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A RADICAL FOR LATTICE-ORDERED RINGS

J. E. DIEM

The main result of this paper states that for a lattice-
ordered ring (7-ring) A with no nonzero nilpotent ^-ideals the
following are equivalent: (i) A is an /-ring; (ii) A is a
subdirect union of totally-ordered rings with no nonzero divisors
of zero; (iii) x+x~ = 0 for all x e A; (iv) x+ax~ — 0 for all
x,ae A; and (v) a(b V c) = ab v ac and (b V c)a — ba V ca for
all a, b, c e A with a Ξ> 0. In particular, the equivalence of
(i) and (iii) implies that an l-ring which has an identity that
is a weak order unit and which has no nonzero nilpotent I-
ideals is necessarily an /-ring.

The basic tool in our considerations is the notion of prime
Z-ideal. Specifically, call a proper /-ideal P of an Z-ring A
prime if / £ P or J Q P wherever / and J are Z-ideals of A
with IJ £ P. Various conditions are obtained on A, each of
which forces A modulo every prime Z-ideal to be totally-ordered
with no nonzero divisors of zero. Moreover the relationship
between the join of all the nilpotent Z-ideals of A and the
intersection of all the prime Z-ideals of A is investigated in
order to obtain the theorem mentioned above.

The P-radical of an l-ήng A is the intersection of all the prime
Z-ideals of A. In § 2 the general theory of the P-radical is considered.
The results here are analogous to ring theoretic results found in
McCoy [4] and Jacobson [2] (Chapter VIII).

In § 3 the general theory of the P-radical which is more or less
independent of the order structure is tied together with the order.
Specifically we investigate the relationship between the P-radical and
the join of all of the nilpotent ί-ideals for various classes of ί-rings.

§ 4 contains a proof of the theorem mentioned above.

2* Prime ϊ-ideals and the P-radicaL The results of this section
are analogous to ring theoretic results found in McCoy [4] and Jacobson
[2] (Chapter VIII). Consequently after proving a few of the results
in detail, we sketch proofs indicating the idiosynrasies they take on
in ί-rings and note the analogous result in McCoy or Jacobson.

The reader is referred to Birkhoff and Pierce [1] and Johnson [3]
for the general theory of i-rings. Our notation is the same as Johnson
[3]. Also, the word ϊ-ideal, unmodified means proper Z-ideal.

DEFINITION 2.1. ( i ) An Z-ideal P of an Z-ring A is prime if
/ g P o r / g ? whenever I and J are /-ideals of A with IJ £ P.

(ii) A nonzero Z-ring A is prime if {0} is a prime Z-ideal.
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(iii) A nonzero Z-ring A is an Z-domain if A+\{0} is closed under
multiplication.

REMARK. If / and J are Z-ideals of an Z-ring A, then IJ denotes
the ring theoretic product of the ideals / and J. Note that // is not,
in general, an Z-ideal. We can " make IJ into an /-ideal" by forming
ζljy, the smallest Z-ideal containing IJ. Birkhoff and Pierce [1] have
denoted this by I-J and called it the Z-product of I and J. As we
shall have ocassion to use the notation <£Γ> for the Z-ideal generated
by a subset S of an Z-ring A, we use the notation ζUy for the Z«
product of two Z-ideals / and J. Note that if J, J, and P are Z-ideals
of A, then // g P if and only if <//> £ P; and hence the definition
of prime Z-ideal is independent of the choice of IJ or <(/«/>.

To set the situation we note that a prime Z-ideal need not be prime
as a ring ideal. In fact, a prime Z-ideal of an archimedean commutative
Z-ring in which the square of every element is positive need not be
prime as a ring ideal (See 2.3 below.). However, Johnson [3] has shown.

THEOREM 2.2. Let A be an f-ring,1 and let P be an l-ideal of
A. Then the following are equivalent:

( i ) A/P is totally-ordered with no nonzero divisors of zero;
(ii) P is prime as a ring ideal; and
(iii) P is a prime l-ideal.

In § 4 we generalize 2.2 to several classes of Z-rings each of which
properly contains the class of /-rings.

EXAMPLE 2.3. A prime Z-ideal of an archimedean commutative
Z-ring in which the square of every element is positive which is not
prime as a ring ideal.

Let S be the semigroup consisting of two elements a and b with
multiplication ab = ba = a2 = b2 = α, and let R(S) denote the semigroup
ring on S with real coefficients. Make R(S) into an archimedean
commutative Z-ring by decreeing that aa + βb Ξ> 0 if a 2r 0 and β ^ 0
where a and β are real numbers. Then the square of every element
of R(S) is positive since (aa + βbf = (a + βfa. Now, {0} is not prime
as a ring ideal since (α — b)2 = 0. However, it is easy to see that
R(S) is an Z-domain, and hence {0} is a prime Z-ideal by the next result.

2.4. // P is l-ideal of an l-ring A such that A+\P is closed

1 An /-ring is an l-ring in which a Λ b = 0 and c Ξ> 0 imply ca Λ b = 0 and ac A b = 0.
In [1] Birkhoff and Pierce showed that the class of /-rings is identical with the class
of subdirect unions of totally-ordered rings.
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under multiplication, then P is a prime l-ideal. The converse holds
is A is commutative.

Proof. First suppose that I and J are ί-ideals of A with IJ S P.
If I is not contained in P, then there is a non-zero positive element
a e I\P. Let b be a positive element of J. Then abe IJ S P, so that
δ e P since a £ P. It follows that J Q P.

Now suppose that A is commutative, P is a prime Z-ideal of A,
and <Xi, α2 e A+ with αxα2 e P. Then ^ α , ) £ P. Let Z; 6 <α̂ >, i = 1, 2.
Then I z{ \ ̂  w ^ + r^ (i = 1, 2.) for suitable ?\ e A+ and suitable
nonnegative integers nim Thus

i + na.Xn^ +r2α2)

which belongs to P since A is commutative and ζa^a^ £ P. It follows
that ^a,y^a2y £ P; and hence either a, 6 P or a2 e P.

The following characterization of prime Z-ideals will be used re-
peatedly in the sequel.

2.5. An l-ideal P of an l-ring A is prime if and only if a,b e A+

and aA+b £ P imply a e P or b e P.

Proof. Necessity. From aA+b £ P it follows that

A+> £ P.

Thus either <A+αA+> £ P or <(A+bA+> £ P. Suppose that <A+αA+> £ P.
Then <α>3 £ P, and hence ζζaXayχa> £ P. Thus either <α>2 £ P or
<V> £ P. In either case we have that ae P.

Sufficiency. If I and J are Z-ideals of A which are not contained
in P, then there is an a e I+\P and a 6 6 J^\P. If IJ £ P, then
aA+b ξΞ= IJ Q P; so that ae P or 6 G P . Since this contradicts the
choice of a and 6, I J is not contained in P; and we are done.

Note that 2.5 says that an i-ideal P of an i-ring A is prime if
and only if A+\P is an m-system in the sense of

DEFINITION 2.6. A nonempty subset M of an Z-ring A is an m-
system if each element of M is positive and if for α, b e M there is
an x e A+ such that axb e M.

Note that nonempty subset S of A+ which is closed under multi-
plication is an m-system since aab e S whenever a, be S.

The next result, as did the proceeding, has its analogue in [4].

2.7. Let M be an msystem of an l-ring A, and let I be an I-
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ideal of A that does not meet M. Then I is contained in a prime
l-ideal that does not meet M.

Proof. The existence of an i-ideal P of A which is maximal with
respect to the property of not meeting I is guaranteed by Zorn's
Lemma. We show that P is prime. The proof of this is an in [4]
(Lemma 4) once one knows that the Z-ideal generated by P and a
positive element a of A not in P is {z e A: | z | ^ p + na + ra + sa + tav
where r, s, t,v e A+, p e P + , and n is a nonnegative integer}.

DEFINITION 2.8. The P-radical, P(A), of an Z-ring A is the
intersection of all of the prime i-ideals of A.

Recall that the i-radical of an Z-ring A is the set N(A) = {ae A:
there is a positive integer n = n(a) such that

x01 a I xL I a \ x2 xn_γ \ a \ xn = 0

for all x0, xlf x2, « , ^ G 4 } ([1], p. 45.) If A is comutative, then
N(A)=^{aeA: \a\ is nilpotent} ([1], Corollary 1, p. 45). Moreover,
for an arbitrary ί-ring A, N(A) is the join of all of the nilpotent l-
ideals of A ([1], Th. 5).

Now suppose that a e A is not nilpotent. Then since 0 < | an \ ^
a \n for all n, \ a | is not nilpotent. Thus, by 2.7, there is a prime

ί-ideal P of A not meeting the m-system {| a |, | a |2, , | a \n, •}. It
follows that a does not belong to P(A), and hence every element of
P(A) is nilpotent. Now note that every prime Z-ideal of A contains
every nilpotent ί-ideal of A, and hence we have

2.9. The P-radical of an l-ring A is a nil l-ideal of A containing
the l-radical of A.

The proof of the next result is as in [4] (Theorem 5).

2.10. // A is an l-ring, then P(A/P(A)) is zero.

The next result is useful in relating the ϊ-radical to the P-radical.

2.11. Let I be an l-ideal of an l-ring A such that N(A/I) is
zero, and let J be an l-ideal of A properly containing I. Then there
is a prime l-ideal P of A containing I but but not containing J.

Proof. (After Jacobson, [2], p. 196) Choose α0 e J+\I. Then since
N(AjI) is zero, A/I has no nonzero nilpotent Z-ideals; and hence <αoy
is not contained in I for any positive integer k. Now, (A+a0A

+y2 is
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not contained in I since <αo)>
3 £ ζA+a0A

+y and <αo>
6 is not contained

in /. Now suppose that aobaQ e I for all b e A+. Then for z e ^A+aQA+y2,
there are xi9 y< e ζA+a0A

+y and tif ui9 vi9 wu e A+ such that

I s 1 ̂  Σ I ^ lί Vi I ^ Σ (tiaoUiHVidoWi) .

But doUiVidoe I+, so that Z G J . Consequently there is a 60eA+ such
that ax = αoδoαo e J*+\/. Similarly, there is a δx e -A+ such that α2 =
α^α! € J+\I. Containing inductively, we obtain two sequences: {α;}Γ=o S
J+\I and {6-}Γ=o £ ^ + such that an = α._16w_1αtι_1 e J+\/ for all w ^ 1.
It follows that {αjjlo is an m-system that does not meet /. By 2.7
there is a prime Z-ideal P of A containing / that does not meet {a{}T=0.
Since a{eJ for ί ^ 0, we know that J is not contained in P; and
hence P is as desired.

2.12. // A is an l-ving, then P(A) = Π {!> I i>s a n l-ideal of A
and N(A/I) is zero}.

Proof. Let £f(A) - Γ\{I: I is an Z-ideal of A and N(A\I) is zero}.
If P is a prime Z-ideal of A, then N(A\P) £ P(A\P) = {0}. Thus

^f (A) S P(A).
Now let Jf£f(A) be a nilpotent Z-ideal of A/£?(A), and let I be

an Z-ideal of A such that N(A/I) is zero. Then J w £ ^f(A) for some
positive integer n; and since ^f(A) £ /, we know that Jw £ /. It
follows that <Z + J>// is a nilpotent Z-ideal of A/1. Since N(A/I) is
zero, it follows that J £ J. Thus J £ ^ ( A ) , so that 2V(A/J2^(A)) is
zero. Now if J*?(A) is properly contained in P{A), then, by 2.11 there
is a prime Z-ideal containing Sf(A) but not containing P(A). Since
this contradicts the definition of P(A), £?(A) = P(A).

2.13. // A is an l-ring, the N(A/N(A)) is zero if and only if
if N(A) = P(A). Hence N(A) is zero if and only if P(A) is zero.

Proof. If N(A/N(A)) is zero, then P(A) = Γi{I: I is an Z-ideal of
A and N(A/I) is zero} £ N(A) £ P(A).

If N(A) = P(A), then N(A/N(A)) - ΛΓ(A/P(A)) £ P(A/P(A)) which
is zero.

The next result has its analogue in [4] (Theorem 6). It will be
used in § 4 to obtain the theorem mentioned in the introduction.

2.14. An l-ring A has zero l-radical if and only if it is a
subdirect union of prime l-rings.
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Proof. The proof is immediate from 2.13.

The remaining results of this section will be useful in the next
section where we determine various classes of ί-rings for which the
P-radical equals the Z-radical.

2.15. If A is an l-ring, then P(A) = {ae A: any m-system con-
taining I a I contains 0.

Proof. Suppose that there is an m-system M containing | a | that
does not contain 0. Then, by 2.7, there is a prime ί-ideal P of A
that does not meet M. Thus | a | does not belong to P, and it follows
that a does not belong to P(A).

Conversely, let ae A be such that any m-system containing | α |
contains 0, and let P be a prime i-ideal of A. If a does not belong
to P, then A+\P is an m-system containing \a\. Thus 0 e A+\P which
is clearly impossible. Hence aeP(A).

2.16. // A is an l-ring, then N(A) = {αe A: there is a positive
integer n = n(a) such that (x \ a \)nx — 0 for all x e A+}.

Proof. It is clear from the definition of N(A) that if a e N(A),
then there is a positive integer n such that (x \ a \)nx = 0 for all x e A+.

Conversely, suppose that there is a positive integer n such that
(x I a \)nx = 0 for all x e A+, and let xQ, x19 , xn e A+. Then, since
x = x0 V Xι V V xn ^ %i for all i = 0, 1, , n, it follows that
0 = (x I a \)nx ^ x01 a \ xx xn_ι \ a \ xn ^ 0. Since every element of A
is the difference of two positive elements, the result follows.

2.17. If I is a right (resectively, left) l-ideal of an l-ring A,

then P(I) = P(A) Π /.

Proof. Let a e P(I) and let M be an m-system in A containing
1 a \. We show that M f] I is an m-system in /. Let x, y e M f) I.
Then there is a z e A+ such xzy e M Γ)I. Again there is a zι e A+ such
that xzyzxxzy e M Π /. But zyzγxz e I+ since / is a right (respectively,
left) i-ideal; hence M Γϊ I is an m-system in /. By 2.15, 0 e M Π /
since \a\eMf]I and α e P ( J ) . Again, by 2.15, it follows that
a e P(A) Π /.

Conversely, let a e P(A) Π /, and let M be an m-system in I con-
taining \a\. Then M is an m-system in A containing | α | . By 2.15,
M contains 0; and hence a e P(I).

2.18. If I is a right (respectively, left) l-ideal of an l-ring A,
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then N(I) = N(A) n /.

Proof. If a e N(I), then, by 2.16, there is a positive integer n such

t h a t (x I a \)n x = 0 for all xel+. But for i / G i + we know t h a t

y I a I ?/ e I + , and hence 0 = (2/1 a \\ y \ x)ny = (y\a \)2n+1y; so t h a t

y e N(A) n /

by 2.16. That N(A) Π IS N(I) is clear from the definition of N(A).

3* The P-radical equals the 1-radicaL Birkhoff and Pierce ([1],
p. 45, Example 8) have given an example of an Z-ring A such that
N(A/N(A)) is not zero. By 2.13, the Z-radical of such an Z-ring is pro-
perly contained in its P-radical. However, there are many i-rings for
which the Z-radical is equal to the P-radical. In this section we identify
some of them and prove some results about Z-rings in which the square
of every element is positive.

THEOREM 3.1. If A is an l-ring which is commutative, or satisfies
either the ascending or descending chain condition on l-ideals, or is
an f-ring, then N(A) — P(A).

Proof. Birkhoff and Pierce ([1], p. 46, Corollary 4; and [1], p. 63,
Corollary 1) have shown that if an Z-ring A is commutative, or satisfies
either the ascending or descending chain condition on i-ideals, or is an
/-ring, then N(A/N(A)) is zero. The result follows from 2.13.

COROLLARY 3.2. If A is an l-ring, and if P(A) is commutative,
or satisfies either the ascending or descending chain condition on
l-ideals, or is an f-ring, then N(A) — P(A).

Proof. Using 2.9, 2.17, 2.18, and 3.1, we have

N(A) = N(A) D P(A) = N(P(A)) = P(P(A)) = P(A) Π P(A) = P(A) .

In [1] Birkhoff and Pierce show that is A is an ί-ring with an
identity element 1 that is a weak order unit2, then every nilpotent
of A is, in absolutive value, <^1. We generalize this result to

THEOREM 3.3. Let A be an l-ring with an identity element 1,
and suppose that the square of every element of A is positive. Then
each nilpotent x of A is, in absolute value, ^ 1 .

Proof. (We are indebted to the referee for this proof.) The

2 A positive element e of an l-τing A is a weak order unit if e A x = 0 and xζ-A
imply x = 0.
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proof is by induction on the nilpotency index k of x. For k — 1 the
result is trivial. For k ^ 1 nilpotency index of x2 is less than k.
Thus x2 = I x21 ^ 1. Since 0 ^ (a; - I)2 - x2 - 2x + 1 and 0 ^ (α; + I)2 =
x2 + 2# + 1, we have that - (1 + x2) <; 2x ^ 1 + a?2. Thus 2 | α; | =
I 2x I g 1 + x2 ^ 2. 1, and hence | a | ^ 1.

COROLLARY 3.4. Let A be an l-ring with an identity element 1,
and suppose that the square of every element of A is positive. Then
N(A) = P(A).

Proof. By 3.3, B(A) = {x e A: \x\ S nl for some positive integer
n} contains all of the nilpotents of A, and hence it contains P(A).
Now, Birkhoff and Pierce [1] have shown (and it is easy to see) that
B(A) is a sub-ϊ-ring of A which is an /-ring. Consequently P(A) is
a sub-/-ring of A, so-that, by 3.2, N(A) = P(A).

We now turn our attention to finding a sufficient condition for
the P-radical of an ί-ring A in which the square of every element is
positive to be equal to {xe A; \x\ is nilpotent}.

LEMMA 3.5. Let A be an l-ring in which the square of every
element is positive. Then for α, b e A+ with a2 = b2 = 0, we have
that ab — ba = 0.

Proof. Since ab, ba, and (α — bf are positive, we know that
0 <L (a — bf = — ba — ab ̂  0. Thus ab + ba = 0, and the lemma
follows.

LEMMA 3.6. Let A be a prime l-ring in which the square of
every element is positive. Then A is an l-domain if and only if
α, b 6 A, a Λ b = 0, and ab = 0 imply ba = 0.

Proof. Necessity is clear since if A is an ί-domain and a, b e A+

are such that ab = 0, then either a = 0 or & = 0.
Conversely, we first show that A has no nonzero positive nilpotents

of index 2. Suppose that ae A+ and α2 = 0, and let z e A+. We will
show that aza = 0. There are three cases.

1. O ^ r n ^ az. Then 0 S aza ^ a2z = 0, so that αzα = 0.
2. 0 ^ α2 ̂  za. Then 0 ^ αzα ^ zα2 = 0, so that aza = 0.
3. (2?α - α^) e A+ U - (A+). Then («α - az)+ > 0 and (za - az)~ > 0.

Now 0 ^ (za — az)+(za — az)~ = (za — az)+(az — za)+ S za2z = 0. Thus

(za — az)+(za — az)~ — 0, and hence (za — az)-(za — az)+ = 0 since

(za — az)+ Λ (za — az)~ = 0. Now («α — az)+y(za — az)~ is a positive

nilpotent of index 2 for any y eA+; so that, by 3.5, a(za — az)+y(za —
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az)- — 0. Since A is a prime Z-ring and (za — az)~ > 0, we know that
a(za — az)+ — 0 by 2.5. Similiarly, a(za — az)~ = 0. Consequently,
we have that 0 = a[(za — az)+ — (za — az)~] — a(za — az) = aza for all
zeA+. Again using 2.5, it follows that a — 0.

Now let a,beA+ with α& = 0. Then for any zeA+, bza is a
nilpotent of index 2 and hence is 0. Thus, by 2.5, a = 0 or 6 = 0;
and the proof is complete.

REMARK. We do not know if every prime Z-ring A in which the
square of every element is positive satisfies: a, be A, a A b = 0, and
ab = 0 imply ba = 0.

THEOREM 3.7. Le£ A δe α% l-ring in which the square of every
element is positive, suppose that disjoint elements of A commute,
and suppose that A has zero l-radical. Then A is a subdirect union
of l-domains in which all squares are positive and disjoint elements
commute.

Proof. B 2.14, A is a subdirect union of a family {Aa; a e Γ} of
prime Z-rings. Since both of the properties of disjoint elements com-
muting and all square being positive are preserved under homomorphisms,
each Aa has these properties and hence is an ί-domain by 3.6.

COROLLARY 3.8. Let A be an l-ring in which the square of every
element is positive, and suppose that disjoint elements of A commute.
Then P(A) — {x e A: | x \ is nilpotent}. Moreover, if A has an identity
element 1, then P(A) = {xe A: x is nilpotent}.

Proof. Since P(A/P(A)) is zero, A/P(A) is a subdirect union of
Z-domains by 3.7. It follows that A/P(A) has no nonzero positive
nilpotents, and hence all of the positive nilpotents of A are in P(A).
The first part of the corollary now follows since P(A) is a nil i-ideal.

Finally, if A has a positive identity 1, then every nilpotent of A
is contained in the sub-/-ring B(A) — {x e A: | x | <J nl for some non-
negative integer n} of A by 3.3. But an element of an /-ring is
nilpotent if and only if its absolute value is. Thus, by the first part,
P(A) = {x e A: x is nilpotent}.

THEOREM 3.9. Let A be an archimedean l-ring in which the
square of every element is positive. Then

(i ) if x e A+ and x2 = 0, then xA — Ax — {0};
(ii) every positive nilpotent of A has index ^ 3;
(iii) P(A)A2 - A2P(A) - P(Af - {0};
(iv) N(A) = P(A) — {xe A: \x\ is nilpotent};
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(v) if A has no nonzero positive left or right annihilators, then
A has no nonzero positive nilpotents; and

(vi) if A has an identity element 1, then A has no nonzero
nilpotents.

Proof. The proof is broken up into several steps.
(1) If x e A+ and x2 = 0, then xA = Ax = {0}.
Proof. Let y e A+, and let n be an integer. Then 0 <̂  (nx — yf =

n2x2 — nxy — nyx + y2; and hence n(xy + yx) ̂  y2. Since A is archi-
medean, xy + yx = 0. Since aψ and yx are positive, xy = yx = 0.
Since every element of A is the difference of two positive elements,
xA = Ax = {0}.

(2) Every positive nilpotent of A has index ^ 3.
Proof. Let & be a positive nilpotent of index n >̂ 4. Then

2w - 4 ̂  w, so that (α*-2)2 = 0. Hence, by (1), xn~ι = x(xn~2) = 0; and
the result follows.

( 3 ) Let η(A) = {x e A: | x | is nilpotent}. Then N(A) = P(A) = η(A).
Proof. Let x e η{A). For y e A+ and n an integer, we have that

0 5g (n I x I — τ/)2 — n2 \ x |2 — n \ x \ y — ny \ x \ + y2; so t h a t n(\ x \ y +

y I x I) ̂  n 2 1 a? |2 + y 2 . B u t | a; |3 - 0 b y (2) , s o t h a t | x |2 i s b o t h a l e f t a n d
r i g h t a n n i h i l a t o r o f A b y ( 1 ) . H e n c e f o r z e A + we h a v e t h a t ( \ x \ y z +
y \ x \ z ) <z y 2 z . S i n c e A i s a r c h i m e d e a n , i t f o l l o w s t h a t \ x \ y z = y \ x \ z =
0; a n d ; h e n c e \ x \ y z = y \ x \ z = 0 f o r a l l y , z e A . S i n c e y \ x \ z = 0
for all J/,2GA, we have that x e JNΓ(A); and hence

Note that since | a; | yz = 0 and η(A) = P(A), we have that P(A)A2 =
= {0}. Moreover, if the inequality n(\ x \ y + y I x |) ^ n2 \ x \ + y2

is multiplied on the left by ze A+, then it follows that A2P(A) = {0}.
We have now completed the proofs of parts (i) through (iv).

Part (v) is an immediate consequence of part (i); and part (vi)
follows from part (i) and (v) since if A has an identity element, then
x is nilpotent if and only if \x\ is.

4* Subdirect unions of totally-ordered rings with no nonzero
divisors of zero* In this section we prove the theorem mentioned in
the introduction. It is a consequence of the following three propositions.

PROPOSITION 4.1. Let A be an Z-ring which satisfies the identity
x+ax~ — 0. Then an ί-ideal P of A is prime if and only if A/P is
totally-ordered with no nonzero divisors of zero.

Proof. If A/P has no nonzero divisors of zero, then P is a prime
Z-ideal by 2.4.
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Conversely, we may suppose that A is a prime ί-ring since the
identity x+ax~ = 0 is preserved under homomorphisms. But if x+ax~ = 0
for all a e A+, then either x+ = 0 or x~ = 0 by 2.5. It follows that
A is totally-ordered. By 2.2, A has no nonzero divisors of zero.

In the next proposition we shall call an ί-ring in which α(6 V c) =
ab V ac and (6 V c)a = ba V ca for α ̂  0 a distributive ί-ring. Note
that a distributive ί-ring also satisfies a(b A c) — ab Λ ac and (6 Λ c)a =
6α Λ cα for α ̂  0.

PROPOSITION. Let A be a distributive ί-ring. Then an ί-ideal P
of A is prime if and only if A/P is totally-ordered with no nonzero
divisors of zero.

Proof. Sufficiency is a restatement of 2.4.
Conversely, let P be a prime ί-ideal of A. Since A/P is a distribu-

tive ί-ring, we may assume that A is a prime ί-ring. If ae A+ is
either a left or right annihilator, then aA+a = {0}; so that, since A
is a prime ί-ring, a = 0 by 2.5. But ([1], Th. 14) a distributive
ί-ring with no nonzero left or right positive annihilators is an /-ring.
Hence A is totally-ordered with no nonzero divisors of zero by 2.2.

PROPOSITION 4.3. Let A be an ί-ring which satisfies the identity
x+x~ = o. Then an ί-ideal P of A is prime if A/P is totally-ordered
with no nonzero divisors of zero.

Proof. Sufficiency is a restatement of 2.4.
Conversely, we may assume that A is a prime ί-ring since the

identity x+x~ = 0 is preserved under homomorphisms. Then ([1], p. 59,
Lemma 2) all squares of A are positive. Also, disjoint elements of A
commute since x+x~ = 0 for all x e A. Thus, by 3.6, A is an ί-domain.
Since x+x~ = 0 for all x e A, it follows that A is totally-ordered; and
hence A has no nonzero divisors of zero by 2.2.

THEOREM 4.4. Let A be an l-ring with zero l-radical. Then the
following are equivalent:

(i ) A is an f-ring;
(ii) A is a subdirect union of totally-ordered rings with no

nonzero divisors of zero;
(iii) x+ax~ — 0 for all x, a e A;
(iv) ifa,b,ceA with a ̂  0, then a(b V c) — ab V ac and (b V c)a =

ba V ca; and
(v) x+x~ = 0 for all zeA.

Proof. The equivalence of (i) and (ii) was proved by Pierce ([1],
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Th. 4) Also see Johnson [3](Theorem I. 4.8).
Since (iii), (iv), and (v) hold in any totally-ordered ring and are

preserved under the formation of subdirect unions, it is clear that (i)
implies (iii), (i) implies (iv), and (i) implies (v).

Now let A be an Z-ring with zero ^-radical. Then, by 2.14, A is
subdirect union of a family {Aa: aeΓ} of prime Z-rings. If A satisfies
(iii) [(iv), (v)], then each Aa satisfies (iii) [(iv), (v)] since (iii) [(iv), (v)]
is preserved under homomorphisms. By Proposition 4.1[4.2, 4.3], each
Aa is totally-ordered with no nonzero divisors of zero, and the proof
is complete.

The following corollary of 4.4 answers affirmatively the question
of Birkhoίϊ and Pierce originally asked in [1].

COROLLARY 4.5. Let A be an l-ring with an identity element 1,
and suppose that A has zero l-radical. Then A is an f-ring if and
only if 1 is a weak order unit.

Proof. Since ([1], Th. 15) 1 is a weak order unit if and only if
x+χ- = 0 for all x e A, the corollary follows from the equivalence of
(i) and (v) above.

Finally we note

COROLLARY 4.6. Let A be an l-ring which satisfies either (iii),
(iv), or (v) of 4.4. Then P(A) = {x e A: x is nilpotent}.

Proof. A/P(A) is a subdirect union of totally-ordered rings with
no nonzero divisors of zero. Hence all of the nilpotents of A are in
P(A). Since P(A) is a nil i-ideal, the corollary follows.
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