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MAPPINGS AND DIMENSION IN GENERAL
METRIC SPACES

JAMES KEESLING

In this paper necessary and sufficient conditions are de-
veloped for certain classes of continuous functions f(X) = Y,
where X and Y are arbitrary metric spaces, to have the
property that dim K— dim f(K) for all closed K c X In
particular it is shown that if / is closed and dim f(K) > dim K
for some closed K c Xf then there exists a closed K' c X so
that dim K' = 0 and dim f{Kf) > 0. These results are then
used to show that if / is closed and finite to one so that the
multiplicity function of / takes on at most k + 1 distinct
values, then dim K ^ dim/(iΓ) S dim K + k for all closed
KaX.

The purpose of this paper is to investigate the relation of the
dimension of a closed subset of the domain with the dimension of its
image in the range under various classes of continuous functions. In
the first part of the paper we investigate this relation for closed
subsets of the domain which have dimension zero. Using these results
we characterize the property of being dimension preserving on closed
subsets for a large class of mappings. In the second part of the
paper we then show several important types of mappings to be di-
mension preserving on closed subsets. In the last section we generalize
a result of Hurewicz [3]. The results of this paper are related to
those of a number of investigators among whom are: Alexandroff [1],
R. Hodel [2], K. Nagami [7], J. Nagata [8, pp. 68-73], J. H. Roberts
[9], J. Suzuki [10], and R. F. Williams [11], As indicated in the title,
the setting for our study is the class of metric spaces.

Notation-. Throughout the paper X and Y denote metric spaces
and / a continuous function from X onto Y. By dim X is meant the
Lebesgue covering dimension of X This is, of course, equal to the
large inductive dimension of X, denoted Ind X, in metric spaces. We
let ind X denote the small inductive dimension of X The relation
ind X — Ind X holds when X is locally separable but not in general
otherwise. The necessary background in dimension theory for
general metric spaces (resp. separable metric spaces) will be found
in J. Nagata [8] (resp. Hurewicz and Wallman [4]). Any additional
hypotheses on /, X, or Y will be explicitly stated in each theorem.

I. Closed KczX with dim IT = 0. We will need the following
lemma several times throughout the paper.
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1.1. LEMMA. Let dim X = n,n finite, and let 0 ̂  i ^ n. Then
lA, B SO that X = A U B with dim A = i, dim B = n — i — 1, and
with A an Fσ in X.

Proof. By the decomposition theorem ([8], p. 19) it is possible
to find Aι and Bλ so that X — At U Bt with dim Aι = i and dim Bt =
n - i - 1. By Theorem II. 10, p. 32 [8] there exists 5 z> J5X with B
a ft in I and dim B — n — i — \. Let A — X — B. Then A is an
Fa and dim A = i.

1.2. DEFINITION. Suppose for / we have X= UΓ=i^;,Λ closed
in X,f(Ai) closed in Y, and /1-A*: A< —/tA<) closed for all i. We
say then that / is σ-closed. These mappings arise naturally as (1)
continuous mappings of σ-compact spaces, (2) finite to one open map-
pings, and (3) open mappings with discrete point inverses on separable
metric spaces.

1.3. LEMMA. / is σ-closed if and only if X — (JΓ=i A{ so that for
each i, Ai is an Fa in X,f(Ai) is an Fσ in Y and f\ At: A{ —*f(Ai)
is a closed mapping.

Proof. Suppose the latter condition holds. Then for each i let
Ai = U*Γ=i Fk,% with each Fk>i closed in X and Fkyi c Fk+Ui for all k.
Likewise let f(Ai) = UΓ-i B*,* with Bkti closed in Y and Bk>iaBk+1>i.
Define Ck}i = FkΛ Π f~~\Bk}i). Then one can easily verify that X =
\Jk,i Ckfi satisfies the properties for / to be tf-elosed.

This characterization of α-closed will be useful in showing certain
mappings to be σ-closed. The next theorem is the fundamental result
of this section.

1.4. THEOREM. Let f be a closed mapping with dim X = n, 0 ^
n < ooy and dim Y ^ k(n + 1), 1 ̂  k < oo. Then there is a closed set
KdX with dim K = 0 and dim/(if) ^ k.

Proof. This is clearly true for dim X = 0. We proceed by in-
duction. Suppose dim X — n > 0 and that the theorem holds for all
lesser values of n. By Lemma I.I we let X = A U B with A an Fσ,
dim A = 0 and dim JS = w — 1.

Case (i). dim f(A) ^ fc.
In this case let A — (JΓ=i -P7* with J^ closed for all i. Since /(i^)

is closed in Γ for all i, by the sum theorem for closed sets ([8], p. 17)
there is an i so that dim f{Fi) ^ k. Let K = F{ in this case.
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Case (ii). dim/(.A) < k.
In this case let Cz)f(A) in Y with CaG 3 and dim C = dim f(A) < k.

Then 7 - C is an ί7, and dim (Y - C) ^ dim Y - dim C - 1 ^ few.
Let F — C = UΓ=i ί7* so that each Ft is closed. Then 3ΐ so that
dim F{ ^ kn. Since f~\Fi) <. n — 1, apply our induction assumption
to /1 f~ι(Fi) to complete the proof for this case.

1.5. COROLLARY. 1.4 remains true if we replace f closed with f
σ-closed.

1.6. COROLLARY. / / / is σ-closed andKa X, K closed and dim K =
n, 0 ^ n < oo, with dim/(If) ^ k(n + 1), 1 <£ & < ©o; ί&ew 31Γ closed,
K'CLK with dim iΓ = 0 αwώ dim/(JS7) ^ ifc.

1.7. COROLLARY. // / is σ-closed and f raises the dimension of
any closed subset, then f raises the dimension of a closed subset of
dimension zero.

1.8. DEFINITION. Let / be such that for every closed set KaX,
dimiΓ = dim/(ϋΓ). Such a function will be said to be dimension
preserving on closed subsets. If dim f~~ι(y) — 0 for all yeY, then /
is said to be ^-dimensional.

The next theorem is due to Hurewicz who proved it for separable
metric spaces. It has been proved for more general spaces including
arbitrary metric spaces by K. Morita and K. Nagami. For a proof
see Nagata [8, pp. 63-68].

1.9. THEOREM. // / is closed and dim X — dim Y >̂ k ^ 0, then
3yeY so that dim f~\y) ^ k.

Clearly the theorem is true if we replace closed by ^-closed. We
can therefore state the following characterization of dimension pre-
serving on closed subsets for σ-closed mappings.

1.10. THEOREM. // / is σ-closed, then f is dimension preserving
on closed subsets if and only if f is ^-dimensional and has the
property that KaX, K closed, and dim K — 0 implies that

dim/(ίΓ) = 0 .

Proof. If / lowered the dimension of some closed subset, by 1.9
/ would not be 0-dimensional. If / raised the dimension of some
closed set, then it would raise the dimension of some closed set of
dimension zero.
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Returning to 1.4 we now prove that if X is Euclidean space, then
we can improve the estimate given in 1.4.

1.11. THEOREM. Let X = En and dim Y ^ kn + 1 where En de-
notes Euclidean n-space and 1 ^ k < oo. Then IK closed in En,
dίmiΓ = 0 with dίmf(K) ^ k.

Proof. Let A be a countable dense set in En. Then since f(A)
is countable, it must have dimension zero. Let BzDf(A) be a Gδ so
that dim B = 0. Then dim (Y - B) ^ kn and Y - B is an Fo. Let
Y — B ~ UΓ=i Fi be a countable union of closed sets. Let dim Ft ^ kn.
Since /"H^) aEn - A, f-\Fi) has no interior points and dim f'Wi) ^
n — 1. Now /1 /^(Fi) is o -closed since i£% is σ-compact. The proof
is now completed by applying 1.5 to / l /

1.12. COROLLARY. If X = Eι and dim Y = m > 1, ίfee^ 3K cίosecί
w X, dim iΓ = 0 with dim/(if) ^ m — 1.

The concluding theorem of this section is for an arbitrary con-
tinuous function which lowers dimension.

1.13. THEOREM. Let dim Y = n and dim X > k(n + 1) where 0 ^
n < oo cmd l ^ K oo; ^ ^ ^ 3ίΓcX, iΓ closed, dim K ^ k ivίth
dim f(K) = 0.

Proo/. By induction on n. In case n = 0, let J5Γ = X Let
dim Y = n > 0 and suppose the theorem is true for all lesser values
of n. Let 7 = 4 u 5 with A an F,, dim A = 0 and dim B = n - 1.
We then have two cases.

Case (i). dim f-\A) ^ A.
In this case let A = (JΓ=i ̂  closed and get an i so that

(ii). dim f~\A) < k.
Then let Cz)f-\A) be a Gδ so that dim C = dim f-\A) < k. Then

dim (X - C) ^ ftw. Let X - C - (JΓ=i ̂  where each F< is closed in
X Then 3i so that dim i^ ^ ftw. Since /(F,) c B, dim fiF,) ^ n - 1.
We now apply our induction assumption to /1 F{ and theorem follows.

1.14. COROLLARY. If f lowers the dimension of any closed set of
the domain, then f takes a closed set of positive dimension onto a set
of dimension zero.
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II* Functions dimension preserving on closed subsets* In this

section we will show the following types of functions to be dimension
preserving on closed subsets and σ-closed: (1) / open with f~\y) discrete
with X separable; (2) / finite to one and open; (3) / σ-closed, open,
f~\y) discrete for all y eY; (4) / σ-closed and exactly k to one.
We will first prove (3) and then show that (1) and (2) follow. We
will then show that (4) is a result of (2). Some examples and other
theorems will be inserted at appropriate points in this chain of
argument.

II. 1. THEOREM. Let f be open with f~~\y) discrete for all yeY.
Then for all if c X, dim K ^ dim f(K).

Proof. Let {Aa,n: a e Γn) be a locally finite open cover of X so that
diam (A*,*) ^ 1/n for all a e Γn. Let Ba>n = {xe Aa>n: f~ιf{x) Π Aa,n = x] .
By the openness of /, Batn is closed in Aa,n as is f{Ba>n) in f(Aatn).
Therefore Ba,n and f{Batn) are F'as. It is easily seen that

/ 1 Ba,n: Ba.n —+ f(Ba>n)

is open. Since it is also one to one and continuous, it is a homeo-
morphism. Therefore dim K Π Ba>n — dim f(K Π Ba>n) for all n and all
a e Γn. By the sum theorem, lBa,n so that dim K Π Ba,n ̂  k if
dim K^k, noting that \Jan Bayn = X is σ-loeally finite. But then

Π.2. EXAMPLE. Let / be the unit interval [0,1] in E1 with the
ordinary topology and let I* be the same set with the discrete topology.
Define f: I x I* -»/ so that /(α, 6) = a. Then / is open and f~\y) is
discrete for all y. Let Δ — {(α, a): a e 1} c / x I*. Then A is discrete
and closed, hence dim A = 0. But/(J) = /. Therefore we cannot prove
equality in II. 1 even for closed if in X without additional assumptions
on /.

Π.3. THEOREM. If f is open, σ-closed, and f~ι{y) is discrete for
all yeY, then f is dimension preserving on closed subsets.

Proof. Since / is 0-dimensional we need only show that the second
condition of 1.10 holds. Let K c l with dim if = 0 and if closed and
suppose dim/(if) > 0. We may assume KaAi for some i where
X = U?=i A> a s i n the definition of σ-closed. Let {Aa>n: a e Γn) be a
locally finite open cover of X with diam (Aa,n) ^ 1/n. Let Fa>n c Aa>n

so that {Fa>n: a e Γn} forms a closed cover of X. Let
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Qa,n = {xe Fa,n n K: f^f(x) n Aa,n = x} .

Then Qatn is closed in X by the openness of /. Now {Qa,n' & e Γn} is
locally finite, hence closure preserving. Since Qa>n c At and f\A{ is
closed we get that {f(Qa,n):cceΓn} is closure preserving in Y. By a
theorem due to Nagami ([8], p. 18) we have that if dim f(Qa,n) fS &
for all aeΓn, then dim \Ja f(Qa,n) ^ &. Now /1 Qatn is a homeomorphism
onto f(Qa,%), hence dim/(Qβfll) ^ 0. Now B. = U«βr./(Q«, ) is closed
with dim # % = 0. We can easily verify that U~=i Bn = f(K) Therefore
dim f(K) = 0, a contradiction of our assumption that dim f{K) > 0.
That is, / must be dimension preserving on closed subsets.

II.4. THEOREM. // / is open with discrete point inverses and
X is separable, then f is dimension preserving on closed subsets.

Proof. Let {Ai} be a countable basis for X. Let

Bi = {xeAi:f~
ίf(x)nAi = x}.

Then Bι is an Fσ as is f(B^). Now f\Bi is a homeomorphism onto
f(Bt). Applying 1.3 we get that / is cr-closed. Applying II.3 we get
that / is dimension preserving on closed subsets.

11.5. Note. If we actually apply the proof of 1.3 to this case we
get X— UΓ=i ̂ i, ^i closed, f(A{) closed, with f\ A{ a homeomorphism
onto f(Ai).

11.6. LEMMA. If f is open and exactly k to one, then f is closed.

Proof. Let yn-^y be a sequence of distinct points in Y. Let
xn e f~\yn) for all n and suppose that {xn} has no limit point in X.
Then we may choose {FJ U a disjoint collection of open sets, each
containing no point of the set {xn} where zi 6 Vi and f~\y) — {zu , zk}.
By the openness of /, 3iV; such that n^N{ implies that f~\yn) Π V* Φ Φ.
Let N = max {JVJJU. Then f"\yN) Π V{ ^ Φ for all i. But f-\yN) con-
sists of exactly k points. Therefore there is exactly one point of f~\yN)
in each V{ and every point is in one of the V/s. Therefore xN e Vi for
some i, a contradiction. Therefore the sequence {xn} must have some
convergent subsequence and / must be closed.

11.7. THEOREM. If f is open and finite to one, then f is dimension
preserving on closed subsets.

Proof. Let Yk = {y e Y: f~\y) has k or more points}. Let μ(y)
be the number of points in f~\y). Since / is open, μ is lower semi-
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continuous. Therefore Yk is open for all k. Therefore

Bk=YkΠ(Y- Yk+ι)

is an open set intersected with a closed set, hence is an Fσ. But
Bk = {y: μ(y) = k}. Therefore /1 f~\Bk) is closed onto Bk by II.6 since
an open function restricted to an inverse set is open onto its image.
Applying 1.3 and II.3 we have that/ i s dimension preserving on closed
subsets.

Π.8. THEOREM, // / is closed and exactly k to one, then f is
dimension preserving on closed subsets.

Proof. Let y e Y and let f~\y) = {xu , xk}. If k = 1, then /
is a homeomorphism. Suppose k > 1 and define

Σy — min {d(xif xd): x{ Φ xd} .

Then Σy > 0 for all yeY. Using the closedness of / it is possible to
show that if An == {y e Y: Σy ^ l/n}9 then An is closed in Y and
/1 f~ι(An) onto An is open. Thus / is dimension preserving on closed
subsets by Π.7.

Π.9. THEOREM. // / is σ-closed and exactly k to one, then f is
dimension preserving on closed subsets.

Proof. Let X — UΓ=i -4< as in the definition of σ-closed. We
may assume At c Ai+1 for all i. Let 2?f = {x e A{: f~

ιf{x) c A{}. Then
f(Bi) — {yef(Ai): μ^y) = max/ {̂} where μ^y) is the number of points
in Z""1^) Π A{. If we define Σy = min {d(xif xd); xi Φ x0) where f~ι(y) ~
{#!>•••>#*} a n ^ then define Cw = {yef(Ai): yef(Bi) and J ^ 1/n}.
Then using the closedness of f\AifCn will be a closed set in Y. But
f(Bi) - U~=i C Therefore /(B4) is an Fσ and since /^/(JB,) - JBa , JB̂
is also an JF7,. NOW if £ e X, then since f~ιf{x) is finite, 3 ^ so that
f^fix) c Aiβ Therefore x e B{ and UΓ=i -Bi = X Now f\Bt is closed
onto /(Si) since Bi is an inverse set in a set on which / is closed.
Since f\Bi is exactly k to one, / | J54 is dimension preserving on closed
subsets. Thus / is dimension preserving on closed subsets. Thus /
is dimension preserving on closed subsets on all of X by the sum
theorem.

11.10. COROLLARY. If f is σ-closed and exactly k to one except
for a set BczY which is an Fσ with dim B — 0 and f~\y) has less
than k points for all y e B, then f is dimension preserving on closed
subsets.
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Proof. Let Cn = {y e Y - B: Σy ^ 1/n}. Then by the σ-closedness
of /, Cn is an Fσ. Now /1 f~~\Cn) is σ-closed onto Cn and exactly k
to one, therefore dimension preserving on closed subsets. Now if
KaX,K closed with dim K = 0 and dim/(ίQ > 0, then

d i m / ( i q n £ > 0 .

But by assumption dim B = 0. Therefore dim f(K) = 0 and / is
dimension preserving on closed subsets.

11.11. EXAMPLE. Let I be the unit interval and C the Cantor
ternary set. Let /: C —* I be the cantor ternary function onto the
interval. Then / is one to one except for a countable set 2? c I.
However, for y e B, f~\y) has two points. Therefore our assumption
that f~\y) have fewer than k points in 11.10 was not superfluous.

III. Closed KaX with dim K < dim f(K). The results which
motivated the theorems of this section are due mainly to Hurewicz
[3]. His basic result is the following.

III. 1. THEOREM. Let f be closed and finite to one with X and
Y separable metric spaces. Then if dim Y — dim X ;> k Ξ> 0, then μ
takes on at least k + 1 distinct values, where μ(y) is the number of
points in f~ι{y).

Apparently there has been some difficulty in generalizing this
result to arbitrary metric spaces since the statement in J. Nagata [8,
p. 68] leaves out a considerable amount of the force of III.l. Also
his statement of Suzuki's result (footnote p. 73 [8]) is again only a
partial result. Our results in this section will imply the full force
of III.l in arbitrary metric spaces and will be considerably more
general. Our basic result is III.2.

III.2. THEOREM. If f is σ-closed and finite to one and if K<zX
is closed with dim f(K) — άimK^ k ^ 0, then μ takes on at least
k + 1 values on f(K).

We will need a sequence of lemmas before we can prove III.2.

III.3 LEMMA. Let dim X — n and A a X be an Fa so that

dim A ^ n — 1 .

Then there is an N c X — A, N an Fσ, with dim N — 0 and

dim (X - N) = n - 1 .
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Proof. Let X = B U C with B an Fc, dim B = n - 1 and dim C =
0. Then A\J B is the union of two Fσ's each of dimension less than
n. Therefore dim (A U B) = w - 1. Let D z> L̂ U J5 be a Gδ with
dim J5 = n - 1. Let N = X - D. Then dim JV = 0 since Na C.
Clearly N has the other required properties.

111.4. LEMMA. Let f be σ-closed and finite to one. Let Ym —
{y 6 Y: μ{y) 2> m). Then Ym is an Fσ in Y.

Proof. Let X = (JΓ=I A be as ίn the definition of σ-closed. We
may suppose that AiCiAi+1. It is sufficient to show that

B< = {y e Ym: f~\y) czA,}

is an Fσ for all i. Let Cn = {yeYmf] f{AlY l{xu . . . , xm} c f~\y) n A,
so that dtίaji, xά) ̂  1/n for i Φ j}. Then using the closedness of / on
Ai9 it is possible to show that Cn is closed in A{ for all n. But
Un=i Cn — J5<. Therefore Ym is an Fσ as asserted.

111.5. THEOREM. Suppose f is σ-closed and finite to one. Let
Yk = {ye Y: μ(y) ^ k). Let m = min {̂ (ί/): y e Y}. Then if KaXis
closed with dim K ^ n and dim [f(K) Π ̂ m+i] < ^, then dim f(K) ^ n.

Proof. Let if satisfy the hypotheses of the theorem. We may
assume n to be finite. If n — 0, then dim [f(K) Π Fm+1] < 0 means that
f(K) n F m + 1 - <P. Therefore J Γ c / i y , - Ym+1). By II.9 dim/(ίΓ) ^
0. Now let ^ > 0 and suppose that the theorem holds for lesser
values of n. By the hypothesis dim [f(K) Π Ym+1] ̂  n — 1. Since
/ is 0-dimensional we have dim [f-\f(K) Π Ym+1) f] K] ^ n - 1. Let
^ = f~\f{K) Π Γm+1) Π K. Then A is an Fσ in if by III.4. By III.3
let Nd K - A be an Fσ so that dim N ̂  0 and dim (if - N) ̂  tt - 1.
Then Naf~ι{Ym — Ym+1). Since / is dimension preserving on closed
subsets on f~\Ym - Ym+1), dim f(N) ^ 0. Since / is σ-closed, f(N)
is also an Fσ. Let N' c Ym+1 n /(if) so that N' is an i^ in Ym+1 Π /(JSΓ),
dim N' ^ 0 and so that dim [Γm + 1 Π /(if) - N']Sn -2. Note that
iV' is also an Fσ in F, since /(if) and F m + 1 are both Fσ's. Now let:

Γ' = /(if) - iV' U f(N)

K' = f-\γ') n K .

Then /(if') = Y'. We also have;

dim [Yf n Γw+1] = dim [/(if) n Γw+1 - JV'] < n - 1 .

Now if' c if — N and therefore dim Kf ^ n — 1. Observing that
f\f~ι(Yf) onto Y' is σ-closed and if' is closed in f~l(Yf) we can apply
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our induction assumption to get dim/(if') = dim Yf <Ln — l. Let Λf =
/(if) - Y'. Then M = f(N) U N' and since f(N) and N' are both Fσ%
dim M ̂  0. By the sum theorem, dim /(if) < dim Y' + dim Af + 1 ̂  n.

111.6. COROLLARY. / / / is σ-closed and finite to one and KaX
is closed with dim /(if) > dim if, then if m — min{μ(y): y ef(K)},
then dim [/(if) Π Γm+1] ̂  dim/(if) - 1.

Proof. In III.5 let n = dim/(if) - 1.

Proof of III.2. We simply apply III.6 inductively in the following
manner. Let m1 = min {μ(y): yef(K)}. Then if k = 0 we are finished.
Suppose fc > 0. Then by III.6 we get that

dim [/(if) n ΓW1+1] ^ dim/(if) - 1 ^ 0 .

Let m2 = mm{μ(y): y ef(K) Π Γ«1+1}. Then ra2 > mx and ̂  takes on
the value m2 on f(K). Let iΓ' = K Π / - 1 ( FWl+1) which is closed in
f~\f(K) Π Fm i + 1). Since / restricted to this latter set is σ-closed we
now can say that if k - 1 > 0, then dim f(K') - dim K' ^ k - 1 > 0
and we can repeat the above process for K' to get an

m3 = min {μ(y): yef(K') Π Γm2+1} .

We can continue this process until k — i = 0, that is, at least & times
to get a sequence {mi < < mk+1} with μ ^ ) = m; for some 7/; e f(K)
for each i ^ k + 1.

111.7. THEOREM. // / ΐs σ-closed and Kcz X is closed and locally
Euclidean with dim/(if) — dim K ^ k > 0 then μ takes on at least k + 2
distinct values in f(K).

Proof. Since if is locally Euclidean in the subspace topology it
must be locally separable and hence ind if = dim if. Therefore dim K =
sup {n: K contains a Euclidean neighborhood of dimension n}. Let us
assume μ takes on a finite number of values on /(if). Let m =
msLx{μ(y): yef(K)} and let B = intκ (f^(Ym) Pi if) be the interior in
if of / - 1( Ym) Π if. Since B is open in if which is closed in X, if must
be an Fσ in X. Since Baf-\Ym - Γm+1), dim/(£) - dim£ ^ dim if.
Let K' = K-B. Then if' is closed. Now /(if) - /(if') U/(£) is
the union of two i*Vs. Therefore

dim/(if) = max {dim/(if'), dim/(E)} - dim/(if') .

We now have two cases:
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Case (i). f~\Ym)r\K' = Φ.
In this case μ takes on at least k + 1 values on f(Kf). It also

takes on the additional value m which makes k + 2 values.

Case (ii). f~ι(Ym) n K'Φ Φ.
In this case we repeat the construction of {mι < < mk+1} as

in III.2 on f(Kf). But simply note that for m = max {μ(y): yef(K')},
f~ι(Ym) Π if' has no interior points in K. Therefore

dim \f-ι(Ym) ΓΊ K'} < dim K ,

so we can continue the construction one more step to get a sequence

K < <
The last result shows that it is possible to generalize these results

to σ-elosed functions with Fr{f~\y)) finite for all y e Y.

111.8. THEOREM. Let f be σ-closed with Fr(f~\y)) finite for all
yeY; then if Kc X is closed with dim f{K) — dim K ^ k > 0,
i/ we Ze£ Xm = U {Fr(f-\y)): Fr{f~ι{y)) has exactly m points),
K Π -Xm ̂  <P for at least k + 1 distinct m's.

Proof. We note that (JίU -X* = X - U ^ F int (f^(y)) and conse-
quently Uϊ=i ^ is closed. Therefore / restricted to this set is σ-
closed and finite to one. If A = f(K) - f(K Π (U -XJ) then by the
σ-closedness of /, A is the countable union of closed discrete sets,
therefore A is an Fσ of dimension zero. Since dim/(If) > 0, we must
have dim/(if) = dim/(Ifn (U-*•)). Applying III.2 to i ί n f U l J
we get that K{\XmΦ Φ for at least k + 1 distinct m's.

111.9. THEOREM. // K is locally Euclidean in III.8, then we can
replace k + 1 by k + 2.

Proof. Combining the proofs of III.7 and III.8 with slight modi-
fication will yield III.9.

IV* Final remarks* One may have in mind to generalize the
results contained in this paper to arbitrary sets without restricting
them to be closed. The following example serves to indicate that
without strong conditions on the function the prospects are not
promising.

IV.l. EXAMPLE. Let X = {(x, y) e E2; 0 ^ x ^ 1 and y = 0 or y =

1}. Let /: X-> [0,1] so that f(x, y) = x. Then / is open and closed
and two to one. Let A be the rationale in [0,1] and B the irrationals
in [0,1]. Let K = {0} x A U {1} x B. Then dim K = 0 and
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dim f(K) = 1 .

Once one has this example in mind he will likely be able to con-
struct a variety of other examples. This indicates how important
our assumption was that the sets be closed.

The author wishes to thank Professor Edwin Duda for his patient
encouragement in directing this research.
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