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EXPECTED VALUES OF FUNCTIONALS WITH RESPECT
TO THE ITO DISTRIBUTION

MICHAEL SCHILDER

Stochastic differential equations of the type (written sym-
bolically)

(1.1) xw(t) + m(t, x^\t\ x<*~2)(£), , x' (t\ x(t), t) = z'(t)

x(S) = oo, x'(S) = aί9 , x^-'KS) = On-i S ^ t ^ T

where z(t) is Brownian motion, arise in physics and engineer-
ing and are also the object of study of pure mathematicians.
In this paper it will be shown that the integral associated
with the distribution of the function cc( ) may be expressed
in terms of a Wiener integral with a weighting functional
(the Radon-Nikodym derivative). Thus the expected values of
functionals with respect to the distribution of #(•) can be
easily and concisely expressed. Also it will be shown that
certain partial differential equations of physics naturally have
their solutions associated with this integral.

To proceed more precisely, following Ito [7], we rewrite the first
order case of (1.1) as

(1.1)' x(t) + f'm(%, x(u))du = z(t)
JS

and ask about solutions of (1.1)'. With certain conditions on m(ί, x)
it is possible to conclude that for almost every #(•) (Wiener or
Brownian motion measure) in C[S, T], where C[S, T] is the class of
continuous functions on the interval [S, T] whose value at S is a,
that (1.1)' has a unique solution #(•). See [2] for example. We ex-
press this by writing

(1.2) x = Gz .

Clearly now, the most natural definition for the distribution of
x(') is as follows:

P(x( )eA) = Pw(zeG~ιA) .

Pw is Wiener measure, and A is a set of functions contained in C[S, T]
which is such that G~'A is Wiener measurable. The distribution P( )
so defined will be called the Ito distribution and will be denoted from
now on by P7( ); the associated integral will be denoted by Ej( ).

This approach has been taken before. (See [4] and [5].) How-
ever in this paper it will be shown that explicit expressions for the
expected values of various functionals arising in physics and engi-
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neering can be given in terms of Wiener integrals. In particular a
number of the thermodynamic functions can be so expressed. Further,
the results of this paper shed some light on the Feynman-Kac [8]
formula for Wiener integrals.

2* The integral* In this section, the definiton of the Ito distri-
bution which was given in the introduction, will be given rigorously
and the integral with respect to it will be defined.

Let Tk be the integral operator

Ct

Tk(x)(t) = x(u)du + an_k

Js

and let y(t) = x{n-l)(t).
We note that (1.1) may be written

(2.1) y(t) + [m(u, y(u), T2(y)(u), , Tn(Tn_lf , (T2y))(u))du
JS

= Z(t) .

As in the introduction, if certain conditions are put on m(t, xn^ly

• • ,.τ0), then it follows that for almost every zeC[S, T](z(S) = an_γ)
Wiener measure there is a unique solution to (2.1). We express this
again by writing y = Gz.

As in the introduction, this transformation induces a σ-field and
a measure on the y space, which we again call the Ito measure.

From now on the notation for the sets over which integration is
performed will be left out if the meaning is clear.

We now have the following theorem:

THEOREM 1. // F{x{n~ι), •••,#) is a functional which is measur-
able and integrable with respect to the Ito distribution just defined
and if for almost every zeC[S, T] (2.1) has a well defined solution,
then

= \F(Gz, T2Gz, ., Tn(Tn^ , T2{Gz)))dPw{z) .

Proof. The proof follows immediately from the definitions.

There is the rather interesting and useful corollary.

COROLLARY. Suppose an_3 (t) are continuous real valued functions
for S ^ t <̂  T, j = 1, - , n, and that A is the matrix
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A(ί) =

0
0

- α o(ί) -

1
0
•

0
1
•

- α 2 ( t ) ••• a

Let Φ(t) be the (matrix) fundamental solution

Φik(t)

Then

( i ) x(t) = Σ (

kl

^*(ί)Γ<ρ«(ι

3
,At)ΦJk(t).

\ιy( i)t 1/7 <9/ι J A/\w JUϋ w

0
0
•

ô ίfcβ equation

is a solution to the integro-differential equation

fo - z(t)

(ii) &"»(«) = Σ Φjk(t)\' Φ^(u)Aln
kl JS

(iii) The Ito distribution defined by

(2.2) χw(t) + Σ an-s{t)x*(t) = W
j

and

x{s) - x ( l )(s) - x(2)(s) = . . . α (—1 J

is Gaussian with

Ez{SS{j)(t)} = 0 j = 0,1, , n ~ 1

and

- z(s) - 0

S ^t ̂  T

- Σ ^nfc^!)^^!)^,^^)^^,^^)^^)

Ahn(u2) min ( ^ — S,u2 — S)duxdu2

+ δ ^ A ^ m i n (^ - 5, ί, ~ 5) .

Proof, (i) and (ii) follow by direct verification, which can be
accomplished without differentiating z by using integration by parts.
To find the distribution x{ί)(t), the method of characteristic functions
is used. By definition, the distribution of x{j)(t) is that of xj(t). Thus
from theorem 1, this definition, and (i) and (ii),
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[ exp [ivx{j\t)]Pj(x) = [ exp [ί

The last Wiener integral is known to be

expΓ-V/2(

x Φjk2(t)Φ^h(u2)Ahn(u2) min (ut - S,U2- S)duιdu2

2 Σ ^ / O Γ ^ M A ^ ) min (u - S, t - S)duδjn_1 + δ^

Thus x{j)(t) j = 0, •••, n — 1 is Gaussian with mean zero and
variance

Σ (T Φsφ)Φi;ϊι&i)AhMΦsφ)

x Φ^l2(u2)Ahn(u2) min (%,. — S,u2 — S)duιdu2

+ 2 Σ ΦJiwΓφΓίhί^A.^ίw) min (w - S, ί - S)duδjn^ + δjn__J .
k1l1 JS

To calculate Effi^x^Q), we note that

= Σ
x ΦiX(u2)Ahn(u2) min («! - S,u2- S)du1du

2

+ Σ ^ ( i O P t f i k i t t ^ - f a i ) min (Mi ~ S,t2- S)du, δhn_ι
kih JS

+ Σ <^ 2*2(<2)\ 2Φw2(u2)Al2n(u2) min (%a - S, ίx - S)du1δhn^ι
&2Ϊ2 J *5

+ δjin^δhn^ m i n ( ί x - S,t2- S) ,

which completes the proof of the corollary. For another from of this
corollary, see [10].

3. The transformation theorem* It, unfortunately, is not
nearly as easy to invert (in the sense of (1.2)) the general nonlinear nth

order ordinary differential equation as it is the linear one. It, there-
fore, is necessary to use more general methods to study the Ito dis-
tribution. It is an interesting fact that inverting (2.1) is in some
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way equivalent to changing variables in the Wiener integral. In this
section, this idea will be made more precise. The analysis leans heavily
on the work of Cameron and Martin who developed the transformation
theory of the Wiener integral with their students.

THEOREM 2. Suppose m(t,xn_λ, * ,Xι,x0) is a real valued, con-
tinuous, and continuously differentiahle function on Rn+1. Suppose
also that for almost every ze C[S, T](2.1) has a unique solution.
Then, if F(xin~1], x{n~2\ , xf x) is a measurable and integrable func-
tional on the Ito space defined by (1.1) and the conventions agreed
upon at the beginning of § 2,

(3.1) [F(X{%-1), x{n~2), •••,&', x)dPI(x{n'1), x{n-2}, -**,x',x)

x exp [\Tp(t, T2y(t), , Tn(Tn_l9 • , (Tty))(t))dt]

x e x p [ - M(T, T2y(T), •-., Tn(T^u •••, (T2y))(T))]dPw(y)

xexp[M(S,an_ly -- 9a0)] .

where

τγi\Z, u, Xγi—Zy * * * > x^)au

0

and

/γ\(ί fψ . . Ύ \ — -I'll? I 71//" I \ 1 71//" /y ^•fWi^'
^/^t/j «̂ /ί2 1> 1 *^0/ 2 X 1^ *-V *-t l^ / j J.VAg . «V^J_Λ* 2 ' ^ ^

It will be noted that Theorem 2 allows one to express the Ito
integral without solving (2.1) for almost every zeC[S, T].

Proof. From Theorem (I) it follows that

- \ « - 2 , ..-,x)dP(xn~\ ...,&0)

/, Γsy, , Tn(Tu_19 , (T2y)))dPw(z) .

The result then follows immediately from [1] equation (3.6).
Note that Cameron uses a slightly different definition of the

Wiener integral that usual. The result here is also generalized to
include the case of arbitrary final time T and arbitrary initial values
an_!, , aQ, and time S.
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4* Partial differential equations* In this section, we will show
that the solutions of certain partial differential equations of physics
are naturally given by integrals of the form (3.1). Let

#(ff»-i, •••,«<>; &„_!, . . . , δ0) = 1 if xn_λ ^ 6n-1, ., x0 g 60

= 0 otherwise. And let

p(t, xn-19 , x0) = imXn^(t, xn_19 , Xo) + M,(ί, xn_19 , a0)

We note that with the conventions agreed upon at the beginning
of §2,

, aQ; t) = probability (^-"(ί)

α-i, , x(S) = do)

is a well defined function of 2n + 2 variables. The following theorem

follows immediately from Theorem 2.

THEOREM 3. // m(ί, xn_u , a?0) satisfies the conditions of Theo-
rem 2,

»-i, , αo; ί)

, T J Γ . ^ , , (T2y))(t); bn_lf , 60)

x exp [J W , V(u), , Γ»(Γ-i, , (T2i/))(w))d

x exp[-M(T,y(T), •••, Γn ( Γ ^ , . , (Uy)(T))]dPw(y)

x exp[M(S, an_x, « ,α0)] .

Theorem 3 shows that the function P(bn_u •• ,δo;αn_i> •• ,α o ; ί )
may be expressed in terms of a Wiener integral. It will presently be
shown for the first order equation, anyway, that the Ito distribution,
defined in §2 is a Markov process, and thus it follows that P(δ Λ - 1 , ,
bQ; an_u , aQ; t) is its distribution function. It also follows that
P(K-i> * , bQ; αn_L, , αo; t) solves the backward and forward diffusion
equations (the Fokker-Planck equation). We state and prove this
rigorously in Theorem 4, for first order equations.

THEOREM 4. Let δ(a — 6) be the delta function and let P(b; α; S+
S) mean the limit as T approaches S from above. Suppose m(T, x)
satisfies the conditions of Theorem 2, and m(T, x) ^ K(l + x2)112

where K is a positive constant. Suppose also that

p{t, x) = | m s + Mt — \m2
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is uniformly Holder continuous and bounded from below. Then it
follows that the differential equations

(4.1) T ^ W ; <*; T; S)] + M(S, a)JL[P] + i-^[P] = 0
dS da da2

P(b; a;S+;S) = l if a^b

= 0 if a > b

(4.2) IP'Sr^ a> Ί r

P(b; a; S+; S) = δ(a - b)

have well defined solutions. If

(4.3) P(a;b;T;S)

); b) exp[£ί>(ί, y(t))dt - M(T; y(T

it follows that P solves (4.1), and if

(4.4) P'(b; a; T; S) = J exp [j^(ί, y(t))dt]dPa(y \y(T) = b)
x exp [M(T, b) - M(S, a)]

x (2π(T - S))-" 2 exp[- 1/2(Γ - S))(6 - α)2]

it follows that P' solves (4.2).
Pw(v I V(t) = δ) ^ s Wiener measure (probability) conditioned on

y(S) = a,y(T) = b.

Proof. It will first be shown that

—[P(b; a; T; S)] = P'(b; a; T; S) where P' is defined by (4.4) .
96

P'φ; a; T; S) = lim [P(b + h, a; T; S) - P(b; a; T;S)U-
h-+0 h

= lim-ί(expΓΓp(ί, y(t))dt - M(T, y(T))\
h^o h J LJs J

x H(y(T); b + h) - H(y(T); b))dPw(y) exp [M(S, a)] .

Since lim MH(y(T); b + h) - H(y(T); b))dPw(y)

Γb + h

J
— OrrίT SsW-1!2 ίvsm Γ (ΛI9(T <2\\(h n\2~\

= lim (2π(Γ - S))~1/2 exp [-(1/2(Γ - S))(u - af]du
h^O ib
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it follows that d/db[P] — Pr as was to be shown.
From Doob [3] Chap. VI, § 3 and the assumption of this theorem,

it follows that process x(t), defined by (2.1) and our conventions, is a
Markov process and that the following limits exist and have the indi-
cated values.

(4.5) lim—J[α(S + h) - aj(S)]dPz(a?) = m(S, a)
h^o h J

(4.6) lim— \[x(S + h) - x(S)]2dP1(x) = 1 ,
h-+0 h J

and that

(4.7) Pd( \x ( T ) - x ( S ) \>ε) = o(T- S) . (any ε > 0)

From [9] Theorem 1, it follows that P' has sufficient derivatives
for (4.2) to make sense; from [6] and the above, it then follows that
Pf solves (4.2) except for (possibly) the initial conditions. Since P '
has sufficient derivatives for (4.2) to make sense, it can be seen that
P has sufficient derivatives for (4.1) to make sense and thus from
[6] and the above, again it follows that P solves (4.1) except for
(possibly) the initial conditions. The initial conditions for both (4.1)
and (4.2) follow easily from (4.7). This shows Theorem 4.

The integral in (4.4) is, of course, very close to the Feynman
integral of quantum mechanics; and, by way of Theorem 4, one is led
to a rather interesting physical interpretation of the Schrodinger
equation.

We now take a slightly different direction and note that U(t, S, a) =

Ei(y(t)) = \y(t)dPi(y) has a physical interpretation as the expected
position of a particle moving in one dimension at time t which, at
time S, was at a. d/dt[U(t, S, a)]\t=s then has a physical interpreta-
tion as the excepted velocity of the particle at time S given the posi-
tion of time S is α. It is interesting that this expression solves an
equation similar to the one-dimensional Navier-Stokes equation. This
fact will be shown in Theorem 5.

THEOREM 51. Suppose m(T, x) satisfies the conditions of Theorem
4 and mxx(t, x) exists and is continuous and let

(4.9) U{T, t, S, a) = EΣ{y(t))

= Ji/(ί) exp [fan, y(u))du - M(T, y(T))^dPw(y) exp [M(S, a)]

1 Professor M. Donsker has shown that a ratio of Wiener integrals similar to
(4.9) satisfies (4.10). Professor Donsker, however, used a different method of proof.
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then

lim l/(ί - S)[U(T, t, S, α) - C7(T, S, S, a)]
tis

exists, and if

V(T, S, a) = lim l/(ί - S)[ϋχΓ, ίf S, a) - U(T, S, S, a)]
tiS

V satisfies the equation,

(4.10) - Vs + VVa = -Px(a, S) + iVaa

with terminal condition V(T, T, a) = m(T, α). The term exp [M(S, α)]
may be expressed as

(4.11) exp [M(S, a)] - 1/j exp[^p(t, y(t))dt -

Proof. From (4.5), it follows immediately that the indicated limit
exists and that V(T, S,a) = m(S, a), and therefore V(T, T,a) = m(T, a).
But M(T, a) is defined as

M(T, a) = [am(T,u)du
Jo

and p(S, a) is defined as

p(S, a) = ima(S, a) + MS(S, a) - im2(S, a)

and thus

pa(S, a) = imaa(S, a) + ms(S, a) - m(S, a)ma(S, a) .

(4.10) thus follows immediately. (4.11) follows from the relation-
ship

1 - P(oo, a, T, S) = exp[j^(£, y(t))dt

- M(T, y{T))]dPw{y) exp [M(S, a)] .

Theorem 5 shows that the solution to (4.10) may be expressed in
terms of Wiener integrals, if it is known that the solution to (4.10)
exists and has certain properties. The fact that the solution for
earlier times is given in terms of later times and that the sign of Vs

is minus may be fixed by reversing the direction of the Wiener paths.
More details and applications of the theory presented here will

be given in a later work.
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