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COSHEAVES AND HOMOLOGY

GLEN E. BREDON

In this paper we initiate a study of the theory of cosheaves
of modules. We are interested mainly in those facts which
are not encompassed by the known theories of sheaves with
values in general categories, A central result is the establish-
ment of the existence of a reasonably large subcategory of
the category of precosheaves and a reflector from this to the
subcategory of cosheaves, The general theory is applied to

the study of the (Vlech, singular, and Borel-Moore homology

theories. The main applications establish that the Cech and
Borel-Moore homology theories coincide on locally compact and

paracompact clc* spaces and that the Cech and singular theories
coincide on paracompact HLC spaces. These isomorphisms are
established for locally constant coefficients. For constant
coefficients the latter result was originally established by
Mardesic¢ and the former by 0. Jussila. There are also applic-
ations to acyclic coverings and to mappings.

There have been several treatments of sheaf theory with values
in an arbitrary category, notably [6] and [9]. More accurately these
treatments can be described as attempts to delineate the types of
value categories for which the theory goes through in reasonably
close analogy to the classical sheaf theory (values in the category of
sets, of modules, etc.). Little or no attempt has been made to develop
the theory in categories which will not admit such a close analogy.
To our mind the most interesting and important nonclassical case is
that of cosheaves of L-modules; that is, of sheaves with values in
the dual category to the category of L-modules (this may be regarded
as the category of compact L-modules; see [9, p. 77]). Unfortunately
the theories of [6] and [9] are hopelessly inadequate for this case.
[For example, in [6] it is assumed that the value category for sheaf
theory has enough “small” objects (termed “very small” in [9]), but
it is easily seen that the only cosmall object in the category of L-
modules is zero, for any ring L.]

From now on we shall let L denote a given base ring with unity
and the terms cosheaf, precosheaf, sheaf, presheaf, etc. will always
presuppose the category of L-modules as the value category. Cate-
gorical terminology will be that of [9]. “Covering” always means an
open covering.

In [1, Chap. V] the notion of cosheaves was put to work to obtain
some deep results on homology theory. However, we did not attempt
there to give a coherent “theory” of cosheaves, outside of some results
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necessary to our immediate purposes and of some indications in the
exercises.

In this paper we shall initiate such a study. In our opinion one
cannot expect to find anything like a complete duality with sheaf
theory and one must be prepared, from the start, to dispense with
some basic properties. The most basic concept in sheaf theory is that
of a sheaf generated by a given presheaf. In categorical terminology
[9] this is the concept of a reflector from presheaves to sheaves. We
believe that there is not much hope for the existence of a reflector from
precosheaves to cosheaves. However, we shall obtain such a reflector on
a reasonably large subcategory of precosheaves containing the cosheaves
and, on locally comnected spaces, the constant precosheaves.

The general theory of cosheaves, together with material on Cech
homology, occupies the first five sections of the paper. In later
sections we apply parts of this general theory (but not all of it by
any means) to the study of the relationships between the Cech,
singular, and Borel-Moore homology theories. These applications
complement the results of [1, Chap. V] on the relationships between
the singular and Borel-Moore homology theories, but the present
treatment is largely independent of that work.

Some generalities on cosheaves may be found in [2], but the
contact with the present paper is negligible.

1. Cosheaves. Let X be a topological space. A precosheaf A
(of L-modules) on X is a covariant functor from the category of
open sets in X and inclusions to the category of L-modules. For
UV the corresponding map 2(U) — A(V) is denoted by i,,.

A precosheaf U on X is called a cosheaf if, for every covering
{U;} of an open set UC X, the sequence

@ AU U) 5 @ WU) -2 WU) — 0
b i
is exact, where a = 3\ iy, and B = 3.5 (Gv,minv; — vjvnv,). 1
we only require « to be epimorphic then U is called an epiprecosheaf
(the dual notion is that of a monopresheaf; see [9, p. 246]).

The following result shows that the cokernel of a homomorphism
of cosheaves is a cosheaf.

ProprosITION 1.1. Let 2 —A— A" —0 be an exact sequence of
precosheaves. If 9’ is an epiprecosheaf and 9 is a cosheaf then A"

is a cosheaf.

Proof. This follows from elementary diagram chasing and is also
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valid for values in any abelian category (see [9; p. 254]). The details
will be omitted. Similar remarks apply to the following result.

ProrosiTioN 1.2. Let 0— U — A —A”—0 be an exact sequence
of precosheaves, If U is an epiprecosheaf and 2 is a cosheaf then
A’ is an epiprecosheaf.

ProPoSITION 1.3. Let U be a precosheaf. Then U is a cosheaf
if and only if the following two conditions are satisfied:

(a) AWUNV)—=WU)BAV) WU UV)—0 is exact for
all open U and V where 8 = (ty,uny — tr,onr) a0d & = tyupp + Tpyp,ye

(b) If {U,) is directed upwards by inclusion then the natural
map lim 9(U,;) — A(U U,) is an isomorphism.

Proof. It clearly suffices to prove that if (a) is satisfied, then
for any finite collection {U,, U, ---, U,} the sequence

@ AU, N U;) o @ WU, —5 WU) — 0

v 9>
is exact, where U = U U,. Exactness on the right is clear by an
easy induction. The proof of exactness in the middle will be by
induction on . Let U'=U,U---UU, and V=U,NU'. Let
s;€AU,;) j=0,1, .-+, % be such that 374, (s;) =0 in AWU). Let
=" iU,,UJ(s,-) cA(U’). Then 1,,,,(s) + ty(t") =0 so that by (a)
there exists a v e WU, NU’) = WV) with

iUC’V(,v) = Sy, 'iU',V(v) = —t'.
Now V =(U,NU)U---UU,NU,) so that there exist v; € A(U, N U;)
for 1 <j < n with
v= z;‘ 7“.V’UoﬂUj(’Uj) .

Thus

n
B( D vj) = <§1‘4 7/UO,UOrw'](vj)y — v, (V) * 0, _?'UWUOHU,L(/U%)>

0

and an easy computation shows that the element
B — B(@ vj)e@ar(Ui)
=0 0.5

has zero component in 2(U,) and projects to zero in A(U, U --- U U,).
Thus the result follows from the inductive hypothesis.
A cosheaf U is said to be flabby if each 17,,: AU)—A(V) is a
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monomorphism, [Note that in {1, V.1] it is shown that, for X locally
compact, the flabby cosheaves are precisely the cosheaves of sections
with compact supports of c-soft sheaves. No corresponding charac-
terization is known on nonlocally compact spaces.]

The following result is basic:

ProprosITION 1.4. Let
oL a9 0

be an exact sequence of precosheaves. Assume that 9 is a cosheaf
and that " is a flabby cosheaf. Then ' is a cosheaf.

Proof. We will verify (a) and (b) of (1.8) for 2. Part (b) is an
immediate consequence of the exactness of the direct limit functor.
Part (a) follows from a diagram chase in

WU NV) — WUNV) —» AUNYV)
| | 1
E’I’(U)EB?l’(V)—-—ﬁE’I(U)@i’I(V)-—»E’I”(U)@?l"(V)

l l |

WWUV) > WUUV) —» A(UUYV)

ProposiTioN 1.5. Let 9% be a precosheaf. The class of subpre-
cosheaves of Y which are epiprecosheaves contains a maximum element
which is denoted by 2. Any homomorphism B — % with B an epi-
precosheaf factors through 9.

Proof. This follows from results of the general theory of cate-
gories (see [9, p. 131]). For a direct proof, we define by transfinite
induction:

A, = A
e (U) = {s € AL(V) | s € Im (BALU;) — ALU))
for each covering {U;} of U}
A U) = DEE)IQ(U) for 8 a limit ordinal.
Then clearly there exists an ordinal « with .., = U, and we let
9 = A,. The properties claimed are clear from this construction.
Note that the last statement implies that every homomorphism

A — B restricts to a homomorphism A — B and hence A— N is a
funector.
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2. Local triviality. As in [1, p. 219] we say that a precosheaf
A is locally zero if for each open Uc X and x e U there is a smaller
neighborhood V' of & with 7,,,: 2(V)—A(U) zero. Clearly an epipre-
cosheaf is locally zero if and only if it is zero.

A sequence U’ —f—> A2, of precosheaves will be said to be
locally exact if gof = 0 and if the precosheaf Ker g/Im f is locally
zero. By exactness of a sequence of cosheaves we mean exactness
as a sequence of precosheaves.

ProrosiTION 2.1. The sequence QI’L%I—Q—QI”—»O of cosheaves
is locally exact if and only if it is exact. (It suffices that 2" is a
cosheaf and 9 is an epiprecosheaf.)

Proof. Coker g is a cosheaf by (1.1) and, since it is locally zero
by hypothesis, it must be zero. This proves exactness at UA”. By
(1.2) Kerg is an epiprecosheaf and it follows immediately that
Ker g/Im f is an epiprecosheaf. Since Ker g/Im f is locally zero it
must be zero, so that Im f = Ker g.

ProposiTION 2.2. If 0 — U’ —f—> A-T,9" 0 is a locally exact

sequence of cosheaves with A" flabby then this sequence is exact.
If A is also flabby then so is A’.

Proof. This sequence is exact at U and at A” by (2.1). By (1.4),
Ker g = Im f is a cosheaf. Clearly 0 — 2’ — Im f— 0 is locally exact
and hence exact by (2.1). The last statement follows from an easy
diagram chase.

COROLLARY 2.3. If

W2 B B, 0

15 a locally exact sequence of flabby cosheaves, then it is exact and
Kerdy is a flabby cosheaf.

Proof. Let 3, = Kerd,. Clearly
91%—}—3 %In-l-z g‘)’In—H 8% 0

is locally exact. By (2.1)
0 '81 9’{l i)lo O

is exact. By (1.4) 8, is a cosheaf and, by (2.2), it is flabby. By
induction we see that each 3, is a flabby cosheaf and that each sequence
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0 3. A, — Bus 0

is exact. The result follows.

LEMMA 2.4. The class of locally zero precosheaves is closed under
formation of subprecosheaves, quotient precosheaves, and extensions.

Proof. All three parts may be handled simultaneously. Let
W — A —A” be exact with U and A" locally zero. Let U be open
and xe U. Let VU be a neighborhood of x such that A" (V)—
A”"(U) is trivial and let W <V be a neighborhood of 2 such that
W(W)— (V) is trivial. Diagram chasing in

WW) — (W)

L

WA(V) — WV) —A(V)

b

WAW(U)— AW0)

shows that (W) — A(U) is zero as desired. (The cases of subpre-
cosheaves and quotient precosheaves are given by taking U’ =0 or
A” = 0 respectively.)

REMARK 2.5. We are grateful to the referee for pointing out
that (2.4) shows that the locally zero precosheaves form a “thick
subcategory” (see [4, p. 15]). If one passes to the quotient category
then the local isomorphisms (below) and locally exact sequences become
actual isomorphisms and exact sequences. Clearly some of the propo-
sitions in the next section can be regarded as special cases of general
facts about such quotient categories.

3. Local isomorphisms. A homomorphism #A: 2 — 3 between
two precosheaves is said to be a local isomorphism if Ker h and
Coker & are locally zero (see [1; p. 219]).

If A is an epiprecosheaf and B is a cosheaf then a local iso-
morphism h: 2 — B is necessarily an isomorphism by (1.1) and (1.2).

Consider commutative diagrams of precosheaves of the form

A2,
3.1) fl lh
(P
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ProrosiTioN 3.2. If (3.1) is a pusbout diagram and if f is a
local isomorphism then so is . Dually, if (3.1) is a pullback diagram
and if 4 is a local isomorphism then so is f.

Proof. We shall only give the proof for the second part since
both parts are analogous. If (3.1) is a pullback then we may assume
that U is given by

A(U) = {(b, c) eB(U) x EU) | h(b) = k(c)} .
Moreover ¢ and f are given by the projections on the first and second
factors respectively. We see that Ker f = {(b, 0) | 2(b) = 0} so that
(3.3) 0 — Ker f—2> Ker b
is exact. Similarly, if ¢ce@€(U) and if k(c)eIm#h then celm f, and
it follows that
(3.4) 0 —— Coker f—*—» Coker &
is exact. The contention follows from (2.4) applied to the exact

sequences (3.3) and (3.4).

COROLLARY 3.5. Let B and € be precosheaves. Then the following
statements are equivalent:
(a) There exist a precosheaf 2 and local isomorphisms B —

A — C.
(b) There exist a precosheaf ® and local isomorphisms B —

D—C.

If one, hence both, of the conditions in (8.5) are satisfied then B
and € are said to be equivalent. It is an easy consequence of (3.5)
and the following lemma that “equivalence” is an equivalence relation.

LEMMA 3.6. Composites of local 1isomorphisms are local 1iso-
morphisms.

Proof. Suppose U _‘f_‘—)%_g_) € are local isomorphisms. Clearly
we have the exact sequences

0——>Kerf—>Kergfi>Kerg
Coker f 7, Coker gf — Coker g — 0

and the contention follows immediately from (2.4).
As we have remarked above, locally isomorphic cosheaves are
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isomorphic. It is not so clear that this is also true for equivalent
cosheaves, but we shall, in fact, prove this fact later, in (5.7).

DEFINITION 3.7. A precosheaf is said to be smooth if it is equiva-
lent to a cosheaf.

We shall show later that for any smooth precosheaf U there is
an associated cosheaf @() (unique to isomorphism) and a local <so-
morphism @R — A. Also the functor @ taking a smooth precosheaf
into this “associated cosheaf” will be shown to be a reflector from
the category of smooth precosheaves to that of cosheaves. For these
reasons one might prefer to substitute the terms “copresheaf” and
“precosheaf” for what we call “precosheaf” and “smooth precosheaf”
respectively, but we shall not adopt that terminology.

ProposiTION 3.8. Suppose that we have a commutative diagram

o "%
[ I
w -, g
of precosheaves such that « and S are local isomorphisms. Then the

induced maps Ker% — Ker s/, Imh — Im %', and Coker 7 — Coker %' are
all local isomorphisms.

Proof. Denote kernels, images, and cokernels by &£, &, and €
respectively. Then we have the commutative diagrams

r>— A —>F Ir—B —>»C
I (R (N
& H>— A —>» Y JFr—B —>»¢

which induce the exact sequences

0 — Ker £ — Ker a« — Ker ¢ — Coker £ — Coker a — Coker¢— 0
0 — Ker ¢ — Ker 8 — Ker v — Coker ¢ — Coker 8 — Coker v — 0 .,

By hypothesis we have that Ker a, Ker 8, Coker @, and Coker 5 are
locally zero. It follows that Ker &, Ker¢, Coker¢, and Coker~ are
locally zero and that Ker:— Coker £ and Kery— Coker¢ are local
isomorphisms. Since Ker¢ and Coker¢ are locally zero it follows from
(2.4) that their local isomorphs Coker £ and Ker~y are also locally zero.
This proves the proposition.
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COROLLARY 3.9. Suppose we have a commutative diagram

7]
A’ __a'—) A __a___) A

l l
RN

of precosheaves in which the wverticals are local isomorphisms and
the compositions in the rows are zero. Then the induced map of
precosheaves

Ker o/’/Im o —— Ker 8" /Im £’
is a local isomorphism.

REMARK 3.10. The reader should note that the analogues, in
sheaf theory, of the concepts “locally zero” and “local isomorphism”
are somewhat stronger conditions than the concepts which usually are
described by those terms. The exact analogues of the usual sheaf-
theoretic concepts are, in our opinion, inadequate for the attainment

of most practical aims in cosheaf theory, a fact which is traceable
to the unpleasantness of inverse limits.

4. Cech homology. Let 2 be a precosheaf on a space X and
let 1 = {U;} be any (open) covering of X. We define the group of
Cech p-chains of the covering U to be

C,(L; ) = @ WU (G, -+, 4,))

where the sum ranges over all ordered (p + 1)-tuples (¢, «--, 2,> of
indices and U4, ---,1,) stands for U; NU; N--- NU;. Note that
this is an exact functor of precosheaves 2. The differential

6: C,(11; ) — C,_,(11; 2)
is defined by 0 = 37, (—1)’\; where \; is the canonical map
WU, =+, 1)) = W(Ulin, ==+, 5, +++, 5,)) -
We also have the augmentation
e: Cy(11; ) — A(X)

given by ¢ = 3 iy, @B; WU;) — AX) .
As usual the homology of the chain complex C,(11; ) is denoted
by

H,1; %),
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and ¢ induces a homomorphism
et Hy(1L; A) — A(X) .
For an open set V. X,U NV denotes the covering {U, NV} of V.
Thus
Vi— H,Un0V;A

defines a precosheaf on X denoted by én(ll; ) and

is a homomorphism of precosheaves. Note that ¢, is epimorphic for
all U if %A is an epiprecosheaf and that e.is isomorphic for all 1 if

2 is a cosheaf.
If B is a refinement of U and B — 1 is a refinement projection

then there is an induced chain map C.(T; 2[)——»5*(11; ) and the
induced map ﬁ*(%; %)Hﬁ*(u; ) is independent of the refinement
projection. (The reader map supply the details of these well-known
facts.) The Cech homology of X with coefficients in the precosheaf
A is defined by

H.(X; ) = lim H,1; %)
—

(the limit taken over all coverings of X). Clearly
D(X; A): U— H(U; )
is a precosheaf and there is the augmentation homomorphism
&t O X; A) — A

which is an isomorphism when U is a cosheaf.
For a covering U of X, the precosheaf

Vi— G, V; )
will be denoted by €,(U; ).

LemMa 4.1. If A is a cosheaf then so is €, ;). The latter
1s flabby when A is flabby.

Proof. The reader may show that the direct sum of a family of
cosheaves is a cosheaf. But @n(ll; A) is the direct sum of precosheaves
of the form

Vi— (U NV)
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(where U = U(%,, --+, %,)) and these are easily seen to be cosheaves
when U is a cosheaf. The last statement follows easily from similar

reasoning.

THEOREM 4.2. For a precosheaf 2 the sequence
- — G ) — C,(1; A) — Go(1L; A) — A — 0

of precosheaves is locally exact for any covering U of X.

Proof. It is clearly sufficient to prove that the sequence is exact
when X is a member of 1 since this condition is realized upon restriction
to any member of . We shall in fact provide a splitting under these
circumstances. When Xel define D: C,11; %) — C,.,(0; A) by the
“identity” A(U;, N +-- NU;,) > WX NU;,;N -+ NUT;,). (The naturality
of this definition provides such a homomorphism for the precosheaves
in question.) It is easy tc check that

dD + Dd =1

as was to be shown.

COROLLARY 4.3. If U 4s a flabby cosheaf then for any covering U
of X we have 9,(1;A) =0 for n > 0. Consequently, E)n(X; A) =20
for m > 0,

Proof. This is a direct consequence of (2.3), (4.1) and (4.2).

THEOREM 4.4. Let X be paracompact and let A be a locally zero
precosheaf on X. Then, for any covering U of X, there is a re-
finement B and a refinement projection BL— N such that the induced

map én(%; A) — én(H; A) s zero for all n = 0.

Proof. We may assume that U is locally finite and “self-indexing”.
Let W be a “shrinking” of U; that is a covering which assigns to
each Ucll an open set U’ with U’ cU. For each UcU and x ¢ U’ we
choose an open set W = W(x, U) C U’ with the property that whenever
U, ---,U,arein land WNU/N---NU,# @ then WcUn---NU,
and the map WW)— U, N --- NU,) is trivial. The existence of
such sets follows easily from local finiteness of 1 and local triviality
of %A, We choose the refinement projection W(x, U)+— U.

We claim that this covering satisfies the conclusion of the theorem.
In fact, suppose that

Wi:W(xiy U,'),’L.ZO,"',’)?/,
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and that W,n --- N W, # @. Then since
w,n .- nNW,cUin --- NU,

we must have W,cU,n --- NU, for each ¢ =0,---,n and that
WW)—AU,N --- NU,) is zero. Since

WW,n --- NW,)— WU, N --- NU,)
factors through A(W,), it is zero, and this finishes the proof.

COROLLARY 4.5. If X is paracompact and if A is a locally zero
precosheaf on X then I—jn(X; A =0 for all n = 0.

COROLLARY 4.6. Let X be paracompact and let h: A —B be a
local itsomorphism. Then h.,: I;T*(X; A) — I-L(X; B) is an tsomorphism.

Proof. Clearly this reduces to the two cases in which Coker’s = 0
or Ker i = 0. These cases are similar and we shall confine our attention
to the first. Thus let 0 - & — A — B — 0 be exact with & locally zero.
For each covering Ul of X we have the exact homology sequence

. — H,1; &) — H,W; A) — H,U; B) — H, (L; ) — - .

Using (4.4) and the following lemma we see that the induced map
I?n(X; ) —»Iv{,,(X; ®B) is an isomorphism.

LEMMA 4.7. Let {A., fus}, {Bas 9asls {Cas ozt and {D., k. be
inverse systems of abelian groups and let

Aa Aa Ba Ha Ca

Ya

D,

be exact sequences commuting with projections. Assume that for
each « there is a B > a such that f,s As— A, and k. g: Dy — D, are
zero. Then the induced map

¢ lim B, —— lim C,
1S an 1somorphism.

Proof. Let {b,} be the coordinates of an element of lim B, which
is in the kernel of p. Then p,(b,) =0 for all « and thmm = No(ag)
for some a,€ A,. By hypothesis there is a £ > a such that f,; =
0= k‘,p. Thus ba = g,,/;(b,g) = gap(Xlg(aﬁ)) = )»a(faﬁ(a@)) = 0 which shows
that g is monomorphic.

Now let {¢,} be a point in eliﬂCa. With B as above we have



COSHEAVES AND HOMOLOGY 13

Vo(Co) = Volhas(cs)) = kap(vs(cs)) = 0 so that ¢, = p. (b)) for some b, € B,.
Let B be as above (in relation to the given «) and let v > 8 be
arbitrary. Note that b, = gs/(b}) (modulo Im ;) since g; takes them
to the same thing. Applying g., we obtain g,s(05) = g..(b;) since
Gaphs = Nofap = 0. Let b, be this common element g.x(bs) for B > a
large. Clearly we have g,,5(b;) = b, for any 6 > v so that {b,} is in
lim B,. Also ££,(b.) = tt(9e5(b5)) = hop(fts(b3)) = hop(cs) = ¢, which shows
;;h_at ¢ is epimorphic and completes the proof.

5. The reflector. For a precosheaf % on X we define the
precosheaf @) by

o) = H(X; A)

where 9 is the maximal epiprecosheaf in 9 of 1.5). Clearly @ is a
functor. There is a natural homomorphism

P@E0: 0(A) — A

given by the composition

éo(X; ETI) SN Sji——> A .

Clearly () is an isomorphism when 2 is a cosheaf.
If h: A — B is a homomorphism then we have the induced homo-
morphism &(h): @A) — @(B). The following is a basic result:

THEOREM 5.1. If h: A —B 1s a local isomorphism of procosheaves
and if either W or B is a cosheaf then @D(h) ts an isomorphism of
o) onto O(B).

Proof. First assume that U is a cosheaf. Note that (ﬁ(%) = O(B).
Also () B since (N) is an epiprecosheaf. Clearly &: A — B is also
a local isomorphism. Thus we may assume that 6 = B, that is, that
B is an epiprecosheaf. Coker % is then also an epiprecosheaf and,
being locally zero, it is zero. Let & = Ker h.

Let 1 = {U;} be a covering of an open set UcC X so fine that
KU;)— KU) is zero for all U;eU. Consider the commutative diagram

@a(Ui N Uj) __"»®%(Ui N Uj)

J I

@RV »— SUV) -L» @B

| s
10 aj )’ l
v v

U) >— AT) —» B(U)
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which is exact except for the right hand column. We see that
Ker a« D Ker 8 so that the additive relation A = a8~ is single valued
and hence is a homomorphism. Clearly ) is onto and diagram chasing
shows that Ker A = S(Ker @) = Im~. Thus we have the induced iso-

morphism
Az HW; B) — A(U) ~ Hy1L; ) .
It is clear that 4 is an inverse of the natural map
b () : HyW; %) — H(W; 9B) .

Thus %,(11) is an isomorphism and, upon passage to the limit over
1, we see that @()(U) = lim 2,(11) is an isomorphism, as was to be
shown. -

Now suppose that B is a cosheaf and that U is arbitrary. Again
Coker & is an epiprecosheaf and hence it is zero. Let & = Kerh as
before. Fix an open set UcC X for the time being and choose a
covering {U;} of U such that each &(U,)— R(U) is trivial. Let
A=Im{PAU,) — AU)}. Now the maps @UU;) — PB(U,)— B(U)
are onto so that 4 — B(U) is onto. Consider the diagram

SAUU,NU;) —>BB(U; NU,

J J

@ &U) — dAUU) -—> DB

l | |

U)NA>— A —» B(U)

in which the rows and the right hand column are exact. Diagram
chasing reveals that the left hand vertical map is onto and hence
that & U) N A = 0. Thus the map A — B(U) is an isomorphism. It
follows that a refinement of {U,} yields the same subgroup A of
A(U). Thus in fact, in the notation of the proof of (1.5), A = A(U)
which is the set of elements of A(U) in the image of @ A(U;) — W(T)
for every covering {U;} of U. This shows that 2, — B is an isomor-
phism and, since B is a cosheaf, %, = A is a cosheaf. Thus

h: o) = A" B = 0B .
The proof of the latter part of theorem shows more:
THEOREM 5.2. Let h: A—B be a local isomorphism and suppose

that B is a cosheaf. Then there exists a local isomorphism k: B —
A such that hk = 1.
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Proof. k is merely the inverse of the restriction A —%B of &
(followed, of course, by the inclusion M —A). We have the split
exact sequence

00— ]&—AB—0

k

and it follows that Ker ¥ = 0 and that Coker k ~ Ker 2 = & is locally
zero, so that k is indeed a local isomorphism.

COROLLARY 5.3. If a precosheaf U 1s equivalent to a cosheaf B
then there is a local isomorphism B — A,

COROLLARY 5.4. If the precosheaf N is equivalent to a cosheaf
(t.e. if it is smooth) then @(N) is a cosheaf and PA): O(A)— A s a
local isomorphism.

Proof. By (5.3) there is a local isomorphism %: % — A for some
cosheaf B, We have the diagram

o(h)

-
B - A

By (5.1) @(h) is an isomorphism and hence @(2)— A may be identified
with A: 8 — U and the result follows.

COROLLARY 5.5. Let & be the category of cosheaves on X and
&7 the category of smooth precosheaves (3.7). Then @ is a reflector
[9] from & to Z.

COROLLARY 5.6. If h: A—B is a local isomorphism where A, B
are smooth then @(h): ®(N) ~ O(B).

Proof. By (5.3) there is a cosheaf € and a local isomorphism
k: € — A, The diagram

A—"

NS
BN hk
¢

consists of local isomorphisms. In the induced diagram
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o(A) — O(B)
N S
NS
?(G)

the diagonals are isomorphisms by (5.1) and hence @(h) is also an iso-
morphism.

COROLLARY 5.7. If U and B are cosheaves which are equivalent
then they are isomorphic.

ProposiTioN 5.8. If W' — A — A’ is a locally exact sequence of
smooth precosheaves, then @) — @) — @A) is also locally exact.

Proof. Apply (3.9) and (5.4) to the diagram
) — ) —— (A

Lo

N — A — A

REMARK 5.9. Not every precosheaf is smooth. For a simple
example let X be the unit interval and let 9 be the precosheaf on
X which assigns to U the group of singular 1-chains of U. The
associated epiprecosheaf I clearly has %(U) equal to the subgroup
generated by the constant singular 1-simplices. The inclusion A — A
is clearly nmot a local isomorphism and it follows that @()— U cannot
be a local isomorphism. This would contradict (5.4) if 20 were smooth.

REMARK 5.10. If 2 is a smooth precosheaf then the inclusion
A — A is a local isomorphism. Thus, if X is completely paracompact,
then it follows from (4.6) that the induced map @X) = Oy(X; N) —
E’O(X; A) is an isomorphism. This probably does not hold without the
paracompactness assumption. We also remark that the (exact) analogue
of @ in the theory of eshaves is the coreflector assigning to any
presheaf its associated sheaf, and similarly the analogue of 9,(X; %)
is the “completion” of a presheaf in Spanier’s terminology [10, p. 325].

REMARK 5.11. Constant precosheaves on locally conmnected spaces
are smooth. For this see the first part of §9 in which the local compact-
ness condition is unnecessary. The associated cosheaves are called
constant cosheaves.

6. Spectral sequences. As usual a differential cosheaf is a
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sequence {%;} of cosheaves together with a “differential” d: 2, — 2,_,
with d* = 0.

Let A, be a flabby differential cosheaf which is bounded below
(i.e. A; =0 for 7 < 7, some ,). Given a covering U of X consider
the double complex

L,,=C,1;A).

There are two spectral sequences of this double complex. In one of
them we have the E; -term

A(X) for ¢ =0

o{Lesr) o ) { 0 for ¢ = 0
by (4.3). Thus the E?,term is

H,(A,(X)) for ¢ =0

’IH/H L*’ —
r HlLus) {O for ¢ =0 .

Since this spectral sequence degenerates we have the natural iso-
morphism
H,(L,) ~ H,(A.(X))

where L, is the total complex of L., ,.
In the other spectral sequence we have

El, = "H(L,.) = C,(I; $,(X,))
and hence
E2, = H,1; 9,00,)) .

By the assumption that 2, is bounded below this spectral converges
to H.(L,). Thus we have a spectral sequence E7 (1) with

(6.1) B2 (1) = Hy(W; 9,0,)) — H,(A(X)) .

These spectral sequences are clearly functorial in the coverings U as
well as in 2.

7. Coresolutions. By an N-coresolution of a cosheaf A we
mean a differential cosheaf 9, together with an augmentation e: 9, — %
such that the sequence

Wiy v A, A, A, A 0

is locally exact. Note that, by (2.1), the portion U, — 2, — A — 0 is
actually exact. |We remark that everything we do remains valid if
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we replace the statement “N-coresolution on X’ by “(N — 1)-coresolution
and H,((U)) — Hy(A,. (X)) is trivial for some basis of open sets
Uc X7; see the remark (10.5).]

In this section we will fix an N =0 and assume that 2, is a
Jlabby N-coresolution of a given cosheaf 2 and shall study the spectral
sequences (6.1). We also assume that X is paracompact.

LeMMA 7.1. If U is sufficiently fine then the natural projection
H,(N (X)) — EzM) 2s an isomorphism for all n < N.

Proof. Given any covering 11 we can find by (4.4) a refinement
W such that E2 W) — E2, W) is zero for all p, ¢ with ¢ # 0 and
» +q = N. It follows that E; (V') — E; (1) is zero for all » = 2.
Now recall that H,(.(X)) is filtered by submodules

Hn(ﬁ*(X)) - JnDJn—lj M :)JoDO

such that Ey, () ~ J,/J,_,. Similarly H,(U.(X)) is filtered by J;
with J}/J;_, ~ E7,_,(WU). Since the refinement has no effect on
H,(A,.(X)) we see that it induces an isomorphism J,— J, and that
for p <m, J;— J, has image in J,_, (and, of course, is a mono-
morphism). It follows that J; = 0. A similar argument on a similar
refinement N’ of W will show that J/ =0, etc. Thus Il may be
assumed to be so fine that J, =0 for all p < n. This implies the
desired result.

Returning to the general discussion, let U =11, be as in (7.1) for
some fixed n < N. Construct refinements U, of U,_, for 1 =1,2,---,n
such that

By (W) — E;,(U;)

is trivial for all p, ¢ with »p + ¢ <% and ¢ # 0.
We see that the image of EZ,(1,)— E2(1,_,) consists of d,-cycles
and hence induces a homomorphism

EZ,O(un) — Ei,o(un—l)
similarly we obtain homomorphisms
Es,o(unq) I— E:,o(un—z) — e T E':o(uo) .

This provides the commutative diagram
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’ﬁfnmn; A) ~ B2 (1,) —————— E(1L,)
' l \E:,o(n,,_l) \<
| | N H,(,(X)
| | N /5

H,1,; ) ~ E2 (1) ———— E2y(,)

[We remark that this diagram exists for » = N + 1, except that the
right hand maps are then only epimorphisms.]
Letting U, = W this yields a diagram

T ’. \Z’
H,W; 00

jl INGHL(U, (X))
. /
H,; A) 2

where j is the refinement projection, the \'s are edge homomorphisms,
and ¢ is induced by the diagonal composition in the last diagram.
Checking the definitions we see easily that we have the following
commutativity relations:

A =g\
J o=\
m =1,

It follows immediately that A’ is a monomorphism and that
Imj=Imx\.

Clearly we may assume that 1l is also so fine that A is a monomor-
phism and it follows that

7t Im N — Im\ .

These considerations prove, in particular, the following result:

THEOREM 7.2. Let X be paracompact and let A, be a flabby
N-coresolution of a cosheaf A on X. Then for n < N the edge

homomorphisms N Hn(%*(X))Hﬁn(ll; ) of the spectral sequences
(6.1) tnduce an tsomorphism in the limit over W:

Nt Hy(Q (X)) — H(X; ) .

In fact we have shown that if 11 is a sufficiently fine covering
of X, then Mu: Hn(%I*(X))—»}.vf%(ll; 20) is a monomorphism onto the
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image of the canonical projection
7z H,(X; %) — H,(1; )

and, moreover, that 7 is a monomorphism. Moreover, given this U,
then for any sufficiently fine refinement W' of 1 we have Imj =

Im» =Imz and j7: Im )\ —Z,Imx. The notation is as in the dis-
cussion above (7.2).)

REMARK 7.3. It might be thought that, in (7.2), A is an epimorphism
in degree N + 1, but this is not generally true. An interesting
counter-example, in the application to singular homology, is given by
Mardesi¢ in [8]. One can easily see, however, that for every covering
1 of X the images of Hy.(N.(X)) and of H,,(X;%) in Hyo (11 2A)
coincide.

8. Relative homology. To this point we have restricted our
attention to absolute homology in order to maintain reasonably
uncluttered notation. In this section we shall show how the results
of the last two sections can be extended to the relative case.

Let Ac X be an arbitrary subspace. For a precosheaf 2 on A4
we define a precosheaf 2* on X by

AXU) =AU NA) .

Note that %* is a cosheaf if and only if 2 is and that it is flabby
if and only if 2 is.

A covering of the pair (X, A) is a pair (1,1,) where U is a
covering of X and U,cU covers A in X. If 2 is a precosheaf on
A then we have the obvious isomorphism

(8.1) C.(0y; AY) ~ C, (10, N A; A)

where U,NA={UNA|Uecly}.
Suppose that 2 and B are precosheaves on A and X respectively
and that we are given a monomorphism of precosheaves

7 A >— B,
We obtain the induced monomorphism
Co(W, N A; %) >— C,(Uy; B)

and shall denote its cokernel by

C.(1L, U; B, A) .

Thus we have the natural exact sequence
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(8.2) C.(U, N 4; %) »— C,(; B) >— C. U, 1,; B, A)

of chain complexes. As usual we denote the homology of this chain
complex by

H,1, 1,; B, A)

and obtain from (8.2) the usual long homology sequence. The inverse
limit over refinements of pairs of coverings yields, as usual, a group
denoted by H,(X, A; B, ).

Now assume that 2 and B are flabby cosheaves. Then (4.3),
applied to the homology sequence of (8.2), yields the conclusion that
I-.vfn(ll, U,;B, A) =0 for » > 1 and yields the exact sequence

0 — H,1, U,; B, A) — HW, 0 A; )
— H(W; B) — HyUW, U; B, A) — 0 .
The two middle terms of this sequence are canonically isomorphic to

A* and B respectively with » as the homomorphism between them.
Thus, by assumption, we have

(8.3) H,WU, 0, B, A 0 for » 21
) L Mo 5, ) o~ Coker 7: AY — B for n = 0
when U and B are flabby cosheaves.

Now suppose that A, and B, are flabby differential cosheaves on
A and X respectively, which are bounded below. Also suppose that
we are given an exact sequence

0 AL B, O8N 0

(defining €,) of differential cosheaves.
Given the pair of coverings (11, 11,) we consider the double complex
(8.4) L, 0, 1) = C,U, 1; B, %) .

As in §6 it follows immediately from (8.3) that there is a natural
spectral sequence F; (1, ;) with

(8.5) E, W, W) = "H(L,,1, 1)) .
and
(8-6) Equ(uy uo) - ,Hp”Hq(L*y*(ny 110)) = Hp+q(@:u<(X)) .

Now we suppose that 2, and B, are flabby N-coresolutions of
cosheaves 2 and B on 4 and X respectively. (Note that, unless A
is closed, it does not generally follow that €, is a coresolution of
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Coker (AX — B).)
Exact sequences of the form (8.2) yield, for the ”H homology,
the exact sequence

- G,y N 4; D,2,) — C,(1L; 9,(8B,)) — E, 1, 1) —

8.7 < Z -~
D oM 08, — B, 1) — Oy 1 A; S,2L)) = 0

(here $,(U,) = Ker {D(A,) — A} = 0). Moreover we have the exact
sequence

(8.8) C,(0, N 4; %) — C,(11; B) — EL, (1, U,) — 0 .
By (8.8) we have

E} U, 1) = C,1, U; B, A) .

(8.9) .
By, ) = H,(W, U; B, A) .

Moreover if X and A are both paracompact then, by (8.7) and (4.4)
(twice), there exists a refining pair (B,%8,) of (1,1, and a refinement
projection such that the induced homomorphism

Ep},q(%y %0) — Ezlhq(u, 110)

is trivial for all p and all ¢ = 0 (with p + ¢ < N).
We now have all the information necessary to repeat the argu-
ments in §7 word for word. The final result is the following

extension of (7.2):

THEOREM 8.10. Let AC X both be paracompact and let U, and
B, be flabby N-coresolutions of cosheaves A and B on A and X
respectively. Suppose 0 — UL —-B, —C,—0 s an exact sequence
of differential cosheaves. Then for n < N the edge homomorphisms
H,(C (X)) — E:,W1, 1) = ﬁ,,(ll, U,; B, A) of the spectral sequences
(8.6) induce an isomorphism in the limit over (11, 1,):

H,(C,(X)) — H,(X, A; 9, %) .

We note that it is also easy to see that, via (8.10) and (7.2), the
exact sequence
oo ——H, (U (A)— H,(B(X)—H,(C (X)) —H, (A (A)—- - -
is identified with the sequence
co o H(A; M) H(X; B)——H,(X, 4; B, 0)——H, (A, A)— - -

which is the inverse limit of similar exact sequences of the appropriate
Cech groups of coverings. In particular, it follows that this homology
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sequence is exact, a fact that clearly limits the possibilities of the
existence of the hypothesized coresolutions. This question will be
taken up in later sections.

By introducing compact carriers in the Cech theory we may
replace the paracompactness condition in (8.10) by a local compactness
condition. The idea for doing this is due to Mardesié¢ [8]. It involves
the observation that any compact set in a locally compact space is
contained in an open relatively compact F, (and hence paracompact)
set.

We define, for (X, A) a locally compact pair,

He(X, A; B, ) = lim H(U, V; B, )
e

where U and VcU N A range over the open, relatively compact,
subsets of X and A respectively. By the above remark we may also
assume that U and V are paracompact in this limit. By making the
elementary observation that, for any cosheaf €, €(X) ~ lim €(U), U
relatively compact, [and hence H,(€.(X))~ lim H,(€.(U))] we obtain

the following corollary of (8.10):

COROLLARY 8.11. With the same hypotheses as (8.10) except that
(X, A) are assumed to be locally compact rather than paracompact,
we obtain the canonical isomorphism

H,(C.(X)) ~ Hi(X, 4; B, %) .

We wish to generalize (4.6) to the relative case. Thus assume
that 2, U, are precosheaves on A and B, B,, on X and assume that
homomorphisms AF > B;, h: A, — A, and k: B, — B, are given such
that

A —— B,

% V
AF —— B,

commutes. Then we have:

ProrosiTiON 8.12. If (X, A) above is a paracompact (respectively,
locally compact) pair and » and k above are local isomorphisms, then
the induced map

H, (X, 4; 9B, %) — H (X, 4;B,, )

is an isomorphism (respectively, the same for the groups ﬁ;).
The proof is essentially the same as that of (4.6) and will not be
repeated.
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9. Borel-Moore homology. In this section we confine our at-
tention to locally compact spaces and take the base ring L to be a
principal ideal domain. We use the notation Hi(X;.%”) for the
Borel-Moore homology with compact supports and with coefficients in
the sheaf .o7; see [1, Chap. V].

The constant cosheaf £ is the precosheaf assigning to U the free
L-module on the components of U and for an L-module M the associated
constant cosheaf M is defined by IM(U) = &LU)® M. Summation
yields a homomorphism 9% — M of precosheaves (where M(U) = M)
and it is clear that this is a local isomorphism if X is locally con-
nected. Thus @(M) ~ IN when X is locally connected.

We wish to associate with every sheaf .o on a locally connected
space X a certain associated cosheaf on X,

ProrosiTiON 9.1. Let X be locally connected (and locally compact).
Then for any sheaf .o~ on X, the precosheaf Hy(-;.2”) is a cosheaf.
If X is clet, or if L is a field, and if .o~ = M is constant then this
cosheaf is the constant cosheaf I = @(M).

Proof. Let &, = &,(X; L) be the sheaf of germs of Borel-Moore
p-chains as defined in [1, p. 184], and let .2 = Ker {d: &5 — &7 }.
The proof of Theorem 5.12, p. 201 of [1] shows that & ® .o is
c-soft and that the sequence

(o Q@7 |\U) = I'(AQL 7 |U)—>»I(L.Q 7 |U)

is exact, so that the first term consists of the zero-cycles of U.
Thus we have, by definition, the exact sequence

(A v |\U)—I'(Z% Qv |U)— Hi(U; &) —0.

Since the first two terms are cosheaves [1, p. 176] the last is also
a cosheaf by (1.1). The last statement follows immediately from
(V, 5.11) and (V, 3.10) of [1].

This proposition is used only in case .© is locally constant and,
then, merely to prove the existence of a related “locally constant”
cosheaf.

From the proof of (9.1) we see that, when X is locally con-
nected, the canonical Borel-Moore chain complex Ci(X;.o7) [i.e.
I(Z(X; L)Q.27)] may be replaced by a chain complex vanishing in
negative degrees, without altering the homology. That is we define

Ci(U; o) if p>0

Ci(U; 7)) = {Ker {C(U; .o7) — C,(U; )} if p =0
0 if p<O
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and note that, by the proof of (9.1), the precosheaf
CyX; w): Ur—> CYU; 7))

is a flabby cosheay.
Now suppose A C X is also locally connected. By general results
in [1, V.5] we have an exact sequence

0 — G5(d; 7 | AT — G(X; ) — E3(X, 45 ) — 0

(which defines the right hand term).

ProrosiTiON 9.2. If X is hley and if .o~ is locally constant,
then €4(X;.o) is a flabby N-coresolution of the cosheaf Hi(-;.).

Proof. It is required to show that the precosheaf
Ur— H(U; &)

is locally zero for 0 < n < N. For & = L this is true by definition
[1, p. 253]. For .o = M, any constant sheaf, the result follows from
the universal coefficient formula [1, p. 188]. The locally constant case
follows immediately.

Now from (9.2), (8.10), and (8.11) we immediately obtain the
following result:

THEOREM 9.3. Let AC X both be locally compact and hlcy. Let
7 be a locally comstant sheaf on X. Then for n < N we have a
canonical 1somorphism

HYX, A; 7)) ~ Hi(X, A; Hy(+; .57))

If X and A are also paracompact, then these are isomorphic to
H(X, A; Hy(+; .27).

[Technically the coefficients on the right should be the pair
H(-; 7)), Hi(+; &7 | A).]

COROLLARY 9.4. Let AC X be locally compact and hlck and let
M be an L-module. Then for n < N and N =1

Hi(X, A; M) ~ Hy(X, 4; M)

and, if A, X are both paracompact, these are tsomorphic to ﬁ,,(X ,A; M),

Proof. Again the coefficients in the Cech theory should technically
be in the pair M, M. Also, as before, the general case follows from
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the paracompact case.

Now, on X, the constant cosheaf @(M) associated with the constant
precosheaf M is just Hg(-; M) and it is locally isomorphic to M (and
similarly on A). Thus, by (8.12), we have

Hy(X, A; M) ~ HY(X, 4; Hi(-; M))

(and similarly for the paracompact case) and the corollary follows
from (9.3).

REMARK 9.5. If the base ring L is a field, then the first part
of (9.4) is true without the condition ZlcY since both theories are
continuous in that case. This is false for general L however. Also
recall that there are the implications cl¢™+' = hlc¥ = clc”; see [1] for
definitions and references.

Since writing this paper the author has discovered that (9.4) had
been previously proved by Jussila in [5]. Remarks similar to (10.5)
are also applicable to this case. Also see [1, 7] for related results.

10. Singular homology. For locally compact spaces we may
combine the results of the preceding section with those of [1, pp. 219-
231] to obtain similar facts about singular homology. For general
spaces we must proceed more directly.

We shall recall some constructions from [1, Chap. V]. Our
approach here differs from that of [1] as regards coefficients. (Both
here and in [1] the approach to coefficients is dictated by the methods

used.)
Let .o~ be any sheaf on the (arbitrary) space X. The singular
chain group of U in degree % and with ccefficients in .o is defined by

S, (U; 7)) = @ I'(c*.27)
where the sum ranges over all singular simplices o: 4, — U of U and

o*.57 denotes the induced sheaf on 4,. If e: 4, ,— 4, is a face map
then we have an induced homomorphism

I'(o* ) —— ['(e*0*. ) = ['((0°e)* )
and it follows that the boundary operator
a: Sn( U; '/‘0/) R Sn—l( U; u(‘\5‘/)

may be defined in the usual way.
Similarly the barycentric subdivision operator

sd: S, (U; &) — S, (U; 7))
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may be defined, via the continuous map sd(4,) — 4,, and it may be
shown, as usual, that sd is chain homotopic to the identity. (See,

for example, [10, p. 177].)
Let S{” be copies of S,.(U;.%) for 4 = 1 and consider the direct

system

SV, 8m ...

where the maps are the subdivision homomorphisms sd. We denote
its direct limit by

S.(X; o7 )(U)
and note that the natural map

S.(U; o7) = 8 — lim S,” = & (X; .27 )(U)
—
induces an isomorphism in homology, since

H,(S{) — H,(S{")

whence
H,(S{) — lim H,(S{") ~ H,(lim 8{") .

The resulting (singular) homology group will be denoted by
JH(U; 7).

It is clearly the classical singular homology group when .o~ is constant.
Now it is easy to see that &,(X, .o) is a flabby cosheaf on X.
(This is most easily seen by using the criterion of (1.3).)
For Ac X we have an exact sequence

S.(4; o7 | AT »— G, (X; ) —» G, (X, 4; )

where the right hand term is defined in the same way as the absolute

terms. For details on this see [1, p. 180]. By (1.1) the relative term

&.(X, 4; o) is a cosheaf and it can be seen (loc. cit.) that it is flabby.
Now, by definition, we have an exact sequence

G(X; ) — G(X; ) — Hy(-; &) —0

of precosheaves on X. By (1.1) it follows that ,H,(-;.%) is always
a cosheaf. If .o~ = M is constant then clearly ,H,(-; M) is only a
slight variant of the “constant cosheaf” I defined in the last section.
They are the same when X s locally arcwise connected. For general
X one might call this the “singular constant cosheaf associated with

M.”
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LEmMA 10.1. If X 48 HLCY and if .o s locally constant then
S (X: &) is a flabby N-coresolution of the cosheaf ,Hy(-;.%7).

Proof. We must show that the precosheaf ,H,(-;.%) is locally
zero for 0 < n < N. For .o = Z this is the definition of the property
HLCY, and for .o~ constant it follows from the universal coefficient
theorem. The locally constant case obviously follows from the constant
case.

From (10.1) and (8.10) we obtain immediately:

THEOREM 10.2. Let A C X both be paracompact and HLCY. Let
7 be a locally constant sheaf on X. Then there is a canonical
isomorphism for n < N:

H(X, Ay o) ~ H(X, A; Hy(+; 7)) .

Similarly, from (8.11) we obtain:

COROLLARY 10.3. Let AcC X both be locally compact and HLCY.
Let &7 be a locally constant sheaf on X. Then for n < N

H(X, A7) ~ HUX, A; JH(+; ) .

Again the following result is proved in the same manner as is
(9.4):

COROLLARY 10.4. Let AC X both be paracompact (respectively,
locally compact) and HLCY. Let M be any abslian group. Then
for n < N

HA(X, A; M) ~ H(X, A; M)
(respectively, Nﬁf,(X, A; M)).

REMARK 10.5. This latter result was first proved by Mardesi¢ [8]
who proved the isomorphism under the slightly weaker hopothesis in
the paracompact case that A and X are HLCY~' and have neighbor-
hood bases projecting homologically trivially into the total space in
degree N (singular homology). The present proof can also easily be
extended to this case but we have chosen, for simplicity of terminology
not to do this. (We only note that to achieve the extension one
takes the original covering U in the proof of (7.1) to be {X}.) The
reader should note that when the present proof is stripped of all
the nonessential material it is, in fact, a very efficient proof which
avoids the intricate refinement arguments of [8]. Essentially, these
intricate details are subsumed in the general theory.
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11. Acyclic coverings. In this section we shall confine our
attention to absolute homology.

Let 2, be a flabby differential cosheaf with nonnegative degrees
and let A = Coker {2, — A,}. Consider the spectral sequence (6.1) for
a covering 1l of X:

B2 (W) = H,(U; 9,%,)) — H,. (A (X)) .
We have the canonical edge homomorphism
iz H, (U (X)) — H,(U; ) .
The following result is immediate:
THEOREM 11.1. If each finite intersection U of members of 1

has H (A (U)) =0 for g+ 0, then M1 1is an isomorphism in each
degree.

For Borel-Moore homology we have

COROLLARY 11.2. Let U be a covering of the locally compact
and locally commnected space X such that for each finite intersection
U of members of U we have H{(U; o7) = 0 for q > 0, where &7 1s
some given sheaf on X. Then there is a canonical tsomorphism

HYX; o) ~ H,W; Hy(+; 57)) .
For singular homology we have

COROLLARY 11.3. Let U be a covering of the space X such that
Jor each finite intersection U of members of N we have ,H(U; 7)) =0

for g >0, where o7 1is some given sheaf on X. Then there is a
canonical 1somorphism

HAX; 7)) ~ Hy(W;  H(-; 7)) .

12. Applications to maps. In this section we shall consider a
continuous map

ffTE— X,

For a precosheaf B on F we define its direct image /B on X by
(fB)U) =B(f'U) (see [1, p. 179]). Clearly /B is a cosheaf when
B is and is flabby when B is. If B, is a flabby differential cosheaf

on E then A, = fB, is one on X. Thus the spectral sequence of
(6.1) has
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E2,(0) = H,W; £9,(B*) — H,.(B.(X))

natural in coverings U of X.
In particular, for Borel-Moore homology (where E 1is locally
compact) we have spectral sequences

E:, W) = HW; H(f7(+); 7)) — Hio(B; )

natural in coverings I of X and sheaves .&~ on E.
Similarly, for singular homology, we have spectral sequences

E;,,Q) = Ii,(ll; H(FT(); ) == H, (E; .7)

natural in coverings I of X and sheaves .o~ on E.

We shall now prove a generalization of (7.2). Suppose that U,
is a flabby differential cosheaf with 2, = 0 for n < 0 (or generally
with degrees bounded below). Suppose, moreover that we are given
integers 0 < k < N such that

(12.1) 9,(*) is locally zero for all ¢ #k,q < N .

Let 8, = Ker{d,: %A, — A,_.}. Then by (2.3)

%k Q’Ik—}. A %0 0
is exact and

3, is a flabby cosheaf.
Moreover, it is clear that

Wy sy v Ay B @k(m*) —0

is locally exact. Thus, under the hypothesis (12.1), we see that
9:(2,) is a cosheaf and that the differential cosheaf ., defined by

(0 q<0
%221815 q=20
Wrg g >0

is a flabby (N — k)-coresolution of £,(,).
By (7.2) [and (8.11) in the absolute case] we obtain:

THEOREM 12.2. Let X be paracompact (respectively, locally
compact) and let A, be a flabby differential cosheaf on X with
degrees bounded below such that (12.1) is satisfied. Then there is
the canonical isomorphism
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H,(2(X)) ~ H,_(X; D:2,))

for n < N. (Respectively, with He_, in place of ﬁn_k.)

Now we return to the discussion of a map f: E— X and we let
E,c E be any subspace. Applying (12.2) to the flabby differential
cosheaf fG(E, E,; .»~) we obtain:

COROLLARY 12.8. Suppose that X and (E, E,) are locally compact,
that .o s some sheaf on E and that there are integers k < N such
that for q < N, q #+ k we have that the precosheaf

H;(f'(+), f7'() N By &7)

on X 1s locally zero. Then this precosheaf is zero for q < k and 1is
a cosheaf for q=k. Moreover, we have a canonical isomorphism

HUE, By 7)) ~ Hy o X; Hi(f7(+), f7() N Ey; 7)) .
Jfor n < N.

Similarly applying (12.2) to fS.(E, E,; .o7) we have

COROLLARY 12.4. Suppose that X 1is paracompact (respectively,
locally compact), that o7 is some sheaf on E and that there are
integers k<N such that for ¢ < N, q # k we have that the precosheaf
A7), F)NEy ) on X is locally zero. Then this precosheaf
18 zero for q < k and 1is a cosheaf for q = k. Moreover, there is a
canonical isomorphism

HAE, By 7)) ~ H, o X; ;Ho(f7(+), () N Eyy 7))

for n < N (respectively, with H:_, replacing I;Tn_k).
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