+a_{2 k}^{-1}\right)\right)^{2},\right. \\
& \left.\times\left[\left|a_{2 k-1}\right|^{-2}+\left|a_{2 k}\right|^{-2}\right]^{-1}-2 \sigma \operatorname{Re}\left(a_{2 k-1}^{-1}+a_{2 k}^{-1}\right)\right) \cdot \exp \left(2 \sigma \operatorname{Re}\left(a_{2 k-1}^{-1}+a_{2 k}^{-1}\right)\right) \\
& \quad \leqq\left(1+\frac{3 \alpha}{8} y^{2}\left|a_{2 k-1}\right|^{-2}\right)\left(1+\frac{3 \alpha}{8} y^{2}\left|a_{2 k}\right|^{-2}\right)\left(1-\frac{2}{\alpha}\left(\operatorname{Im}\left(a_{2 k-1}^{-1}+a_{2 k}^{-1}\right)\right)^{2},\right. \\
& \left.\times\left[\left|a_{2 k-1}\right|^{-2}+\left|a_{2 k}\right|^{-2}\right]^{-1}\right) \cdot\left(1-4 \sigma^{2}\left(\operatorname{Re}\left(a_{2 k-1}^{-1}+a_{2 k}^{-1}\right)\right)^{2}\right) .
\end{aligned}
$$

Since $\beta<\alpha \cdot 4^{-2}, \beta^{2}<\alpha \cdot 4^{-4}$ we obtain (b) easily.
Define S_{m} and $S_{m}^{(l)}$ (see [7], [2] and [4]) by

$$
\begin{gather*}
S_{m}=\sum_{k=m+1}^{\infty}\left|a_{k}\right|^{-2} \tag{2.7}\\
S_{m}^{(l)}=S_{m}-\max _{k(1)<\cdots<k(l)} \sum_{i=1}^{l}\left|a_{k(i)}\right|^{-2} \tag{2.8}
\end{gather*}
$$

Define also r_{m} by

$$
\begin{equation*}
r_{m}=\min _{k>m}\left|a_{k}\right| \tag{2.9}
\end{equation*}
$$

One can easily see that $S_{m}^{(0)}=S_{m}$ and $S_{m}^{(1)}=S_{m}-r_{m}^{-2}$.
Theorem 2.3. Let $\left\{a_{k}\right\} \in$ class $A(2)$, then for $m \geqq K,|\sigma| \leqq A S_{2 m}^{-1 / 2}$, and $b_{2 m}=0$ we have

$$
\begin{equation*}
\left|E_{2 m}(\sigma+i y)\right| \geqq \sqrt{2} / 2 . \tag{2.10}
\end{equation*}
$$

(A being that of Lemma 2.2.)

Proof. To prove (2.10) we use Lemma 2.2(a) whose conditions are satisfied since $S_{2 m}>r_{2 m}^{-2}, S_{2 m}^{-1 / 2}<r_{2 m}=\min _{k>2 m}\left|a_{k}\right|$. We also recall that for $A_{n}>0$ and $\sum_{n=m+1}^{\infty} A_{n}<1 / 2$ we have

$$
\prod_{n=m+1}^{\infty}\left(1-A_{n}\right) \geqq 1-\sum_{n=m+1}^{\infty} A_{n} \geqq \frac{1}{2}
$$

Remembering that for large m

$$
2 \alpha^{-1} \sum_{k=m+1}^{\infty}\left(\operatorname{Im}\left(a_{2 k-1}^{-1}+a_{2 k}^{-1}\right)\right)^{2} /\left(\left|a_{2 k-1}\right|^{-2}+\left|a_{2 k}\right|^{-2}\right)<\frac{1}{8}
$$

and

$$
\begin{aligned}
4 \sigma^{2} \sum_{k=m+1}^{\infty}\left(\operatorname{Re}\left(a_{2 k-1}^{-1}+a_{2 k}^{-1}\right)\right)^{2} & \leqq 8 A^{2} S_{2 m} \sum_{k=m+1}^{\infty}\left(\left|a_{2 k-1}\right|^{-2}+\left|a_{2 k}\right|^{-2}\right) \\
& \leqq 8 A^{2}<8^{-1}
\end{aligned}
$$

and using Lemma 2.2(a) we conclude the proof of (2.10) in the case where $|\sigma| \leqq S_{2 m}^{-1 / 2}$ and $|y| \leqq B S_{2 m}^{-1 / 2}$. Using Lemma 2.2(b), (2.10) in the case where $|\sigma| \leqq A S_{2 m}^{-1 / 2},|y| \geqq B S_{2 m}^{-1 / 2}$ follows by an argumentation similar to that used in the first part. Then:

Theorem 2.4. Let $\left\{a_{k}\right\} \in A(2), b_{2 m}=0$, then for $m \geqq k,|\sigma| \leqq$ $A S_{2 m}^{-1 / 2}$ and $|y| \geqq B S_{2 m}^{-1 / 2}$ we have

$$
\begin{align*}
\left|E_{2 m}(\sigma+i y)\right| & \geqq \frac{3}{4}\left(1+\sum_{n=1}^{\infty} \frac{1}{n!} y^{2 n} \cdot\left(\frac{\alpha}{4}\right)^{n} \cdot \prod_{l=0}^{n-1} S_{2 m}^{(2)}\right)^{1 / 2} \\
& \geqq \frac{3}{4}\left(1+\frac{1}{n!} y^{2 n}\left(\frac{\alpha}{4}\right)^{n} \prod_{l=0}^{n-1} S_{2 m}^{(l)}\right)^{1 / 2} . \tag{2.11}
\end{align*}
$$

Proof. Using (1.5) we can choose, by the method in the proof of Theorem 2.3, m so that

$$
\begin{equation*}
\sum_{k=m+1}^{\infty}\left(1-\frac{2}{\alpha}\left[\left(\operatorname{Im}\left(a_{2 k-1}^{-1}+a_{2 k}^{-1}\right)\right)^{2} /\left(\left|a_{2 k-1}\right|^{-2}+\left|a_{2 k}\right|^{-2}\right)\right]\right) \geqq \frac{9}{16} \tag{2.12}
\end{equation*}
$$

(9/16 can be replaced of course by any $1-\varepsilon$).

$$
\sum_{n=1}^{\infty} \frac{1}{n!} y^{2 n}\left(\frac{\alpha}{2}\right)^{n} \prod_{l=0}^{n-1} S_{2 m}^{(l)}
$$

converges for all y since $S_{2 m}=S_{2 m}^{(0)}>S_{2 m}^{(1)}>\cdots>S_{2 m}^{(l)}$. By Lemma 2.2 and (2.12) we have

$$
\left|E_{2 m}(\sigma+i y)\right| \geqq \frac{3}{4}\left(1+\sum_{n=1}^{\infty} y^{2 n}\left(\frac{\alpha}{4}\right)^{n} \sum_{\substack{k(1) 2 m \\ k(i)<k(i+1)}}\left|a_{k(1)} \cdots a_{k(n)}\right|^{-2}\right)^{1 / 2}
$$

But we have

$$
\begin{aligned}
I(n, m) & \equiv \sum_{\substack{2 m<k(1) \\
k(i)<k(i+1)}}\left|a_{k(1)} \cdots a_{k(n)}\right|^{-2}=\frac{1}{n!} \sum_{\substack{k(i) i) 2 m \\
k(i) \neq k(j), j \neq i}}\left|a_{k(1)} \cdots a_{k(n)}\right|^{-2} \\
& \geqq \frac{1}{n!} \sum_{\substack{k \\
k(i) \ggg 2 m \\
k(i) \neq k(j), j \neq i}}\left(S_{2 m}-\sum_{r=1}^{n-1}\left|a_{k(r)}\right|^{-2}\right)\left|a_{k(1)} \cdots a_{k(n-1)}\right|^{-2} \\
& \geqq \frac{1}{n!} S_{2 m}^{(n-1)} \sum_{\substack{k(2)>2 m \\
k(i) \neq k(j), j \neq i}}\left|a_{k(1)} \cdots a_{k(n-1)}\right|^{-2} .
\end{aligned}
$$

Since

$$
\sum_{k(i)>2 m}\left|a_{k(i)}\right|^{-2}=S_{2 m}=S_{2 m}^{(0)}
$$

by induction $I(n, m) \geqq 1 / n!$. $\prod_{l=0}^{n-1} S_{2 m}^{(l)}$, which concludes the proof of the theorem.

Theorem 2.5. Let $\left\{a_{k}\right\} \in A(2), b_{2 m}=0$, and σ satisfies $\operatorname{Re} a_{k} \neq \sigma$ for all $k>n$, then for $p, n=0,1,2, \cdots$ there exist $k_{1}(p, \sigma, n)$ and $k_{2}(p, \sigma, n)$ so that

$$
\begin{equation*}
\left|E_{2 n}(\sigma+i \tau)\right|^{2} \geqq k_{1}(p, \sigma, n)+k_{2}(p, \sigma, n) \tau^{2 p} \tag{2.13}
\end{equation*}
$$

Proof. Since $S_{2 m}=o(1) m \rightarrow \infty$ we can choose m so that $A S_{2 m}^{-1 / 2} \geqq \sigma$ (for A of Theorems 2.3 and 2.4). Combining Theorems 2.3, 2.4 and the fact that $\left.\mid \prod_{k=2 n+1}^{2 m}\left(1-\sigma+i \tau / a_{k}\right)\right) e^{\sigma \operatorname{Re} a_{k}^{-1}} \mid \geqq \delta$ whenever $\operatorname{Re} a_{k} \neq \sigma$, we obtain (2.13).
3. Estimates for $E_{m(i)}(s)$ in special cases when $\left\{a_{k}\right\} \notin A(2)$. In this section we shall estimate $E_{2 m}(s)$ in case $\left\{a_{k}\right\}$ does not necessarily belong to $A(2)$ but $a_{2 k-1}=-a_{2 k}$ or $a_{2 k-1}=\bar{a}_{2 k}$ and some other conditions are satisfied.

First we prove some lemmas concerning the above mentioned cases.

Lemma 3.1. Let a be a complex number $\operatorname{Re} a \neq 0$, then for all real y and $q \geqq 1$

$$
\begin{align*}
I(\alpha) & =\left|\left(1-\frac{i y}{a}\right)\left(1+\frac{i y}{a}\right)\right|^{2}=\left|\left(1-\frac{i y}{a}\right)\left(1-\frac{i y}{\bar{a}}\right)\right|^{2} \\
& \geqq\left\{\begin{array}{l}
1-q\left(\frac{\operatorname{Re} a^{2}}{|a|^{2}}\right)^{2}+\left(1-\frac{1}{q}\right) y^{4}|a|^{-4} \\
1+y^{4}|a|^{-4} \quad \text { Re } a^{2} \geqq 0 .
\end{array}\right. \tag{3.1}
\end{align*}
$$

Proof. Simple calculation yields

$$
\begin{aligned}
& \left|\left(1-\frac{i y}{a}\right)\left(1-\frac{i y}{a}\right)\right|^{2}=1-q\left(\frac{\operatorname{Re} a^{2}}{|a|^{2}}\right)^{2} \\
& \quad+\left(\sqrt{q} \frac{\operatorname{Re} a^{2}}{|a|^{2}}+\frac{1}{\sqrt{q}} y^{2}|a|^{-2}\right)^{2}+\left(1-\frac{1}{q}\right) y^{4}|a|^{-4}
\end{aligned}
$$

from which (3.1) is immediate.

Lemma 3.2. Let a be complex number, $\operatorname{Re} a \neq 0$, then

$$
\begin{align*}
& \left|\left(1-\frac{\sigma+i y}{a}\right)\left(1+\frac{\sigma+i y}{a}\right)\right|^{2} \\
& \quad=I(a)+2 \sigma^{2}\left(|a|^{2}-2(\operatorname{Re} a)^{2}|a|^{-4}\right)+\sigma^{4}|a|^{-4} \tag{3.2}\\
& \quad+2 \sigma^{2} y^{2}|a|^{-4}+4 \sigma y\left(\operatorname{Im} a^{2}\right)|a|^{-4}, \\
& \left|\left(1-\frac{\sigma+i y}{a}\right)\left(1-\frac{\sigma+i y}{\bar{a}}\right)\right|^{2} \\
& = \tag{3.3}\\
& \quad I(a)-4 \sigma \operatorname{Re} a|a|^{-2}+\sigma^{2}\left(2|a|^{-2}+4(\operatorname{Re} a)^{2}|a|^{-4}\right) \\
& \quad+\sigma^{4}|a|^{-4}+2 \sigma^{2} y^{2}|a|^{-4}-4\left(\sigma^{2}+y y^{2}\right) \sigma|a|^{-4} \operatorname{Re} a,
\end{align*}
$$

where $I(a)$ is defined in Lemma 3.1.
Proof. The proof is a corollary of the proof of Lemma 2.2 combined with Lemma 3.1.

Lemma 3.3. Let $\operatorname{Re} a \neq 0$, then for $K>1$ there exists A and B, independent of $a, 0<A<B<1$ such that for $r<|\operatorname{Re} a|$ we have:
(a) For $|\sigma| \leqq A r$ and $|y| \leqq B r$

$$
\begin{align*}
& \left|\left(1-\frac{\sigma+i y}{a}\right)\left(1+\frac{\sigma+i y}{a}\right)\right|^{2} \tag{3.4}\\
& \quad \geqq 1-K^{-1} r^{2}|a|^{-2}-\left(\min \left(0,\left(\operatorname{Re} a^{2}\right) \cdot|a|^{-2}\right)\right)^{2}
\end{align*}
$$

(b) For $|\sigma| \leqq A r_{1} \leqq A r,|y| \geqq B r$ and $\delta>0$

$$
\begin{align*}
\mid(1- & \left.\frac{\sigma+i y}{a}\right)\left.\left(1+\frac{\sigma+i y}{a}\right)\right|^{2} \\
\geqq & \left(1+\frac{1}{4} y^{4}|a|^{-4}\right)\left(1-2\left(\min \left(0, \operatorname{Re} a^{2} /|a|^{2}\right)\right)^{2}\right. \tag{3.5}\\
& \left.-K^{-1}\left(r^{2}|a|^{-2}+r_{1}^{2}|a|^{-1-\delta}+|a|^{-2+2 \delta}\right)\right)
\end{align*}
$$

Proof. To prove (3.4) we use (3.2) and (3.1) with $q=1$ and obtain the result by choosing B so that $6 B^{2}<K^{-1}$, and dropping some positive terms.

To prove (3.5) we use

$$
4 \sigma y\left(\operatorname{Im} a^{2}\right)|a|^{-4} \geqq-4|\sigma y||a|^{-2} \geqq-\left(\frac{1}{\beta^{2}} y^{2}|a|^{-(3-\delta)}+2 \beta^{2} \sigma^{2}|a|^{-(1+\delta)}\right)
$$

and

$$
-\frac{1}{\beta^{2}} y^{2}|a|^{-(3-\delta)}+\frac{1}{4} y^{4}|a|^{-4} \geqq-\frac{4}{\beta^{4}}|a|^{-(2-2 \delta)}
$$

Choosing $4 / \beta^{4} \leqq 1 / K$ or $\beta \geqq \sqrt[4]{4 K}$ and A so that $2 \beta^{2} A^{2}<K^{-1}$ or $A^{2}<1 / 4 K \sqrt{K}$ or $A<1 / 2 K$ one can conclude the proof by using Lemma 3.1 (choosing there $q=2$ in case $\operatorname{Re} a^{2}<0$) and dropping some positive terms.

Lemma 3.4. Let $\operatorname{Re} a \neq 0$, then for $K>1$ there exist A independent of $a, 0<A<1$, such that for $r<|\operatorname{Re} a|$ and $|\sigma| \leqq A r$ we have

$$
\begin{align*}
& \left|\left(1-\frac{\sigma+i y}{a}\right)\left(1-\frac{\sigma+i y}{\bar{a}}\right)\right|^{2} \exp \left(4 \sigma \operatorname{Re} a /|a|^{2}\right) \\
& \geqq\left(1+\frac{1}{4} y^{4}|a|^{-4}\right)\left(1-2\left(\min \left(0, \operatorname{Re} a^{2} /|a|^{2}\right)\right)^{2}-K^{-1} r^{2}|a|^{-2}\right) . \tag{3.6}
\end{align*}
$$

Proof. Using (3.3) of Lemma 3.2, Lemma 3.1 with $q=3 / 2$, the estimations

$$
\begin{aligned}
& -4 \sigma^{3}|a|^{-4} \operatorname{Re} a \geqq-\sigma^{4}|a|^{-4}-4 \sigma^{2}(\operatorname{Re} a)^{2}|a|^{-4}, \\
& -4 y^{2} \sigma|a|^{-4} \operatorname{Re} a \geqq-\frac{1}{2^{5}} y^{4}|a|^{-4}-4^{3} \sigma^{2}|a|^{-2}
\end{aligned}
$$

and dropping some positive terms we obtain

$$
\begin{aligned}
\mid(1 & \left.-\frac{\sigma+i y}{a}\right)\left.\left(1-\frac{\sigma+i y}{\bar{a}}\right)\right|^{2} \geqq 1+\left(\frac{1}{3}-\frac{1}{2^{4}}\right) y^{4}|a|^{-4} \\
& -\frac{3}{2}\left(\min \left(0, \operatorname{Re} a^{2} /|a|^{2}\right)\right)^{2}-4^{3} A^{2} r^{2}|a|^{-2}-4 \sigma(\operatorname{Re} a)|a|^{-2}
\end{aligned}
$$

Choosing A so that $4^{3} A^{2}<1 / 4 K$, which implies

$$
-4^{3} A^{2} r^{2}|a|^{-2}>-\frac{1}{4 K} r^{2}|a|^{-2}, \quad 4|\sigma||a|^{-1}<\frac{1}{4}
$$

and

$$
\exp \left(4 \sigma(\operatorname{Re} a)|a|^{-2}\right) \geqq 1+4 \sigma(\operatorname{Re} a)|a|^{-2}-4^{2} \sigma^{2}|a|^{-2}
$$

from which (3.6) follows.

We shall define now two classes of convolution transforms by the function $E(s)$ and the sequence $\left\{a_{k}\right\}$.

Definition 3.1. $\left\{a_{k}\right\} \in \operatorname{class} B(2, \delta)$ if

$$
\begin{array}{r}
E(s)=\prod_{k=1}^{\infty}\left(1-s^{2} a_{k}^{-2}\right), \\
\sum_{\operatorname{Rec} e_{k}^{2}<0}\left|a_{k}\right|^{-4}\left(\operatorname{Re} a_{k}^{2}\right)^{2}<\infty \tag{3.8}
\end{array}
$$

and

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left|a_{k}\right|^{-1-\delta}<\infty, \quad \sum_{k=1}^{\infty}\left|a_{k}\right|^{-2+\delta}<\infty \quad \text { for some } \delta>0 \tag{3.9}
\end{equation*}
$$

Definition 3.2. $\left\{a_{k}\right\} \in B(2)$ if there is $\delta>0$ so that $\left\{a_{k}\right\} \in B(2, \delta)$.
Definition 3.3. $\left\{a_{k}\right\} \in \operatorname{class} C(2)$ if

$$
\begin{equation*}
E(s)=\prod_{k=1}^{\infty}\left(1-s a_{k}^{-1}\right)\left(1-s \cdot \bar{a}_{k}^{-1}\right), \tag{3.10}
\end{equation*}
$$

if condition (3.8) is satisfied and $\sum\left|a_{k}\right|^{-2}<\infty$.
REMARK. $S_{2 m}=2 \sum_{k=m+1}^{\infty}\left|a_{k}\right|^{-2}$ in case of class $B(2)$ and $C(2)$. We have to introduce some more notations before being able to prove the estimation on $E(s)$ for transforms of classes $B(2)$ and $C(2)$.

$$
\begin{gather*}
Q_{m}=\sum_{k=m+1}^{\infty}\left|a_{k}\right|^{-4} . \tag{3.11}\\
Q_{m}^{(j)}=Q_{m}-\max _{m<k(1)<\cdots<k(j)}\left\{\sum_{r=1}^{j}\left|a_{k(r)}\right|^{-4}\right\} . \tag{3.12}
\end{gather*}
$$

We shall state the estimations for classes $B(2)$ and $C(2)$ together and then outline the proofs.

Theorem 3.5. If $\left\{\alpha_{k}\right\} \in B(2, \delta)$, then for $m \geqq M$ and some A and B we have:
(a) $|\sigma| \leqq A S_{2 m}^{-1 / 2},|y| \leqq B S_{2 m}^{-1 / 2}$ imply

$$
\begin{equation*}
\left|E_{2 m}(s)\right| \geqq 3 / 4 \tag{3.13}
\end{equation*}
$$

(b) $|\sigma| \leqq A\left(\sum_{k=m+1}^{\infty}\left|a_{k}\right|^{-1-\delta}\right)^{-1 / 1+\delta}$ and $|y| \geqq B S_{2 m}^{-1 / 2}$ imply

$$
\begin{equation*}
\left|E_{2 m}(s)\right| \geqq \frac{3}{4}\left(1+\sum_{n=1}^{\infty} \frac{1}{n!} y^{4 n} \prod_{l=0}^{n-1} Q_{m}^{(l)}\right)^{1 / 2} \tag{3.14}
\end{equation*}
$$

Theorem 3.6. If $\left\{a_{k}\right\} \in C(2)$ then for $m \geqq M$ there exists an A so that for $|\sigma| \leqq A S_{2 m}^{-1 / 2}$ (3.14) is valid.

Proof of Theorems 3.5 and 3.6. The proof follows the proof of Theorems 2.3 and 2.4 Using Lemmas 3.3 and 3.4 we have to choose
$r=S_{2 m}^{-1 / 2}$ and $r_{1}=\left(2 \sum_{k=m+1}^{\infty}\left|a_{k}\right|^{-1-\delta}\right)^{-1 /(1+\delta)}$ (r_{1} necessary only in proving Theorem 3.5 from Lemma 3.3). Obviously $r_{1}<\min _{k>m}\left|a_{k}\right|, r \leqq$ $\min _{k>m}\left|a_{k}\right|$. Also we have

$$
\begin{aligned}
& \sum_{k=m+1}^{\infty}\left|a_{k}\right|^{-1-\delta} \geqq\left(\sum_{k=m+1}^{\infty}\left|a_{k}\right|^{-2}\right)\left(\min _{k>m}\left|a_{k}\right|\right)^{1-\delta} \\
& \quad \geqq\left(\sum_{k=m+1}^{\infty}\left|a_{k}\right|^{-2}\right)^{(1+\delta) / 2} \cdot\left(\sum_{k=m+1}^{\infty}\left|a_{k}\right|^{-2}\right)^{(1-\delta) / 1 / 2}\left(\min _{k>m}\left|a_{k}\right|\right)^{1-\delta} \\
& \quad \geqq\left(\sum_{k=m+1}^{\infty}\left|a_{k}\right|^{-2}\right)^{(1+\delta) / 2} .
\end{aligned}
$$

This implies

$$
r_{1}=\left(2 \sum_{k=m+1}^{\infty}\left|a_{k}\right|^{-1-\delta}\right)^{-1 /(1+\delta)} \leqq\left(S_{2 m}\right)^{-1 / 2} \leqq r
$$

Choose m and K so that $\sum_{k>m}\left(\min \left(0, \operatorname{Re} a_{k}^{2} /\left|\alpha_{k}\right|^{2}\right)\right)^{2}<\varepsilon_{1}, 1 / K<\varepsilon_{1}(K$ of Lemmas 3.3 and 3.4) and, for proving Theorem 3.5, $\sum_{k=m+1}^{\infty}\left|a_{k}\right|^{-2+2 \delta}<\varepsilon_{1}$. The choice $\varepsilon_{1} \leqq 1 / 16$ will yield the number $3 / 4$ in (3.13) (every $1-\eta$ could be achieved by ε_{1} small enough) and the coefficient $3 / 4$ in (3.14).

To complete the proof we have to show

$$
\prod_{k=m+1}^{\infty}\left(1+\frac{1}{4} y^{4}\left|a_{k}\right|^{-4}\right)=1+\sum_{n=1}^{\infty} \frac{1}{n!} y^{4 n} \prod_{l=0}^{n-1} Q_{m}^{(l)}
$$

the proof of which follows stepwise that of Theorem 2.4.

The classes in this section are not included in $A(2)$ since (1.6) may fail to be valid. The estimates in this section are weaker in the case where the transforms are also $A(2)$.

Theorem 3.7. Let $\left\{a_{k}\right\} \in B(2)$ or $C(2)$. Then for σ satisfying $\operatorname{Re} a_{k} \neq 0$ for all $k>n$, and for $p, n=0,1,2 \cdots$ there exist $k_{1}(p, \sigma, n)$ and $k_{2}(p, \sigma, n)$ such that when $\sigma \neq \operatorname{Re} a_{k}$

$$
\begin{equation*}
\left|E_{2 n}(\sigma+i \tau)\right|^{2} \geqq k_{1}(p, \sigma, n)+k_{2}(p, \sigma, n) \tau^{2 p} . \tag{3.15}
\end{equation*}
$$

Proof. Deduced from Theorems 3.5 and 3.6 as Theorem 2.5 is deduced from Theorem 2.4 and 2.3.
4. Estimates for $G_{m}(t)$. We define $G_{m}(t)$, in the usual manner, by

$$
\begin{equation*}
G_{m}(t)=\frac{1}{2 \pi i} \int_{-i \infty}^{i \infty}\left[E_{m}(s)\right]^{-1} e^{s t} d s, \quad G_{0}(t)=G(t) \tag{4.1}
\end{equation*}
$$

We define also:

$$
\begin{gather*}
\alpha(m)=\max \left\{\operatorname{Re} a_{k},-\infty \mid \operatorname{Re} a_{k}<0 \text { and } k>m\right\} . \tag{4.2}\\
\beta(m)=\min \left\{\operatorname{Re} a_{k}, \infty \mid \operatorname{Re} a_{k}>0 \text { and } k>m\right\} . \tag{4.3}
\end{gather*}
$$

We recall that in the cases $\left\{a_{k}\right\} \in A(2),\left\{a_{k}\right\} \in B(2)$ and $\left\{a_{k}\right\} \in C(2)$ we have

$$
\begin{equation*}
\left|E_{2 n}(\sigma+i \tau)\right|^{2} \geqq k_{1}(p, \sigma, n)+k_{2}(p, \sigma, n) \tau^{2 p}, \tag{4.4}
\end{equation*}
$$

for $n, p=0,1,2 \cdots$ and $\alpha(2 n)<\sigma<\beta(2 n)$.
Theorem 4.1. Let $E_{n}(s), P_{n}(D)$ and $G_{n}(t)$ be defined by (2.1), (1.3) and (4.1); let (4.4) be satisfied for $m(l)$, a subsequence of m, then:
A. For any σ satisfying $\sigma(m(l))<\sigma<\beta(m(l))$ we have

$$
\begin{equation*}
G_{m(l)}(t)=P_{m(l)}(D) G(t)=\frac{1}{2 \pi i} \int_{\sigma-i \infty}^{\sigma+i \infty}\left[E_{m(l)}(s)\right]^{-1} e^{s t} d s \tag{4.5}
\end{equation*}
$$

B. Suppose in case $\alpha(m(l)) \neq-\infty$ that $a_{k(1,1)}=\cdots=a_{k\left(1, m_{1}+1\right)}$, $a_{k(2,1)}=\cdots=a_{k\left(2, m_{2}+1\right)}, \cdots, a_{k(r, 1)}=\cdots=a_{k\left(r, m_{2}+1\right)}$ are all with indices greater than $m(l)$ and $\alpha(m(l))=\operatorname{Re} \alpha_{k(1,1)}=\operatorname{Re} a_{k(2,1)}=\cdots=\operatorname{Re} a_{k(r, 1)}$, then

$$
\begin{equation*}
\frac{d^{v}}{d t^{v}} G_{m(l)}(t)=\sum_{i=1}^{r} \frac{d^{v}}{d t^{v}}\left\{P_{i}(t) e^{\left.t a_{k(i, 1)}\right\}}\right\}+0\left(e^{k(t)}\right) \quad t \rightarrow \infty \tag{4.6}
\end{equation*}
$$

where $p_{i}(t)$ are polynomials of order m_{i} and k is any real number satisfying

$$
\max \left\{\operatorname{Re} a_{k},-\infty \mid k>m(l), \operatorname{Re} a_{k}<\alpha(m(l))\right\}<k<\alpha(m(l))
$$

C. Suppose $\alpha(m(l))=-\infty$, then

$$
\begin{equation*}
\frac{d^{v}}{d t^{v}} G_{m(l)}(t)=0\left(e^{k t}\right) \quad t \rightarrow \infty \text { for any real } k, k<0 \tag{4.7}
\end{equation*}
$$

D. Suppose in case $\beta(m(l)) \neq \infty$ that $a_{r(1,1)}=\cdots=a_{r\left(1, m_{1}+1\right)}$, $\cdots a_{r(j, 1)}=\cdots=a_{r\left(j, m_{j}+1\right)}$ are all with indices greater than $m(l)$ and $\beta(m(l))=\operatorname{Re} a_{r(1,1)}=\cdots \operatorname{Re} a_{r(j, 1)}$, then

$$
\begin{equation*}
\frac{d^{v}}{d t^{v}} G_{m(l)}(t)=\sum_{i=1}^{j} \frac{d^{v}}{d t^{v}}\left\{q_{i}(t) e^{\left.t a_{r(i, 1)}\right)}\right\}+0\left(e^{k t}\right) \quad t \rightarrow-\infty \tag{4.8}
\end{equation*}
$$

where $q_{i}(t)$ are polynomials of order m_{i} and k is a real number satisfying $\beta(m(l))<k<\min \left\{\operatorname{Re} \alpha_{k}, \infty \mid k>m(l)\right.$, $\left.\operatorname{Re} \alpha_{k}>\beta(m(l))\right\}$.
E. Suppose $\beta(m(l))=\infty$, then

$$
\begin{equation*}
\frac{d^{v}}{d t^{v}} G_{m(l)}(t)=0\left(e^{k t}\right) \quad t \rightarrow-\infty \tag{4.9}
\end{equation*}
$$

where k is any real positive number.
F. For $\alpha(m(l))<\operatorname{Re} s<\beta(m(l))$ we have

$$
\begin{equation*}
\frac{1}{E_{m(l)}(s)}=\int_{-\infty}^{\infty} e^{s t} G_{m(l)}(t) d t \tag{4.10}
\end{equation*}
$$

which implies

$$
\begin{equation*}
1=\int_{-\infty}^{\infty} G_{m(l)}(t) d t \tag{4.11}
\end{equation*}
$$

Proof. The proof follows the method used in Hirschman and Widder's book "The convolution transform" [6, p. 108]. Formula (4.4), that was proved for class $A(2), B(2)$ and $C(2)$, is used here instead of the theorems on $E_{m}(s)$ in [6].

The following result will estimate $G_{2 m}(t)$ in the case when m is large near the point $t=0$ as well as when $|t| \rightarrow \infty$.

Theorem 4.2. Let $\left\{a_{k}\right\} \in A(2)$ and suppose that for some n $S_{2 m}^{(n+1)} \geqq L_{n} S_{2 m}$ where $L_{n}>0$ is independent of m, then there exist $M(n)>0$ and $A>0$ such that

$$
\begin{equation*}
\left|G_{2 m}^{(n)}(t)\right| \leqq M(n) S_{2 m}^{-(n+1) / 2} \exp \left(-A \cdot S_{2 m}^{-1 / 2}|t|\right) . \tag{4.12}
\end{equation*}
$$

Proof. By Theorem 4.1.A we have

$$
G_{2 m}(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{e^{-(\sigma+i y) t}}{E_{2 m}(\sigma+i y)} d y
$$

and therefore

$$
G_{2 m}^{(n)}(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{(\sigma+i y)^{n} e^{-(\sigma+i y) t}}{E_{2 m}(\sigma+i y)} d y .
$$

Remembering that $S_{2 m}^{(n+1)} \geqq L_{n} S_{2 m}$ implies $S_{2 m}^{(k)} \geqq L_{n} S_{2 m}$ for $k \leqq n+1$, and using Theorems 2.3 and 2.4 we obtain, choosing $\sigma=A S_{2 m}^{-1 / 2}$ for the case $t>0$,

$$
\begin{aligned}
& \left|G_{2 m}^{(n)}(t)\right| \leqq \frac{1}{2 \pi} \exp \left(-A S_{2 m}^{-1 / 2} t\right)\left\{\int_{-B S_{2 m}^{-1 / 2}}^{B S_{2 m}^{-1 / 2}} \frac{(|\sigma|+|y|)^{n}}{\left|E_{2 m}(\sigma+i y)\right|} d y\right. \\
& \left.+\int_{|y| \geqq B S_{2 m}^{-1 / 2}} \frac{(|\sigma|+|y|)^{n} d y}{\left|E_{2 m}(\sigma+i y)\right|}\right\} \leqq \exp \left(-A S_{2 m}^{-1 / 2} t\right)\left\{\frac{\sqrt{2}}{2 \pi}(A+B)^{n} 2 B S_{2 m}^{-(n+1) / 2}\right. \\
& \left.+2 \sum_{k=0}^{n}\binom{n}{k} S_{2 m}^{-k / 2} \frac{2}{3 \pi} \int_{B S_{2 m}^{-1 / 2}}^{\infty} \frac{y^{n-k} d y}{\left(1+y^{2(n+2)} \frac{1}{(n+2)!}\left(L_{(n)}\right)^{n+1} S_{2 m!}^{n+2}\left(\frac{\alpha}{4}\right)^{n+2}\right)^{1 / 2}}\right\} \\
& \leqq M(n) S_{2 m}^{-(n+1) / 2} \exp \left(-A S_{2 m}^{-1 / 2} t\right) .
\end{aligned}
$$

The result for $t<0$ is achieved choosing $\sigma=-A S_{2 m}^{-1 / 2}$.

REmark. When $a_{2 k-1}=-a_{2 k}$ we have $S_{2 m}^{(1)} \geqq(1 / 2) S_{2 m}$ and therefore Theorem 4.2 for $n=0$ includes Lemma 2.4 of [1, p. 432]. Whenever the connection between pair is $0<\theta_{1} \leqq\left|a_{2 k-1} / a_{2 k}\right| \leqq \theta_{2}<\infty$, where θ_{1}, θ_{2} are fixed for all m, we have $S_{2 m}^{(1)} \geqq L_{1} S_{2 m} L_{1}>0$. But in case of $n=0$ the restriction $S_{2 m}^{(1)} \geqq L_{1} S_{2 m}$ is not necessary as is proved by the following.

Theorem 4.3. Let $\left\{a_{k}\right\} \in A(2)$, then for some $A>0$ we have

$$
\begin{equation*}
\left|G_{2 m}(t)\right| \leqq M S_{2 m}^{-1 / 2} \exp \left(-A S_{2 m}^{-1 / 2}|t|\right) \tag{4.12}
\end{equation*}
$$

Proof. Following the proof of Theorem 4.2 and using Theorem 2.4 we have for $t>0(t<0$ can be treated similarly $)$

$$
\begin{aligned}
& \left|G_{2 m}(t)\right| \leqq \exp \left(-A S_{2 m}^{-1 / 2} t\right)\left\{\frac{\sqrt{2}}{\pi} B S_{2 m}^{-1 / 2}\right. \\
& \quad+\frac{4}{3 \pi} \int_{B S_{2 m}^{-1 / 2}}^{\infty} \frac{d y}{\left.\left(1+\frac{1}{2} y^{4} S_{2 m} S_{2 m}^{(1)}\left(\frac{\alpha}{4}\right)^{2}\right)^{1 / 2}\right\}} \\
& \left.\int_{B S_{2 m}^{-1 / 2}}^{\infty} \frac{d y}{\left(1+L y^{4} S_{2 m} S_{2 m}^{(1)}\right)^{1 / 2}}=S_{2 m}^{-1 / 2}\left(S_{2 m} / S_{2 m}^{(1)}\right)^{1 / 4}\right\}_{\left(B / L^{1 / 4} /\left(S_{2 m} / S_{2 m}^{(1)}\right)^{1 / 4}\right.}^{\infty} \frac{1}{\left(1+y^{4}\right)^{1 / 2}} d y \\
& \leqq 2^{d} S_{2 m}^{-1 / 2}\left(S_{2 m} / S_{2 m}^{(1)}\right)^{1 / 4} \int_{B_{1}\left(S_{2 m} / S_{2 m}^{(1) 1 / 4 / 4}\right.}^{\infty} \frac{d y}{1+y^{2}} \\
& \leqq 2 S_{2 m}^{-1 / 2}\left(S_{2 m} / S_{2 m}^{(1)}\right)^{1 / 4} \lim _{\zeta \rightarrow \infty}\left(\operatorname{arc} t g_{\zeta}^{\zeta}-\operatorname{arctg} B_{1}\left(S_{2 m} / S_{2 m}^{(1)}\right)^{1 / 4}\right) \\
& \leqq
\end{aligned}
$$

From this the proof can be easily concluded.
Lemma 3.2A of [1, p. 434] is generalized by Theorem 4.2 in case $S_{2 m}^{(2)} \geqq L_{2} S_{2 m}$ for some L_{2}. Case B is covered only in part. The following theorem generalizes Lemma 3.2B [1, p. 434].

THEOREM 4.4. Let $a_{k} \in A(2), b_{2 m}=0$ and suppose $0<\theta_{1}<\left|a_{2 k} / a_{2 k-1}\right|<$ $\theta_{2}<\infty$ where θ_{1}, θ_{2} are independent of k and $\left|\operatorname{Re} \alpha_{k}\right|\left|\left|\alpha_{k}\right|>\eta\right.$, then for some $A_{1}>0$ and M_{1} we have:

$$
\begin{equation*}
\left|G_{2 m}^{\prime}(t)\right| \leqq M_{1} S_{2 m}^{-1} \exp \left(-A_{1} S_{2 m}^{-1 / 2}|t|\right) \tag{4.13}
\end{equation*}
$$

Proof. Let us split the proof into two cases
(a)

$$
S_{2 m}-\max _{k>m}\left(\left|a_{k-1}\right|^{-2}+\left|a_{2 k}\right|^{-2}\right) \geqq \frac{1}{K} S_{2 m}
$$

and
(b)

$$
S_{2 m}-\max _{k>m}\left(\left|a_{2 k-1}\right|^{-2}+\left|a_{2 k}\right|^{-2}\right)<\frac{1}{K} S_{2 m}
$$

In case (a) (4.13) was proved by Theorem 4.2 for any arbitrary K. We shall choose $K>2$. To prove (4.13) in case (b) we define k_{0} by

$$
\max _{k>m}\left(\left|a_{2 k-1}\right|^{-2}+\left|a_{2 k}\right|^{-2}\right)=\left|a_{2 k_{0}-1}\right|^{-2}+\left|a_{2 k_{0}}\right|^{-2}
$$

(In case (b) the choice of k_{0} is unique.) Define $g_{k_{0}}^{*}(t)$ and $G_{2 m+2}(t)$ by:

$$
\begin{align*}
g_{\hat{k}_{0}}^{*}(t) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left[\left(1-i y / a_{2 k_{0}-1}\right)\left(1-i y / a_{2 k_{0}}\right)\right]^{-1} e^{-i y t} d y \tag{4.14}\\
G_{2 m+2}^{*}(t) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left[\left(1-i y / a_{2 k_{0}-1}\right)\left(1-i y / a_{2 k_{0}}\right)\right]\left(E_{2 m}(i y)\right)^{-1} e^{-i y t} d y \tag{4.15}
\end{align*}
$$

By [9, p. 255] we have

$$
G_{2 m}(t)=g_{k_{0}}^{*}(t) * G_{2 m+2}^{*}(t) .
$$

One can calculate $g_{k_{0}}^{*}(t)$:

$$
g_{k_{0}}^{*}(t)=\frac{a_{2 k_{0}-1} a_{2 k_{0}}}{a_{2 k_{0}-1}-a_{2 k_{0}}} \begin{cases}e^{a_{2 k} t} & t \geqq 0 \\ e^{a_{2 k}-k_{0} t} & t<0\end{cases}
$$

when $\operatorname{Re} \alpha_{2 k_{0}-1}>0, \operatorname{Re} \alpha_{2 k_{0}}<0$.

$$
g_{k_{0}}^{*}(t)= \begin{cases}\frac{a_{2 k_{0}-1} a_{2 k_{0}}}{a_{2 k_{0}}-a_{2 k_{0}-1}}\left[e^{a_{2 k_{0}-1} t}-e^{a_{2 k_{0}} t}\right] & t<0 \\ 0 & t>0\end{cases}
$$

when $\operatorname{Re} a_{2 k_{0}-1}>0, \operatorname{Re} a_{2 k_{0}}>0, a_{2 k_{0}} \neq a_{2 k_{0}-1}$.

$$
g_{k_{0}}^{*}(t)= \begin{cases}-a_{2 k_{0}}^{2} t e^{a_{2 k} t} & t<0 \\ 0 & t>0\end{cases}
$$

when $a_{2 k_{0}}=a_{2 k_{0}-1}, \operatorname{Re} a_{2 k_{0}}>0$.
Either $g_{k_{0}}^{*}(t)$ or $g_{k_{0}}^{*}(-t)$ is of the above form.

$$
G_{2 m+2}^{*}\left(t-\operatorname{Re}\left(a_{2 k_{0}+1}^{-1}+a_{2 k_{0}}^{-1}\right)\right)
$$

satisfies the assumptions of Theorem 4.3 with $S_{2 m+2}^{*}=S_{2 m}-\left|a_{2 k_{0}-1}\right|^{2}$ $-\left|a_{2 k_{0}}\right|^{2}$ and therefore

$$
\left|G_{2 m+2}^{*}(t)\right| \leqq M\left(S_{2 m+2}^{*}\right)^{1 / 2} \exp \left(-A S_{2 m+2}^{*-1 / 2}\left|t+\operatorname{Re}\left(a_{2 k_{0}+1}^{-1}+a_{2 k_{0}}^{-1}\right)\right|\right) .
$$

Integrating by parts

$$
\begin{aligned}
G_{2 m}^{\prime}(t) & =\int_{-\infty}^{\infty} g_{t_{0}}^{*}(u) \frac{d}{d t} G_{2 m+2}^{*}(t-u) d u \\
& =\left\{\int_{-\infty}^{0}+\int_{0}^{\infty}\right\}\left(\frac{d}{d u} g_{k_{0}}^{*}(u)\right) G_{2_{2 m+2}^{*}}^{*}(t-u) d u .
\end{aligned}
$$

Since

$$
\theta_{1}^{2}\left|a_{2 k_{0}-1}\right|^{2} \leqq\left|a_{2 k_{0}}\right|^{2} \quad \text { and }\left|a_{2 k_{0}}\right|^{2} \leqq \theta_{2}^{2}\left|a_{2 k_{0}-1}\right|^{2}
$$

we have

$$
\left(\theta_{1}^{-2}+1\right)\left|a_{2 b_{0}}\right|^{-2} \geqq \frac{1}{2} S_{2 m} \quad \text { and } \quad\left(\theta_{2}^{2}+1\right)\left|a_{2 k_{0}-1}\right|^{-2} \geqq \frac{1}{2} S_{2 m} ;
$$

therefore

$$
\max \left(\left|a_{2 k_{0}}\right|,\left|a_{2 k_{0}-1}\right|\right) \leqq\left[\left(2 \theta_{1}^{-2}+2\right)^{1 / 2}+\left(2 \theta_{2}^{2}+2\right)^{1 / 2}\right] S_{2 m}^{-1 / 2}=R_{1} S_{2 m}^{-1 / 2} .
$$

By the same method $\left(\theta_{2}^{-2}+1\right)\left|a_{2 k_{0}}\right|^{-2} \leqq S_{2 m}$ and $\left(\theta_{1}^{2}+1\right)\left|a_{2 k_{0}-1}\right|^{2} \leqq S_{2 m}$, from which we deduce

$$
\begin{aligned}
& \left|\operatorname{Re} a_{2 k_{0}}\right| \geqq \eta\left|a_{2 k_{0}}\right| \geqq \eta\left(\theta_{2}^{-2}+1\right)^{-1 / 2} S_{2 m}^{-1 / 2}, \\
& \quad\left|\operatorname{Re} a_{2 k_{0}-1}\right| \geqq \eta\left(\theta_{1}^{2}+1\right)^{-1 / 2} S_{2 m}^{-1 / 2}
\end{aligned}
$$

and

$$
\min \left(\left|\operatorname{Re} a_{2 k_{0}}\right|,\left|\operatorname{Re} a_{2 k_{0}-1}\right|\right) \geqq R_{2} S_{2 m}^{-1 / 2}>0
$$

where

$$
R_{2}=\eta \cdot \min \left(\left(\theta_{2}^{-2}+1\right)^{-1 / 2},\left(\theta_{1}^{2}+1\right)^{-1 / 2}\right) .
$$

One has to estimate $G_{2 m}(t)$ for different cases of $g_{k_{0}}^{*}(t)$ of which the case where $\operatorname{Re} a_{2 k_{0}}>0, \operatorname{Re} a_{2 k_{0}-1}>0$ and $a_{2 k_{0}} \neq a_{2 \jmath^{-1}}$ will be done here. The other cases are similar and simpler.

$$
\frac{d g^{*}(u)}{d u}= \begin{cases}a_{2 k_{0}-1} a_{2 k_{0}} \frac{\left(a_{2 k_{0}-1} \exp \left(a_{2 k_{0}-1} u\right)-a_{2 k_{0}} \exp \left(a_{2 k_{0}} u\right)\right)}{a_{2 k_{0}}-a_{2 k_{0}-1}} & u<0 \\ 0 & u>0 .\end{cases}
$$

Let us recall from [8, p. 203] that if $f^{\prime}(t)$ is continuous and $f(t)$ is complex valued, then

$$
\frac{f(a)-f(b)}{a-b}=\lambda f^{\prime}\left(t_{1}\right)+(1-\lambda) f^{\prime}\left(t_{2}\right) \quad t_{1}, t_{2} \in(a, b) 0<\lambda<1
$$

from which it is obvious that

$$
\frac{f\left(\zeta_{1}\right)-f\left(\zeta_{2}\right)}{\zeta_{1}-\zeta_{2}}=\lambda f^{\prime}\left(\zeta_{3}\right)+(1-\lambda) f^{\prime}\left(\zeta_{4}\right) \quad 0<\lambda<1
$$

where $\zeta_{i}=\alpha_{i} \zeta_{1}+\left(1-\alpha_{i}\right) \zeta_{2}, 0 \leqq \alpha_{i} \leqq 1$ and $i=3,4$. Substituting $f(\zeta)=\zeta e^{\zeta}, f^{\prime}(\zeta)=e^{\zeta u}+\zeta u e^{\zeta u}$, we obtain the following estimate for (d/du) $g^{*}(u)$ when $u<0$:

$$
\left|\frac{d g^{*}(u)}{d u}\right| \leqq\left|\alpha_{2 k_{0}-1} \alpha_{2 k_{0}}\right|\left(\exp \left(R_{k_{0}} u\right)+\max \left(\left|a_{2 k_{0}-1}\right|,\left|a_{2 k_{0}}\right|\right)|u| \exp \left(R_{k_{0}} u\right)\right)
$$

where $R_{k_{0}}=\min \left(\operatorname{Re} \alpha_{2 k_{0}-1}, \operatorname{Re} a_{2 k_{0}}\right)$. Therefore we obtain

$$
\begin{aligned}
\left|G_{2 m}^{\prime}(t)\right|= & \left|a_{2 k_{0}-1} a_{2 k_{0}}\right| \int_{-\infty}^{0} \exp \left(R_{k_{0}} u\right)\left\{1+|u| \max \left(\left|a_{2 k_{0}-1}\right|,\left|a_{2 k_{0}}\right|\right)\right\} \\
& \cdot S_{2 m+2}^{*-1 / 2} \exp \left(-A S_{2 m+2}^{*-1 / 2}\left|t-u+\operatorname{Re}\left(a_{2 k_{0}-1}^{-1}+a_{2 k_{0}}^{-1}\right)\right|\right) d u
\end{aligned}
$$

Using relations among $S_{2 m+2}^{*}, S_{2 m}, a_{2 k_{0}}$ and $a_{2 k_{0}-1}$ one obtains

$$
\exp \left(-A S_{2 m+2}^{*-1 / 2}\left|t-u+\operatorname{Re}\left(a_{2 k_{0}-1}^{-1}+a_{2 k_{0}}^{-1}\right)\right|\right) \leqq M_{2} \exp \left(-A S_{2 m+2}^{-1 / 2}|t-u|\right)
$$

Using this and the definition of R_{1} and R_{2} one derives

$$
\begin{aligned}
\left|G_{2 m}^{\prime}(t)\right| \leqq & M_{2} R_{1}^{2} S_{2 m}^{-1} \int_{-\infty}^{0} \exp \left(R_{2} S_{2 m}^{-1 / 2} u\right)\left\{1+|u| R_{1} S_{2 m}^{-1 / 2}\right\} S_{2 m+2}^{*-1 / 2} \\
& \cdot \exp \left(-A S_{2 m+2}^{*-1 / 2}|t-u|\right) d u
\end{aligned}
$$

We have to distinguish two cases $t<0$ and $t \geqq 0$. Let us prove first the theorem in case $t<0$:

$$
\begin{aligned}
\left|G_{2 m}^{\prime}(t)\right| \leqq & M_{2} R_{1}^{2} S_{2 m}^{-1} \exp \left(-A t S_{2 m+2}^{*-1 / 2}\right) \int_{-\infty}^{t}\left\{1-u R_{1} S_{2 m}^{-1 / 2}\right\} S_{2 m+2}^{*-1 / 2} \\
& \cdot \exp \left\{\left(R_{2} S_{2 m}^{-1 / 2}+A S_{2 m+2}^{*-1 / 2}\right) u\right\} d u \\
& +M_{2} R_{1}^{2} S_{2 m}^{-1} \exp \left(A t S_{2 m+2}^{*-1 / 2}\right) \int_{t}^{0}\left\{1-u R_{1} S_{2 m}^{-1 / 2}\right\} S_{2 m+2}^{*-1 / 2} \\
& \cdot \exp \left\{\left(R_{2} S_{2 m}^{-1 / 2}-A S_{2 m+2}^{*-1 / 2}\right) u\right\} d u .
\end{aligned}
$$

Choosing K so that $A S_{2 m+2}^{*-1 / 2}>2 R_{2} S_{2 m}^{-1 / 2}$ we have

$$
\left|G_{2 m}^{\prime}(t)\right| \leqq M_{1} S_{2 m}^{-1} \exp \left(R_{2} t S_{2 m}^{-1 / 2}\right)
$$

For $t>0$

$$
\begin{aligned}
\left|G_{2 m}^{\prime}(t)\right| \leqq & M_{2} R_{1}^{2} S_{2 m}^{-1} \exp \left(-A t S_{2 m+2}^{*-1 / 2}\right) \cdot \int_{-\infty}^{0}\left\{1-u R_{1} S_{2 m}^{-1 / 2}\right\} \cdot S_{2 m+2}^{*-1 / 2} \\
& \cdot \exp \left\{\left(R_{2} S_{2 m}^{-1 / 2}+A S_{2 m+2}^{*-1 / 2}\right) u\right\} d u \leqq M_{1} S_{2 m}^{-1} \exp \left(-A t S_{2 m+2}^{*-1 / 2}\right) \\
& \leqq M_{1} S_{2 m}^{-1} \exp \left(-R_{2} S_{2 m}^{-1 / 2} t\right)
\end{aligned}
$$

Estimations similar to those achieved in Theorem 4.2 for $\left\{a_{k}\right\} \in B(2, \delta)$ and $\left\{a_{k}\right\} \in C(2)$ are developed in the following theorems.

Theorem 4.6. Let $\left\{a_{k}\right\} \in B(2, \delta)$ and $Q_{m}^{(j)} \geqq L(j) Q_{m}$ for some j, then there exist $A>0$ and $M>0$ (independent of m) so that for $k \leqq 2 j$:

$$
\begin{equation*}
\left|G_{2 m}^{(k)}(t)\right| \leqq M Q_{m}^{-k / 4} \exp \left(-A\left(2 \sum_{k=m+1}^{\infty}\left|a_{k}\right|^{-1-\delta}\right)^{-1 /(1+\dot{\delta})}|t|\right) \tag{4.14}
\end{equation*}
$$

Theorem 4.7. Let $\left\{a_{k}\right\} \in C(2)$ and $Q_{m}^{(j)} \geqq L(j) Q_{m}$ for some j, then there exist $A>0$ and $M>0$ (independent of m) so that for $k \leqq 2 j$:

$$
\begin{equation*}
G_{2 m}^{(k)}(t) \leqq M Q_{m}^{-k / 4} \exp \left(-A S_{2 m}^{-1 / 2}|t|\right) \tag{4.15}
\end{equation*}
$$

One can note that in case $k=0$ no condition of the form $Q_{m}^{(j)} \geqq$ $L(j) Q_{m}$ is needed.

Proof of Theorems 4.6 and 4.7. Using Theorems 3.5 and 3.6 (for Theorems 4.6 and 4.7 respectively) we obtain by Theorem 4.1

$$
\left|G_{2 m}^{(k)}(t)\right| \leqq\left|e^{-\sigma t} \int_{\sigma+i \infty}^{\sigma-i \infty} \frac{(\sigma+i y)^{k} e^{-i y t}}{E_{2 m}(\sigma+i y)} d y\right|, \quad \beta(2 m)<\sigma<\alpha(2 m)
$$

Using the fact that $Q_{m}^{-1 / 4}<\left((1 / 2) S_{2 m}\right)^{-1 / 2}$, as $S_{m}^{2}>Q_{m}$ (which is achieved by dropping many positive terms) and recalling that

$$
S_{2 m}^{-1 / 2}<\left(2 \sum_{k=m+1}^{\infty}\left|a_{k}\right|^{-1-\hat{\delta}}\right)^{1 / 1+\dot{\delta}}
$$

we obtain

$$
Q_{m}^{-1 / 4}<\left(\sum_{k=m+1}^{\infty}\left|a_{k}\right|^{-1-\bar{\delta}}\right)^{1 / 1+\dot{\delta}}
$$

The completion of the proof is similar to the proof of Theorem 4.2.
5. Some inversion theorems. In this section we shall show that inversion formulae can be given for $\left\{a_{k}\right\} \in A(2),\left\{a_{k}\right\} \in B(2, \delta)$ and $\left\{a_{k}\right\} \in C(2)$.

Theorem 5.1. Suppose: (1) $G(t)$ and $E(s)$ are defined by (1.2) and $\left\{a_{k}\right\} \in A(2)$.
(2) $f(x)=\int_{-\infty}^{\infty} G(x-t) \varphi(t) d t$.
(3) For some M and $K,|\varphi(t)| \leqq K e^{M|t|}$, where $M<\min \left|\operatorname{Re} a_{n}\right|$.
(4) $b_{2 m}=o(1) \quad m \uparrow \infty$.

Then

$$
\begin{equation*}
\lim _{m \rightarrow \infty} P_{2 m}(D) f(x)=\lim _{m \rightarrow \infty} \exp \left(\left(b-b_{2 m}\right) D\right) \prod_{k=1}^{m}\left(1-\frac{D}{a_{2 k-1}}\right)\left(1-\frac{D}{a_{2 k}}\right) \tag{5.1}
\end{equation*}
$$

$\exp \left(\left(\operatorname{Re} a_{2 k-1}^{-1}+a_{2 k}^{-1}\right) D\right) f(x)=\varphi(x)$ at any point of continuity of $\varphi(t)$.
Proof. By steps following those of [1; p. 433]

$$
\begin{aligned}
& \left|P_{2 m}(D) f(x)-\varphi(x)\right| \\
& \quad \leqq \sup _{|t|<\delta}|\varphi(x-t)-\varphi(x)| \int_{-\infty}^{\infty}\left|G_{2 m}(t)\right| d t+M_{0} \int_{|t|>o}\left|G_{2 m}(t)\right| e^{s i|t|} d t .
\end{aligned}
$$

Using Theorem 4.3, the conditions of which are satisfied by the kernel $G_{2 m}\left(t+b_{m}\right)$, choosing m so big that $\left|b_{m}\right|<\delta / 2$ and $A S_{2 m}^{-1 / 2}>4 M$, we conclude the proof of the theorem.

Theorem 5.2. Suppose: Assumptions (1) and (2) of Theorem 5.1 are satisfied
(3) For $\alpha(t)=\int_{0}^{t} \varphi(u) d u$ there exist positive M and K so that $|\alpha(t)| \leqq k e^{M|t|}$ where $M<\operatorname{Min}\left|\operatorname{Re} a_{k}\right|$.
(4) $\quad b_{2 m}=o\left(S_{2 m}^{1 / 2}\right) m \rightarrow \infty$.
(5) $\int_{0}^{h}[\varphi(x+y)-\varphi(x)] d y=o(h) h \rightarrow 0$.
(6) Either $S_{2 m}^{(2)} \geqq L(2) S_{2 m}$ or $0<\theta_{1}<\left|a_{2 k-1} / a_{2 k}\right|<\theta_{2}<\infty$ and $\left|\operatorname{Re} a_{k} /\left|a_{k}\right|\right|>\eta$.

Then $\lim _{m \rightarrow \infty} P_{2 m}(D) f(x)=\varphi(x)$.
Proof. Integrating by parts and since $\int_{-\infty}^{\infty} G_{2 m}(t) d t=1$ we obtain

$$
\begin{aligned}
& \left|P_{2 m}(D) f(x)-\varphi(x)\right| \\
& \quad>\int_{|x-t| \leqq \delta}|\beta(t)|\left|G_{2 m}^{\prime}(x-t)\right| d t+\int_{|x-t| \leqq \delta}\left|G_{2 m}^{\prime}(x-t)\right||\beta(t)| d t
\end{aligned}
$$

where $\beta(t)=\int_{x}^{t}[\varphi(x+u)-\varphi(x)] d u$ and therefore $\beta(x+t)=o(t) t \rightarrow 0$ and $|\beta(t)| \leqq K_{1} e^{n[t \mid}$.

To obtain the inversion result for the case $S_{2 m}^{(2)} \geqq L(2) S_{2 m}$ we use the estimation from Theorem 4.2; while for $\left|\operatorname{Re} a_{k} / a_{k}\right|>\eta, 0<\theta_{1}<$ $\left|a_{2 k-1}\right| a_{2 k} \mid<\theta_{2}<\infty$ we use Theorem 4.4, both are applicable to $G_{2 m}\left(t+b_{2 m}\right)$.

REMARK 1. In case $a_{2 k-1}=-a_{2 k}$ (from some k onward) we can drop (5) and write instead

$$
\int_{0}^{h}[\varphi(x \pm y)-\phi(x \pm 0)] d y=o(h) \quad h \rightarrow 0+
$$

(if the numbers $\varphi(x \pm 0)$ exist) and then if we write $b_{2 m}=0$ instead of (4) and drop (6), we shall obtain

$$
\begin{equation*}
\lim _{m \rightarrow \infty} P_{2 m}(D) f(x)=\frac{1}{2}[\varphi(x+0)+\varphi(x-0)] . \tag{5.2}
\end{equation*}
$$

The proof is similar if we remember that $G_{2 m}(t)=G_{2 m}(-t)$ and therefore $\int_{-\infty}^{0} G_{2 m}(t) d t=1 / 2$.

Remark 2. The condition (3) of Theorem 5.2 seems too strong since for the case where α_{k} are real the assumption could be dropped. We hope that at least for some classes of $\left\{a_{k}\right\}$ Theorem 5.2 could be proved without (3).

Theorem 5.3. Suppose: (1) $G(t)$ and $E(s)$ are defined by (1.2) and $\left\{a_{k}\right\} \in B(2, \delta)$.
(2) $f(x)=\int_{-\infty}^{\infty} G(x-t) \varphi(t) d t$.
(3) For some M and $K|\varphi(t)| \leqq K e^{M|t|}$ where $M=\min \left|\operatorname{Re} \alpha_{k}\right|$.
(4) $\left\{\left(\sum_{k=m+1}^{\infty}\left|a_{k}\right|^{-1-\delta}\right)^{1 / 1+\delta}\right\}^{\beta} \leqq K Q_{m}^{1 / 4}$ for some $\beta \geqq 1$.
(5) $\varphi(x)-\varphi(t)=0\left(|t-x|^{\beta-1}\right) t \rightarrow x$.

Then

$$
\begin{equation*}
\lim _{m \rightarrow \infty} P_{2 m}(D) f(x)=\varphi(x) \tag{5.3}
\end{equation*}
$$

Proof. We have

$$
\begin{aligned}
& \left|P_{2 m}(D) f(x)-\varphi(x)\right|=\mid\left\{\int_{|x-t| \geqq \delta}+\int_{|x-t| \leqq \delta}\right\} G_{2 m}(x-t)[\varphi(t)-\varphi(x) d x \mid \\
& \quad \leqq K_{1} \int_{|t-x| \geqq \delta}\left|G_{2 m}(x-t)\right| e^{x t} d t+\varepsilon \int_{-\infty}^{\infty}\left|G_{2 m}(t)\right||t|^{\beta-1} d t \\
& \quad \leqq o(1)+\varepsilon K_{2} \int_{-\infty}^{\infty} Q_{m}^{-1 / 4}|t|^{\beta-1} \exp \left(-A\left(\sum_{k=m+1}^{\infty}\left|a_{k}\right|^{-1-\bar{\delta}}\right)^{-1 / 1+\delta}|t|\right) d t \\
& \quad \leqq o(1)+\varepsilon K_{2} K \int_{-\infty}^{\infty}|u|^{\beta-1} \exp (-A u) d u \leqq o(1)+\varepsilon K_{2} K
\end{aligned}
$$

$$
m \rightarrow \infty
$$

Theorem 5.4. Suppose: (1) $G(t)$ and $E(s)$ are defined by (1.2) and $\left\{a_{k}\right\} \in C(2)$.
(2) $f(x)=\int_{-\infty}^{\infty} G(x-t) \varphi(t) d t$.
(3) For some K and $M|\varphi(X)| \leqq K e^{M|t|}$ where $M=\min \left|\operatorname{Re} a_{k}\right|$.
(4) $S_{2 m}^{\beta / 2} \leqq K Q_{m}^{1 / 4}$ for some $\beta \geqq 1$.
(5) $\quad \phi(x)-\phi(t)=o\left(|t-x|^{\beta-1}\right) t \rightarrow x$.

Then

$$
\begin{equation*}
\lim _{m \rightarrow \infty} P_{2 m}(D) f(x)=\varphi(x) . \tag{5.3}
\end{equation*}
$$

Proof. Similar to that of Theorem 5.3.
Remark. When β of condition (4) of Theorem 5.4 and Theorem 5.3 is equal to one, the condition on $\varphi(t)$ is mere continuity at a point $t=x$.

Lemma 5.5. If an integer r exists such that for all $n\left|a_{n+r}\right|>$ $q\left|a_{n}\right|$ for $q>1$, then

$$
\left(\sum_{k=m+1}^{\infty}\left|a_{k}\right|^{-1-\delta}\right)^{1 / 1+\delta} \leqq K Q_{m}^{1 / 4} \quad 0 \leqq \delta \leqq 1
$$

(for $\delta=1$ we have $S_{2 m}^{1 / 2} \leqq K Q_{m}^{1 / 4}$).
Proof. Obvious.
Corollary 5.5. If the kernel is defined by $a_{2 k}=2^{k-1}(1+i)$ and $a_{2 k-1}=-2^{k-1}(1+i)$ then (5.3) is valid at any point of continuity.
6. Examples, remarks and generalizations. In this section we shall show some examples of convolution transform by giving its related sequence $\left\{a_{k}\right\}$. When we say $G(t) \in A(2), B(2, \delta)$ or $C(2)$ we mean that there is an order for which $\left\{a_{k}\right\} \in A(2), B(2, \delta)$ and $C(2)$ respectively.

Example 6.1. $\left\{a_{k}\right\}$ defined by $a_{2 k-1}=k, a_{2 k}=q^{k} e^{i \theta_{k}}$ for $q>1$, $0<\delta<\pi(1 / 2),\left|\theta_{k}-(\pi / 2)\right|>\delta,\left|\theta_{k}+(\pi / 2)\right|>\delta$. $\left\{a_{k}\right\} \in A(2)$. The kernel $G(t)$ related to $\left\{a_{k}\right\}$ is not necessarily one of those discussed in [6]; for instance in case $\theta_{k}=(2 / 5) \pi$ the result of Theorem 5.2 can be applied as $S_{2 m}^{(j)} \geqq L(j) S_{2 m}$ for all j ($j=2$ is needed).

Example 6.2. $G(t)$ defined by $a_{2 k-1}=(2 k-1)!a_{2 k}=(2 k)!e^{i \theta_{k}}$ where $-\pi<\theta_{k}<\pi,\left|\theta_{k}-(\pi / 2)\right|>\delta,\left|\theta_{k}+(\pi / 2)\right|>\delta$ for some $0<$ $\grave{o}<\pi / 2$ where the a_{k} 's are arranged in the order of $\left|a_{k}\right|$. Theorem 5.2 does not apply here as one can easily verify that $S_{2 m}^{(j)}=o\left(S_{2 m}\right)$ $m \rightarrow \infty$ for all $j>0$. We can apply Theorem 5.1 and get an inversion formula.

Example 6.3. Let c_{k} be real, $\sum c_{k}^{-2}<\infty$ and

$$
a_{2 k-1}=c_{k}\left(\sin \theta_{1}\right)^{-1} e^{i \theta_{2}}, \quad a_{2 k}=c_{k}\left(\sin \theta_{2}\right)^{-1} e^{-i \theta_{1}}
$$

where $0<\theta_{1}, \theta_{2}<\pi / 2,0<\delta_{1}<\theta_{1}+\theta_{2}<\pi / 2-\delta_{2}$. (1.5) is easily veri-
fied. (1.6) is valid also since $\sin ^{2} \theta_{1}+\sin ^{2} \theta_{2}-4 \sin ^{2} \theta_{1} \sin ^{2} \theta_{2} \geqq \eta$ and $\cos ^{2} \theta_{1}>\sin ^{2} \theta_{2}$ and therefore $\sin ^{2} \theta_{1}+\sin ^{2} \theta_{2}<1$ implies

$$
\left(1-\frac{\eta}{2}\right)\left(\sin ^{2} \theta_{1}+\sin ^{2} \theta_{2}\right)-4 \sin ^{2} \theta_{1} \sin ^{2} \theta_{2} \geqq \frac{\eta}{2}
$$

Using $\sin ^{2} \theta_{1}<\cos ^{2} \theta_{2}$ and $\sin ^{2} \theta_{2}<\cos ^{2} \theta_{1}$ we get after some calculations that $\sin ^{2}\left(\theta_{1}+\theta_{2}\right) \sin ^{2}\left(\theta_{1}-\theta_{2}\right)<\sin ^{2} \theta_{1}+\sin ^{2} \theta_{2}-4 \sin ^{2} \theta_{1} \sin ^{2} \theta_{2} \quad$ which implies (1.7). It should be noted that the class defined by $a_{2 k-1}=a_{2 k}$ and $\min \left(\left|\arg a_{2 k}\right|\left|\arg -a_{2 k}\right|\right) \leqq \pi / 4-\delta$ which includes Garder's class of transforms [5] as a very special case, is a special case of this example. Theorem 5.2 can be applied here.

EXAMPLE 6.4. Let c_{k} be real, $\sum c_{k}^{-2}<\infty$ and $a_{2 k-1}=c_{k}\left(\sin \theta_{1}\right)^{-1} e^{i \theta_{2}}$. $a_{2 k}=-c_{k}\left(\sin \theta_{2}\right)^{-1} e^{i \theta_{1}}$ where either $0<\theta_{1}, \theta_{2}<\pi / 2,0<\delta,<\theta_{1}+\theta_{2}<\pi / 2-\delta_{2}$ or $-(\pi / 2)<\theta_{1}, \theta_{2}<0,-(\pi / 2)+\delta_{2}<\theta_{1}+\theta_{2}<\delta_{1}<0$.

The inqualities used in Example 6.3 for the validity of $\left\{a_{k}\right\} \in A(2)$ can also be used here. It should be noted that the class of transforms defined by Dauns and Widder [1] is the case $\theta_{1}=\theta_{2}$ here.

EXAMPLE 6.5. Let $a_{2 n-1}=n^{\gamma}(1+i), a_{2 n}=n^{\gamma}(1-i), \gamma>1 / 2$. In this case $\left\{a_{k}\right\} \notin A(2)$ (since (1.6) is not satisfied) but clearly $\left\{a_{k}\right\} \in C(2)$. In this case β of Theorem 5.4 is easily computed as $S_{2 m}=$ $(1+o(1)) 4 \gamma m^{-2 \gamma+1}, Q_{m}=(1+o(1)) 4 \gamma m^{-4 \gamma-1} m \rightarrow \infty$ and therefore

$$
\left(-\gamma+\frac{1}{2}\right) \beta \leqq-\gamma+\frac{1}{4}
$$

that is $\beta \geqq 1+1 / 2(2 \gamma-1)$. From this one can see easily that: (a) When $\gamma=1$ it is enough to have at $t=x \varphi(t)-\varphi(x)=o\left(|t-x|^{1 / 2}\right)$ for Theorem 5.4.
(b) When $\gamma>3 / 4$ it is enough to have $\varphi(t)-\varphi(x)=0(t-x)$ $t \rightarrow x$ or it is enough for $\varphi(t)$ to have a left and right derivative at $t=x$.

ExAMPLE 6.6. $a_{2 n-1}=n^{\gamma}(1+i), a_{2 n}=-n^{\gamma}(1+i)$. For $\gamma>3 / 4$ $\left\{a_{k}\right\} \in B(2,1 / 3)$. The following remarks will constitute generalizations of the Theorems of $\S 5$ in various directions.

Remark 6.1. In Theorem $5.1|\varphi(t)| \leqq K e^{1 I|t|}$ can be replaced by $\left|\int_{0}^{t} \varphi(t) d t\right| \leqq K e^{M|t|}$ if for every $\delta>0$ if

$$
\begin{equation*}
\left(S_{2 m} S_{2 m}^{(1)} S_{2 m}^{(2)}\right)^{-1 / 2} \exp \left(-\delta S_{m}^{-1 / 2}\right)=o(1) \quad m \rightarrow \infty \tag{6.1}
\end{equation*}
$$

This result can be achieved by a proper change of Theorem 4.2 that will yield now

$$
\begin{equation*}
\left|G_{2 m}^{\prime}(t)\right| \leqq M\left(S_{2 m} S_{2 m}^{(1)} S_{2 m}^{(2)}\right)^{-1 / 2} \exp \left(-A S_{2 m}^{-1 / 2}|t|\right) \tag{6.2}
\end{equation*}
$$

Remark 6.2. In Theorems 5.3 and 5.4 condition (3) can be replaced by $\left|\int_{0}^{t} \varphi(t) d t\right| \leqq K e^{M|t|}$ if either $Q_{m}^{(1)} \geqq L Q_{m}$ or if for all $\eta>0$

$$
\left.\left(Q_{m}^{(1)} Q_{m}\right)^{-1 / 4} \exp \left(-\eta \sum_{m+1}^{\infty}\left|a_{k}\right|^{-1-\bar{\delta}}\right)^{-1 /(1+\bar{\delta})}\right)=o(1) \quad m \rightarrow \infty
$$

for Theorem 5.3 and $\left(Q_{m}^{(1)} Q_{m}\right)^{-1 / 4} \exp \left(-\eta S_{2 m}^{-1 / 2}\right)=o(1) m \rightarrow \infty$ for Theorem 5.4. For the above generalization slight improvements of Theorems 4.6 and 4.7 are needed in case $Q_{m}^{(1)} \geqq L Q_{m}$ is not satisfied.

Remark 6.3. If $S_{2 m}^{-1 / 2} \leqq K Q_{m}^{1 / 4}$, then in Theorem $5.4 \varphi(t)-\varphi(x)=$ $0(1) t \rightarrow x$ can be replaced by

$$
\int_{x}^{x+h}[\varphi(t)-\varphi(x)] d t=o(h) \quad h \rightarrow 0
$$

Remark 6.4. If in Theorem 5.3 (5) is replaced by

$$
\varphi(t)-\varphi(x+)=o\left(|t-x|^{\beta-1}\right) \quad t \rightarrow x+
$$

and

$$
\varphi(t)-\varphi(x-)=o\left(|t-x|^{\beta-1}\right) \quad t \rightarrow x-,
$$

then

$$
\lim _{m \rightarrow \infty} P_{2 m}(D) f(x)=\frac{1}{2}[\varphi(x+)+\varphi(x-)] .
$$

Remark 6.5. If in Theorem 5.3 we have

$$
\left(\sum_{m+1}\left|a_{k}\right|^{-1-\bar{\delta}}\right)^{1 / 1+\bar{\delta}} \leqq K_{1} Q_{m}
$$

then $\varphi(t)-\varphi(x)=o(1) t \rightarrow x$ can be replaced by

$$
\int_{x}^{x+h}[\varphi(x \pm t)-\varphi(x \pm 0) d t=o(h) \quad h \rightarrow 0+
$$

and then

$$
\lim _{m \rightarrow \infty} P_{2 m}(D) f(x)=\frac{1}{2}[\varphi(x+0)+\varphi(x-0)] .
$$

References

1. J. Dauns and D. V. Widder, Convolution transforms whose inversion function have complex roots, Pacific J. Math. (2) 15 (1965), 427-442.
2. Z. Ditzian, Inversion formulae and various properties of integral transforms, Ph . D. thesis, 1965, Hebrew University, Jerusalem, Israel (Hebrew, English summary).
3. - On asymptotic estimates for kernels of convolution transforms, Pacific J. Math. 21 (1967), 249-254.
4. Z. Ditzian and A. Jakimovski, Inversion and jump formulae for variation diminishing transforms. (to appear)
5. A. O. Garder, The inversion of a special class of convolution transforms M. A. thesis, 1950, Washington University, St. Louis Missouri.
6. I. I. Hirschman and D. V. Widder, Convolution transforms with complex kernels, Pacific J. Math. 1 (1951).
7. - The Convolution Transform, Princeton Press, 1955.
8. R. M. Mcleod, Mean value theorems for vector valued functions, Proc. Edin. Math. Soc. (11), 14 (1965) Part 3, 197-211.
9. D. V. Widder, The Laplace Transform, 2nd ed., Princeton Press. 1946.

Received December 20, 1966.

The University of Alberta
Edmonton, Canada

