A RIEMANNIAN SPACE WITH STRICTLY POSITIVE SECTIONAL CURVATURE

Grigorios Tsagas

Let M_{1} and M_{2} be two Riemannian spaces ${ }^{1}$ with Riemannian metrics d_{1} and d_{2} respectively whose sectional curvature is positive constant. We consider the product of the two Riemannian spaces $M_{1} \times M_{2}$, then the Riemannian space $M_{1} \times M_{2}$ has nonnegative sectional curvature with respect to the Riemannian metric $d_{1} \times d_{2}$ but not strictly positive sectional curvature.

We can construct a Riemannian metric on $M_{1} \times M_{2}$ which approaches the Riemannian metric $d_{1} \times d_{2}$ as closely as we wish and which has strictly positive sectional curvature.

Now, our results can be stated as follows. We consider two manifolds $M_{1}\left(H_{1}-E_{1}, q_{1}\right), M_{2}\left(H_{2}-E_{2}, q_{2}\right)$ such that each of them has only one chart where H_{1}, E_{1} are the south hemisphere and the equator, respectively, of a k-dimensional sphere ($k \geqq 2$) and E_{2}, H_{2} are also the south hemisphere and the equator, respectively, of an n-dimensional sphere ($n \geqq 2$), and q_{1}, q_{2} are special mappings. We also consider on M_{1} and M_{2} particular Riemannian metrics d_{1}, d_{2}, respectively, with positive constant sectional curvature. We obtain a special 1-parameter family of Riemannian metrics $F(t)$ on $M_{1} \times M_{2}$ such that $F(0)=d_{1} \times d_{2}$. We have proved that $\forall P \in M_{1} \times M_{2}$ the derivative of the sectional curvature with respect to the parameter t for $t=0$ and for any plane of $\left(M_{1} \times M_{2}\right)_{P}$, is strictly positive.

1. Let M_{1} be a manifold which consists of one chart $\left(H_{1}-E_{1}, q_{1}\right)$, where H_{1}, E_{1} are the south hemisphere and the equator, respectively, of a k-dimensional sphere $S_{1}^{k}(k \geqq 2)$ and the inverse mapping of q_{1} is defined as follows

$$
\begin{aligned}
& q_{1}^{-1}=\left\{x^{1}=\frac{2 u_{1}}{1+u_{1}^{2}+\cdots+u_{k}^{2}}, \cdots, x^{k}=\frac{2 u_{k}}{1+u_{1}^{2}+\cdots+u_{k}^{2}},\right. \\
& \left.x^{k+1}=\frac{u_{1}^{2}+\cdots+u_{k}^{2}-1}{1+u_{1}^{2}+\cdots+u_{k}^{2}}\right\} .
\end{aligned}
$$

q_{1} maps the open set $H_{1}-E_{1}$ onto the open ball $u_{1}^{2}+\cdots+u_{k}^{2}<1$.
On the manifold M_{1}, we take the following Riemannian metric

[^0]\[

$$
\begin{align*}
& d_{1}=d S_{1}^{2}=\left\{d_{11}=\cdots=d_{k k}=\frac{4}{\left(1+u_{1}^{2}+\cdots+u_{k}^{2}\right)^{2}}\right. \tag{1.1}\\
& \left.\quad d_{i j}=0 \text { if } i \neq j\right\}
\end{align*}
$$
\]

whose sectional curvature is positive constant.
Let M_{2} be another manifold which consists of one chart ($H_{2}-E_{2}, q_{2}$), where H_{2}, E_{2} are the south hemisphere and the equator, respectively, of an n-dimensional sphere $S_{2}^{n}(n \geqq 2)$ and the inverse mapping of q_{2} is defined by

$$
\begin{aligned}
q_{2}^{-1} & =\left\{x^{1}=\frac{2 u_{k+1}}{1+u_{k+1}^{2}+\cdots+u_{k+n}^{2}}, \cdots\right. \\
x^{n} & \left.=\frac{2 u_{k+n}}{1+u_{k+1}^{2}+\cdots+u_{k+n}^{2}}, x^{n+1}=\frac{u_{k+1}^{2}+\cdots+u_{k+n}^{2}-1}{1+u_{k+1}^{2}+\cdots+u_{k+n}^{2}}\right\}
\end{aligned}
$$

q_{2} maps the open set $H_{2}-E_{2}$ onto the open ball $u_{k+1}^{2}+\cdots+u_{k+n}^{2}<0$.
On the manifold M_{2}, we also take the following Riemannian metric

$$
\begin{align*}
d_{2} & =d S_{2}^{2}=\left\{d_{k+1 k+1}=\cdots=d_{k+n k+n}\right. \\
& \left.=\frac{4}{\left(1+u_{k+1}^{2}+\cdots+u_{k+n}^{2}\right)^{2}}, d_{i j}=0 \text { if } i \neq j\right\}, \tag{1.2}
\end{align*}
$$

whose sectional curvature is positive constant.
Consider the product of the two manifolds $M_{1} \times M_{2}$. Then $M_{1} \times M_{2}$ is a manifold with one chart $\left\{\left(H_{1}-E_{1}\right) \times\left(H_{2}-E_{2}\right), q_{1} \times q_{2}\right\}$.

We define a 1-parameter family of Riemannian metrics on the manifold $M_{1} \times M_{2}$ defined by

$$
d S^{2}(t)=\left\{\begin{array}{l}
g_{11}=\cdots=g_{k k}=\frac{4(1+t f)}{\left(1+u_{1}^{2}+\cdots+u_{k}^{2}\right)^{2}} \tag{1.3}\\
g_{k+1 k+1}=\cdots=g_{k+n k+n} \\
\quad=\frac{4(1+t \varphi)}{\left(1+u_{k+1}^{2}+\cdots+u_{k+n}^{2}\right)^{2}}, g_{i j}=0 \text { if } i \neq j
\end{array}\right.
$$

where $-b<t<b, \varphi=\varphi\left(u_{1}, \cdots, u_{k}\right), f=f\left(u_{k+1}, \cdots, u_{k+n}\right)$.
The Riemannian metric $d S^{2}(0)$ coincides with the product Riemannian metric $d S_{1}^{2} \times d S_{2}^{2}$ of the two manifolds M_{1} and M_{2}.
2. We shall calculate the components $R_{h i j k}$ of the Riemannian curvature tensor when the index $h=1$, because the other cases are similar to these.

If $h=1$, there exist the following distinguished cases in which $R_{1 i j k}$ do not vanish identically.

$$
\begin{aligned}
& R_{1 j_{1 j}}, j=2, \cdots, k, R_{1 k+j 1 k+j}, j=1, \cdots, n \\
& \quad R_{1 j j l}, j \neq l, j=2, \cdots, k, l=2, \cdots, k \\
& R_{1 j j k+l}, j=2, \cdots, k, l=1, \cdots, n \\
& \quad R_{1 k+j k+j l}, j=1, \cdots, n, l=2, \cdots, k \\
& R_{1 i j l}, i \neq j \neq l, i=2, \cdots, k+n, j=2, \cdots, k+n, l=2, \cdots, k+n
\end{aligned}
$$

As it is known, $R_{1 i j k}$ is given by ([12], p. 18)

$$
\begin{aligned}
R_{1 i j l}= & \frac{1}{2}\left(\frac{\partial^{2} g_{1 j}}{\partial u_{i} \partial u_{l}}+\frac{\partial^{2} g_{i l}}{\partial u_{1} \partial u_{j}}-\frac{\partial^{2} g_{i j}}{\partial u_{1} \partial u_{l}}-\frac{\partial^{2} g_{1 l}}{\partial u_{i} \partial u_{j}}\right) \\
& -g_{r s}\left(\left\{\begin{array}{c}
r \\
i j
\end{array}\right\}\left\{\begin{array}{c}
s \\
1 l
\end{array}\right\}-\left\{\begin{array}{c}
r \\
i l
\end{array}\right\}\left\{\begin{array}{c}
s \\
1 j
\end{array}\right\}\right),
\end{aligned}
$$

where $\left\{\begin{array}{l}r \\ i j\end{array}\right\},\left\{\begin{array}{c}s \\ 1 l\end{array}\right\},\left\{\begin{array}{l}r \\ i l\end{array}\right\},\left\{\begin{array}{c}s \\ 1 j\end{array}\right\}$ are the Christoffel symbols of the second kind.

From the above formula by virtue of (1.3) we obtain

$$
\begin{align*}
& R_{1 j 1 j}=-\frac{16(1+t f)}{A^{4}}+\frac{t^{2}}{1+t \varphi} \frac{B^{2}}{A^{4}} \sum_{i=1}^{n}\left(\frac{\partial f}{\partial u_{k+i}}\right)^{2}, j=2, \cdots, k, \tag{2.1}\\
& R_{1 k+j 1 k+j}=\frac{2 t}{(A B)^{2}}\left\{A^{2} \frac{\partial^{2} \varphi}{\partial u_{1}^{2}}+2 A u_{1} \frac{\partial \varphi}{\partial u_{1}}-2 A \sum_{i=2}^{k} u_{i} \frac{\partial \varphi}{\partial u_{i}}\right. \\
& \left.+B^{2} \frac{\partial^{2} f}{\partial u_{k+j}^{2}}+2 B u_{k+j} \frac{\partial f}{\partial u_{k+j}}-2 B \sum_{i \neq j}^{n} u_{k+i} \frac{\partial f}{\partial u_{k+i}}\right\} \\
& -t^{2}\left\{\frac{\left(\frac{\partial f}{\partial u_{k+j}}\right)^{2}}{(1+t f) A^{2}}+\frac{\left(\frac{\partial \varphi}{\partial u_{1}}\right)^{2}}{(1+t \varphi) B^{2}}\right\}, j=1, \cdots, n, \tag{2.3}\\
& R_{1 i j l}=0, i \neq j \neq l, i=2, \cdots, k+n, \tag{2.6}\\
& j=2, \cdots, k+n, l=2, \cdots, k+n,
\end{align*}
$$

where

$$
\begin{equation*}
A=1+u_{1}^{2}+\cdots+u_{k}^{2}, \quad B=1+u_{k+1}^{2}+\cdots+u_{k+n}^{2} \tag{2.7}
\end{equation*}
$$

If the functions φ and f are chosen such that they satisfy the systems of partial differential equations

$$
\begin{align*}
& \frac{\partial^{2} \varphi}{\partial u_{i} \partial u_{j}}+\frac{2 u_{i}}{A} \frac{\partial \varphi}{\partial u_{j}}+\frac{2 u_{j}}{A} \frac{\partial \varphi}{\partial u_{i}}=0, \tag{2.8}\\
& \quad i \neq j, i=1, \cdots, k, j=1, \cdots, k, \\
& \frac{\partial^{2} f}{\partial u_{h} \partial u_{l}}+\frac{2 u_{h}}{B} \frac{\partial f}{\partial u_{l}}+\frac{2 u_{l}}{B} \frac{\partial f}{\partial u_{h}}=0, \\
& \quad h \neq l, h=k+1, \cdots, k+n, l=k+1, \cdots, k+n,
\end{align*}
$$

respectively and if $m \in[1, \cdots, k]$ and

$$
i \in[k+1, \cdots, k+n], i \neq j \in[k+1, \cdots, k+n]
$$

or if $m \in[k+1, \cdots, k+n]$ and $i \in[1, \cdots, k], i \neq j \in[1, \cdots, k]$, then we have

$$
\begin{equation*}
R_{i m m j}=t^{2} \frac{\frac{\partial f}{\partial u_{i}} \frac{\partial f}{\partial u_{j}}}{(1+t f) A^{2}}, \quad \text { or } \quad R_{i m m j}=t^{2} \frac{\frac{\partial \varphi}{\partial u_{i}} \frac{\partial \varphi}{\partial u_{j}}}{(1+t \varphi) B^{2}} \tag{2.10}
\end{equation*}
$$

We consider one partial differential equation of the system (2.8), for example,

$$
\frac{\partial^{2} \varphi}{\partial u_{1} \partial u_{2}}+\frac{2 u_{1}}{A} \frac{\partial \varphi}{\partial u_{2}}+\frac{2 u_{2}}{A} \frac{\partial \varphi}{\partial u_{1}}=0
$$

or

$$
\begin{equation*}
\frac{\partial^{2} \varphi}{\partial u_{1} \partial u_{2}}+\frac{\partial \log A}{\partial u_{1}} \frac{\partial \varphi}{\partial u_{2}}+\frac{\partial \log A}{\partial u_{2}} \frac{\partial \varphi}{\partial u_{1}}=0 \tag{2.11}
\end{equation*}
$$

From the first of (2.7), we conclude that

$$
\begin{equation*}
\frac{\partial^{2} \log A}{\partial u_{1} \partial u_{2}}=-\frac{\partial \log A}{\partial u_{1}} \frac{\partial \log A}{\partial u_{2}} \tag{2.12}
\end{equation*}
$$

Equation (2.11), by virtue of (2.12), takes the form

$$
\begin{aligned}
& \frac{\partial^{2} \varphi}{\partial u_{1} \partial u_{2}}+\frac{\partial \log A}{\partial u_{1}} \frac{\partial \varphi}{\partial u_{2}}+\frac{\partial \log A}{\partial u_{2}} \frac{\partial \varphi}{\partial u_{1}} \\
& \quad+\frac{\partial^{2} \log A}{\partial u_{1} \partial u_{2}} \varphi+\frac{\partial \log A}{\partial u_{1}} \frac{\partial \log A}{\partial u_{2}} \varphi=0
\end{aligned}
$$

$$
\frac{\partial}{\partial u_{1}}\left\{\frac{\partial \varphi}{\partial u_{2}}+\frac{\partial \log A}{\partial u_{2}} \varphi\right\}+\frac{\partial \log A}{\partial u_{1}}\left\{\frac{\partial \varphi}{\partial u_{2}}+\frac{\partial \log A}{\partial u_{2}} \varphi\right\}=0,
$$

from which we obtain

$$
\begin{equation*}
\frac{\partial \varphi}{\partial u_{2}}+\frac{\partial \log A}{\partial u_{2}} \varphi-\frac{v}{A}=0 \tag{2.13}
\end{equation*}
$$

where v is an arbitrary function of u_{2}, \cdots, u_{k}.
Equation (2.13) is a linear differential equation whose general solution is

$$
\begin{equation*}
\varphi=\frac{1}{A}\left(z+\int v d u_{2}\right) \tag{2.14}
\end{equation*}
$$

where z is an arbitrary function of $u_{1}, u_{3}, \cdots, u_{k}$.
Relation (2.14), by virtue of the first of (2.7), takes the form

$$
\begin{equation*}
\varphi=\alpha \frac{\mu\left(u_{1}, u_{3}, \cdots, u_{k}\right)+\pi\left(u_{2}, \cdots, u_{k}\right)}{1+u_{1}^{2}+\cdots+u_{k}^{2}}, \tag{2.15}
\end{equation*}
$$

where $z=\alpha \mu, \int v d u_{2}=\alpha \pi$ and α is an arbitrary real constant.
In order for the function φ to satisfy the rest of partial differential equations of the system (2.8), as it is easily proved that it must have the form

$$
\begin{equation*}
\varphi=\alpha \frac{\varphi_{1}\left(u_{1}\right)+\cdots+\varphi_{k}\left(u_{k}\right)}{1+u_{1}^{2}+\cdots+u_{k}^{2}}, \tag{2.16}
\end{equation*}
$$

where $\varphi_{1}, \cdots, \varphi_{k}$ are arbitrary functions of u_{1}, \cdots, u_{k}, respectively.
Similarly, in order for the function f to satisfy the system of partial differential equations (2.9), it must have the form

$$
\begin{equation*}
f=\alpha \frac{f_{k+1}\left(u_{k+1}\right)+\cdots+f_{k+n}\left(u_{k+n}\right)}{1+u_{k+1}^{2}+\cdots+u_{k+n}^{2}} \tag{2.17}
\end{equation*}
$$

where f_{k+1}, \cdots, f_{k+n} are arbitrary functions of u_{k+1}, \cdots, u_{k+n}, respectively.

From (2.1), (2.2), (2.4) and (2.10), we obtain

$$
\begin{gather*}
R_{1 j 1 j}(0)=-\frac{16}{A^{4}}, R_{1 j_{1 j} j}^{\prime}(0)=-\frac{16 f}{A^{4}}, j=2, \cdots, k, \tag{2.18}\\
R_{1 k+j 1 k+j}(0)=0, R_{1 k+j 1 k+j}^{\prime}(0)=\frac{2}{(A B)^{2}}\left\{A^{2} \frac{\partial^{2} \varphi}{\partial u_{1}^{2}}+2 A u_{1} \frac{\partial \varphi}{\partial u_{1}}\right. \\
\left.-2 A \sum_{i=2}^{k} u_{i} \frac{\partial \varphi}{\partial u_{i}}+B^{2} \frac{\partial^{2} f}{\partial u_{k+j}^{2}}+2 B u_{k+j} \frac{\partial f}{\partial u_{k+j}}-2 B \sum_{i \neq j}^{n} u_{k+i} \frac{\partial f}{\partial u_{k+i}}\right\}, \tag{2.19}
\end{gather*}
$$

$$
j=1, \cdots, n
$$

$$
\begin{align*}
& R_{1 j j k+l}(0)=R_{1 j j k+l}^{\prime}(0)=0, \quad j=2, \cdots, l=1, \cdots, n, \tag{2.20}\\
& \text { (2.21) } \quad R_{1 k+j k+j l}(0)=R_{1 k+j k+j l}^{\prime}(0)=0, \quad j=1, \cdots, n, l=1, \cdots, n \text {, }
\end{align*}
$$

where $R_{h i j l}^{\prime}$ denotes the derivative of $R_{h i j l}$ with respect to the parameter t.

From (1.1), (1.2) and (1.3), we obtain the following formulas

$$
\left\{\begin{align*}
g_{11}(0)=\cdots=g_{k k}(0) & =d_{11} \tag{2.22}\\
g_{k+1 k+1}(0)=\cdots & =g_{k+n k+n}(0)=d_{k+n k+n} \\
g_{11}^{\prime}(0)=\cdots=g_{k k}^{\prime}(0) & =f d_{11} \\
g_{k+1 k+1}^{\prime}(0)=\cdots & =g_{k+n k+n}^{\prime}(0)=\varphi d_{k+n k+n}
\end{align*}\right.
$$

Relations (2.18) and (2.19) by means of (2.7) and (2.22) take the form

$$
\begin{gather*}
R_{1 j_{1 j}}=-d_{11}^{2}, R_{1 j_{1 j}}^{\prime}(0)=-f d_{11}^{2}, \quad j=2, \cdots, k \tag{2.23}\\
R_{1 k+j_{1 k+j}}(0)=0, R_{1 k+j 1 k+j}^{\prime}(0)=\frac{d_{11} d_{k+1 k+1}}{8}\left\{A^{2} \frac{\partial^{2} \varphi}{\partial u_{1}^{2}}+2 A u_{1} \frac{\partial \varphi}{\partial u_{1}}\right. \\
\left.-2 A \sum_{i=2}^{k} u_{i} \frac{\partial \varphi}{\partial u_{i}}+B^{2} \frac{\partial^{2} f}{\partial u_{k+j}^{2}}+2 B u_{k+j} \frac{\partial f}{\partial u_{k+j}}-2 B \sum_{i \neq j}^{n} u_{k+j} \frac{\partial f}{\partial u_{k+i}}\right\} \tag{2.24}\\
j=1, \cdots, k
\end{gather*}
$$

3. Let P be any point of $M_{1} \times M_{2}$. Then the $k+n$ vectors $\partial / \partial u_{1}, \cdots, \partial / \partial u_{k}, \partial / \partial u_{k+1}, \cdots, \partial / \partial u_{k+n}$ form an orthonormal basis of the tangent space $\left(M_{1} \times M_{2}\right)_{P}$.

As it is known, the sectional curvature of the plane spanned by $\partial / \partial u_{1}, \partial / \partial u_{j}, j=2, \cdots, k$, is given by

$$
K_{1 j}=-\frac{R_{1 j_{1 j}}}{g_{11} g_{j j}}, \quad j=2, \cdots, k
$$

which implies
(3.1) $\quad K_{1 j}^{\prime}(0)=-\frac{R_{1 j 1 j}^{\prime}(0) g_{11}(0) g_{j j}(0)-R_{1 j_{1 j}}(0)\left\{g_{11}^{\prime}(0) g_{j j}(0)+g_{11}(0) g_{j j}^{\prime}(0)\right\}}{g_{11}^{2}(0) g_{j j}^{2}(0)}$

Relation (3.1), by virtue of (2.22) and (2.23), takes the form

$$
\begin{equation*}
K_{1 j}^{\prime}(0)=-f \tag{3.2}
\end{equation*}
$$

Similarly, calculating $K_{k+1 k+j}^{\prime}(0)$, we obtain

$$
\begin{equation*}
K_{k+1 k+j}^{\prime}(0)=-\varphi . \tag{3.3}
\end{equation*}
$$

Formulas (3.2) and (3.3), by means of (2.16) and (2.17), take the form

$$
\begin{aligned}
& K_{1 j}^{\prime}(0)=-\alpha \frac{f_{k+1}\left(u_{k+1}\right)+\cdots+f_{k+n}\left(u_{k+n}\right)}{1+u_{k+1}^{2}+\cdots+u_{k+n}^{2}}, \\
& K_{k+1 k+j}^{\prime}(0)=-\alpha \frac{\varphi_{1}\left(u_{1}\right)+\cdots+\varphi_{k}\left(u_{k}\right)}{1+u_{1}^{2}+\cdots+u_{k}^{2}},
\end{aligned}
$$

respectively. In order for $K_{i j}^{\prime}(0), K_{k+1 k+j}^{\prime}(0)$ to be positive, we must have $\alpha<0, f_{k+j}\left(u_{k+j}\right)>0, j=1, \cdots, n, \varphi_{i}\left(u_{i}\right)>0, i=1, \cdots, k$, which means the real number α must be negative and the functions $f_{k+j}\left(u_{k+j}\right)$ and $\varphi_{i}\left(u_{i}\right)$ must be positive when the corresponding variable takes values in the interval $(-1,1)$.

The sectional curvature of the plane spanned by $\partial / \partial u_{l}, \partial / \partial u_{k+j}$ is given by

$$
K_{l k+j}=-\frac{R_{l k+j l k+j}}{g_{l l} g_{k+j k+j}}, \quad l=1, \cdots, k, j=1, \cdots, n
$$

which, by virtue of (2.22) and either (2.24) or similar to (2.24), takes the form

$$
\begin{align*}
K_{l k+j}^{\prime}(0)= & -\frac{1}{8}\left\{A^{2} \frac{\partial^{2} \varphi}{\partial u_{l}^{2}}+2 A u_{l} \frac{\partial \varphi}{\partial u_{l}}-2 A \sum_{i \neq l}^{k} u_{i} \frac{\partial \varphi}{\partial u_{i}}\right. \\
& \left.+B^{2} \frac{\partial f^{2}}{\partial u_{k+j}^{2}}+2 B u_{k+j} \frac{\partial f}{\partial u_{k+j}}-2 B \sum_{i \neq j}^{n} u_{k+i} \frac{\partial f}{\partial u_{k+i}}\right\} . \tag{3.4}
\end{align*}
$$

In order for $K_{l k+j}^{\prime}(0)$ to be positive and because the functions φ and f are independent, it must be

$$
\begin{gather*}
A^{2} \frac{\partial^{2} \varphi}{\partial u_{l}^{2}}+2 A u_{l} \frac{\partial \varphi}{\partial u_{l}}-2 A \sum_{i \neq l}^{k} u_{i} \frac{\partial \varphi}{\partial u_{i}}<0, \quad l=1, \cdots, k \tag{3.5}\\
B^{2} \frac{\partial^{2} f}{\partial u_{k+j}^{2}}+2 B u_{k+j} \frac{\partial f}{\partial u_{k+j}}-2 B \sum_{i \neq j}^{n} u_{k+i} \frac{\partial f}{\partial u_{k+i}}<0, \\
j=1, \cdots, n
\end{gather*}
$$

Inequalities (3.5) and (3.6), by virtue of (2.16) and (2.17), become

$$
\begin{aligned}
& \frac{\alpha}{A}\left\{A^{2} \frac{d^{2} \varphi_{l}}{d u_{l}^{2}}-2 A \sum_{i=1}^{k} u_{i} \frac{d \varphi_{i}}{d u_{i}}-2(2-A) \sum_{i=1}^{k} \varphi_{i}\right\}<0, \quad l=1, \cdots, k \\
& \frac{\alpha}{B}\left\{B^{2} \frac{d^{2} \dot{f}_{k+j}}{d u_{k+j}^{2}}-2 B \sum_{i=1}^{n} u_{k+i} \frac{d f_{k+i}}{d u_{k+i}}-2(2-B) \sum_{i=1}^{n} f_{k+i}\right\}<0 \\
& \quad j=1, \cdots, n
\end{aligned}
$$

which imply

$$
\left\{\begin{align*}
A^{2} \frac{d^{2} \varphi_{l}}{d u_{l}^{2}}-2 A \sum_{i=1}^{k} u_{i} \frac{d \varphi_{i}}{d u_{i}}-2(2-A) \sum_{i=1}^{k} \varphi_{i}>0, \quad l=1, \cdots, k \tag{3.7}\\
B^{2} \frac{d^{2} f_{k+j}}{d u_{k+j}^{2}}-2 B \sum_{i=1}^{n} u_{k+i} \frac{d f_{k+i}}{d u_{k+i}}-2(2-B) \sum_{i=1}^{n} f_{k+i}>0, \\
j=1, \cdots, n
\end{align*}\right.
$$

If the functions $f_{k+j}=f_{k+j}\left(u_{k+j}\right), \varphi_{i}=\varphi_{i}\left(u_{i}\right)$ are chosen to have the form

$$
\begin{equation*}
f_{k+j}=u_{k+j}^{2}+\frac{1}{2 n}, j=1, \cdots, n, \varphi_{i}=u_{i}^{2}+\frac{1}{2 k}, i=1, \cdots, k, \tag{3.8}
\end{equation*}
$$

then the inequalities (3.7) take the form

$$
2-A>0, \quad 2-B>0,
$$

which, by virtue of (2.7), become

$$
1-u_{1}^{2}-\cdots-u_{k}^{2}>0, \quad 1-u_{k+1}^{2}-\cdots-u_{k+n}^{2}>0,
$$

which are valid on the open balls $u_{1}^{2}+\cdots+u_{k}^{2}<1, u_{k r 1}^{2}+\cdots+$ $u_{k+n}^{2}<1$, respectively.

Relations (2.16) and (2.17), by means of (3.8), take the form

$$
\begin{equation*}
f=\alpha \frac{u_{k+1}^{2}+\cdots+u_{k+n}^{2}+1 / 2}{u_{k+1}^{2}+\cdots+u_{k+n}^{2}+1}, \quad \varphi=\alpha \frac{u_{1}^{2}+\cdots+u_{k}^{2}+1 / 2}{u_{1}^{2}+\cdots+u_{k}^{2}+1} . \tag{3.9}
\end{equation*}
$$

The second of (2.24) or similar to that and (3.4), by means of (3.9), become

$$
\begin{aligned}
& R_{l k+j}^{\prime} l k+j(0)= \frac{2 \alpha}{\left(1+u_{1}^{2}+\cdots+u_{k}^{2}\right)^{2}\left(1+u_{k+1}^{2}+\cdots+u_{k+n}^{2}\right)^{2}} \\
& \times\left\{\frac{1-u_{1}^{2}-\cdots-u_{k}^{2}}{1+u_{1}^{2}+\cdots+u_{k}^{2}}+\frac{1-u_{k+1}^{2}-\cdots-u_{k+n}^{2}}{1+u_{k+1}^{2}+\cdots+u_{k+n}^{2}}\right\}, \\
& K_{l k+j}^{\prime}(0)=- \frac{\alpha}{8}\left\{\frac{1-u_{1}^{2}-\cdots-u_{k}^{2}}{1+u_{1}^{2}+\cdots+u_{k}^{2}}+\frac{1-u_{k+1}^{2}-\cdots-u_{k+n}^{2}}{1+u_{k+1}^{2}+\cdots+u_{k n}^{2}}\right\}, \\
& \quad l=1, \cdots, k, j=1, \cdots, n .
\end{aligned}
$$

Using the fact that $\alpha<0$, then following inequalities are obtained from the above relations:
(3.10) $R_{l k+j l k+j}^{\prime}(0)<0, \quad K_{l k+j}^{\prime}(0)>0, \quad l=1, \cdots, k, j=1, \cdots, n$,
which are valid on the open balls $u_{1}^{2}+\cdots+u_{k}^{2}<1, u_{k+1}^{2}+\cdots+$ $u_{k+n}^{2}<1$.

Let $\xi\left(\xi^{1}, \cdots, \xi^{k+n}\right)$ and $z\left(z^{1}, \cdots, z^{k+n}\right)$ be any two vectors of the tangent space $\left(M_{1} \times M_{2}\right)_{P}$. The sectional curvature of the plane spanned by ξ and z is given by ([11], p. 12)

$$
K=\frac{R_{h i j l} z^{h} z^{j} \xi^{i} \xi^{l}}{\left(g_{h l} g_{i j}-g_{h j} g_{i l}\right) z^{h} z^{j} \xi^{i} \xi^{l}}
$$

or

$$
\begin{equation*}
K=\frac{A_{1}}{B_{1}}, \tag{3.11}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{1}=R_{h i j l} z^{h} z^{j} \xi^{i} \xi^{l}, \quad B_{1}=\left(g_{h l} g_{i j}-g_{h j} g_{i l}\right) z^{h} z^{j} \xi^{i} \xi^{l} \tag{3.12}
\end{equation*}
$$

From (3.11), the following is obtained:

$$
\begin{equation*}
K^{\prime}(0)=\frac{A_{1}^{\prime}(0) B_{1}(0)-A_{1}(0) B_{1}^{\prime}(0)}{B_{1}^{2}(0)} \tag{3.13}
\end{equation*}
$$

From (3.12), by virtue of (2.3), (2.6), (2.20), (2.21), (2.22), (2.23),
(2.24) and similar formulas to (2.23) and (2.24), we obtain

$$
\begin{align*}
& A_{1}(0)=-C d_{11}^{2}-D d_{k+1 k+1}^{2} \\
& A_{1}^{\prime}(0)=-f C d_{11}^{2}-\varphi D d_{k+1 k+1}^{2}+T \tag{3.14}
\end{align*}
$$

$$
\begin{equation*}
B_{1}(0)=-C d_{11}^{2}-D d_{k+1 k+1}^{2}-E d_{11} d_{k+1 k+1} \tag{3.15}
\end{equation*}
$$

$$
\begin{equation*}
B_{1}^{\prime}(0)=-2 f C d_{11}^{2}-2 \varphi D d_{k+1 k+1}^{2}-(f+\varphi) E d_{11} d_{k+1 k+1}, \tag{3.16}
\end{equation*}
$$

where

$$
\begin{gather*}
C=\sum_{i=1}^{k} \sum_{i<j=2}^{k} \alpha_{i j}^{2}, \quad D=\sum_{i=k+1}^{k+n} \sum_{i<j=k+2}^{k+n} \alpha_{i j}^{2}, \quad E=\sum_{i=1}^{k} \sum_{j=1}^{n} \alpha_{i k+j}^{2}, \tag{3.17}\\
T=\sum_{l=1}^{k} \sum_{j=1}^{n} R_{l k+j l k+j}^{\prime}(0) \alpha_{l k+j}^{2}, \alpha_{j m}=\left(z^{i} \xi^{m}-z^{m} \xi^{i}\right) .
\end{gather*}
$$

Relation (3.13), by means of (3.14), takes the form

$$
\begin{equation*}
K^{\prime}(0)=\frac{T B_{1}(0)+C G d_{11}^{2}+D J d_{k+1 k+1}^{2}}{B_{1}^{2}(0)} \tag{3.19}
\end{equation*}
$$

where

$$
\begin{equation*}
G=B_{1}^{\prime}(0)-f B_{1}(0), \quad J=B_{1}^{\prime}(0)-\varphi B_{1}(0) \tag{3.20}
\end{equation*}
$$

Formulas (3.20), by virtue of (3.15), and (3.16), become

$$
\begin{equation*}
G=L-(2 \varphi-f) D d_{k+1 k+1}^{2}, \quad J=N-(2 f-\varphi) C d_{11}^{3} \tag{3.21}
\end{equation*}
$$

where

$$
\begin{align*}
& L=-\varphi E d_{11} d_{k+1 k+1}-f C d_{11}^{2} \\
& N=-f E d_{11} d_{k+1 k+1}-\varphi D d_{k+1 k+1}^{2} \tag{3.22}
\end{align*}
$$

Relation (3.19), by means of (3.21), takes the form

$$
\begin{equation*}
K^{\prime}(0)=\frac{T B_{1}(0)+C L d_{11}^{2}+D N d_{k+1 k+1}^{2}-(f+\varphi) C D d_{11}^{2} d_{k+1 k+1}^{2}}{B_{1}^{2}(0)} \tag{3.23}
\end{equation*}
$$

From (3.15) and (3.22), by means of (3.17), and because the functions f and φ are negative, we conclude

$$
\begin{equation*}
B_{1}(0)<0, \quad L \geqslant 0, \quad N \geqslant 0 \tag{3.24}
\end{equation*}
$$

The first of (3.18), by virtue of the first inequality of (3.10), implies

$$
\begin{equation*}
T \leqq 0 \tag{3.25}
\end{equation*}
$$

Formula (3.23), by means of (3.17), (3.24), (3.25) and $f<0, \varphi<0$, implies

$$
K^{\prime}(0)>0,
$$

because it is not possible that simultaneously $C=D=T=0$ for the two vectors ξ and z.

Hence, we have the following theorem.
Theorem. Let M_{1} and M_{2} be two special Riemannian spaces with constant positive sectional curvature defined in §1. If we consider a special 1-parameter family of Riemannian metrics $F(t)$ on $M_{1} \times M_{2}$ defined by (1.3), where the functions f, φ have the form (3.9), then the derivative of the sectional curvature with respect to the parameter t for $t=0$ and for any plane of $\left(M_{1} \times M_{2}\right)_{P}$ and $\forall P \in M_{1} \times M_{2}$ is strictly positive.

From the above, we conclude that, if the parameter t is positive and small enough, then the corresponding Riemannian metric $F(t)$ defined by (1.3) on $M_{1} \times M_{2}$, where the functions f and φ have the form (3.9), has strictly positive sectional curvature.

I wish to express here my thanks to Professor S. Kobayashi for many good ideas I obtained from conversations with him.

References

1. M. Berger, Trois remarques sur les variétiés riemanniennes à courbure positive, C. R. Acad. Sc. Paris 263 (1966), 76-78.
2. R. Bishop and R. Crittenden, Geometry of Manifolds, Academic Press, New York, 1964.
3. L. Eisenhart, Riemannian Geometry, Princeton University Press, 1949.
4. T. Frankel, Manifolds with positive curvature, Pacific J. Math. 11 (1961), 165-174.
5. H. Guggenheimer, Differential Geometry, McGraw-Hill Book Company, 1963.
6. N. Hicks, Notes on Differential Geometry, Math. Studies No. 3, Van Nostrand, New York, 1965.
7. S. Kobayashi and K. Namizu, Foundations of Differential Geometry, Vol. 1, Interscience, New York, 1963.
8. S. Myers, Riemannian manifolds with positive mean curvature, Duke Math. J. 8 (1941), 401-404.
9. S. Sternberg, Lectures on Differential Geometry, Prentice-Hall, Englewood Cliffs, N. J., 1964.
10. Y. Tsukamoto, On Riemannian manifolds with positive curvature, Mem. Fac. Sci. Kyushu Univ. 15 (1961), 90-96.
11. K. Yano, Differential geometry on complex and almost complex spaces, Pergamon Press, New York, 1965.
12. K. Yano and S. Bochner, Curvature and Betti numbers, Ann. of Mat. Stud. 32, Princeton University Press, 1953.

Received March 14, 1967.

[^0]: ${ }^{1}$ A Riemannian space is a Riemannian manifold covered with one chart ([5], p. 314).

