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MAPPINGS AND DIMENSION IN GENERAL
METRIC SPACES

JAMES KEESLING

In this paper necessary and sufficient conditions are de-
veloped for certain classes of continuous functions f(X) =7,
where X and Y are arbitrary metric spaces, to have the
property that dim K = dim f(K) for all closed Kc X. In
particular it is shown that if f is clesed and dim f{X) > dim K
for some closed K c X, then there exists a closed K’ < X so
that dim K’ =0 and dim f(K’) > 0. These results are then
used to show that if f is closed and finite to one so that the
multiplicity function of f takes on at most k£ + 1 distinct
values, then dim K < dim fAK) < dim K + k for all closed
Kc X,

The purpose of this paper is to investigate the relation of the
dimension of a closed subset of the domain with the dimension of its
image in the range under various classes of continuous functions. In
the first part of the paper we investigate this relation for closed
subsets of the domain which have dimension zero. Using these results
we characterize the property of being dimension preserving on closed
subsets for a large class of mappings. In the second part of the
paper we then show several important types of mappings to be di-
mension preserving on closed subsets. In the last section we generalize
a result of Hurewicz [3]. The results of this paper are related to
those of a number of investigators among whom are: Alexandroff [1],
R. Hodel [2], K. Nagami [7], J. Nagata [8, pp. 68-73], J. H. Roberts
[9], J. Suzuki [10], and R. F. Williams [11]. As indicated in the title,
the setting for our study is the class of metric spaces.

Notation: Throughout the paper X and Y denote metric spaces
and f a continuous function from X onto Y. By dim X is meant the
Lebesgue covering dimension of X. This is, of course, equal to the
large inductive dimension of X, denoted Ind X, in metric spaces. We
let ind X denote the small inductive dimension of X. The relation
ind X = Ind X holds when X is locally separable but not in general
otherwise. The necessary background in dimension theory for
general metric spaces (resp. separable metric spaces) will be found
in J. Nagata [8] (resp. Hurewicz and Wallman [4]). Any additional
hypotheses on f, X, or Y will be explicitly stated in each theorem.

I. Closed KcC X with dimK = 0. We will need the following
lemma several times throughout the paper.
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I.1. LEMMA. Let dim X = n, n finite, and let 0 <1 < n. Then
3A,B so that X =AUB with dimA =14, dimB=n—1% — 1, and
with A an F, in X,

Proof. By the decomposition theorem ([8], p. 19) it is possible
to find A, and B, so that X = A4, U B, with dim 4, = 7 and dim B, =
n — ¢ — 1. By Theorem II. 10, p. 32 [8] there exists B D B, with B
a G, in Xand dimB=n—1%—1. Let A= X — B. Then A is an
F, and dim A = 7.

1.2. DEFINITION. Suppose for f we have X = U, 4;, A; closed
in X, f(4;) closed in Y, and f|A;:A;— f(4;) closed for all 7. We
say then that f is o-closed. These mappings arise naturally as (1)
continuous mappings of g-compact spaces, (2) finite to one open map-
pings, and (3) open mappings with discrete point inverses on separable
metric spaces.

1.38. LEMMA. f is o-closed if and only if X = Uz, 4; so that for
each ©, A; is an F, in X, f(A,) i1s an F, in Y and f|A;: A, — f(4)
18 a closed mapping.

Proof. Suppose the latter condition holds. Then for each 7 let
A; = U, F.; with each F; closed in X and F;cC F,,,,; for all k.
Likewise let f(4;) = Ui, B;,; with B, ; closed in Y and B,,;C B;i1,;.
Define C,,; = Fy,; N f~'(B,,;). Then one can easily verify that X =
U..: C.,; satisfies the properties for f to be o-closed.

This characterization of o-closed will be useful in showing certain
mappings to be o-closed. The next theorem is the fundamental result
of this section.

1.4, THEOREM. Let f be a closed mapping with dim X = n, 0 <
n< oo, anddimY Zkn +1), 1L< k < co. Then there is a closed set
Kc X with dim K = 0 and dim f(K) = k.

Proof. This is clearly true for dim X = 0. We proceed by in-
duction. Suppose dim X = % > 0 and that the theorem holds for all
lesser values of n. By Lemma I.1 we let X = AU B with A an F,,
dimA =0 and dimB =n — 1.

Case (i). dim f(A) = k.

In this case let A = Uz, F; with F; closed for all ¢. Since f(F7)
is closed in Y for all 4, by the sum theorem for closed sets ([8], p. 17)
there is an 7 so that dim f(F;) = k. Let K = F; in this case.



MAPPINGS AND DIMENSION IN GENERAL METRIC SPACES 279

Case (ii). dim f(4) < k.

In this case let C D f(4) in Y with Ca G, and dim C = dim f(4) < k.
Then Y —C is an F, and dim(Y — C)=dimY — dimC — 1 = kn.
Let Y — C =z, F; so that each F; is closed. Then 37 so that
dim F; = kn. Since f~}(F;) <n — 1, apply our induction assumption
to f]f~YF;) to complete the proof for this case.

1.5. CorOLLARY. 1.4 remains true tf we replace f closed with f
og-closed.

1.6, COROLLARY. If f is g-closed and K C X, K closed and dim K =
n, 0 <n < oo, with dim f(K) = k(n + 1), 1 £ k < o} then 3K’ closed,
K' c K with dim K’ = 0 and dim f(K') = k.

1.7. COROLLARY. If f is g-closed and f raises the dimension of
any closed subset, then f raises the dimension of a closed subset of
dimension zero.

1.8. DEFINITION. Let f be such that for every closed set K ¢ X,
dim K = dim f(K). Such a function will be said to be dimension
preserving on closed subsets. If dim f~'(y) = 0 for all ye Y, then f
is said to be 0-dimensional.

The next theorem is due to Hurewicz who proved it for separable
metric spaces. It has been proved for more general spaces including
arbitrary metric spaces by K. Morita and K. Nagami. For a proof
see Nagata [8, pp. 63-68].

1.9. THEOREM. If f is closed and dim X — dimY =k = 0, then
Jye Y so that dim f~(y) = k.

Clearly the theorem is true if we replace closed by o-closed. We
can therefore state the following characterization of dimension pre-
serving on closed subsets for o-closed mappings.

1.10. THEOREM. If f is o-closed, then f is dimension preserving
on closed subsets if and only if f ts O-dimensional and has the
property that K< X, K closed, and dim K = 0 tmplies that

dim f(K) = 0.

Proof. If f lowered the dimension of some closed subset, by 1.9
f would not be 0-dimensional. If f raised the dimension of some
closed set, then it would raise the dimension of some closed set of
dimension zero.
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Returning to 1.4 we now prove that if X is Euclidean space, then
we can improve the estimate given in I1.4.

I1.11. THEOREM. Let X = E" and dim Y = kn + 1 where E* de-
notes Huclidean n-space and 1 <k < co. Then 3K closed in E”,
dim K = 0 with dim f(K) = k.

Proof. Let A be a countable dense set in E*, Then since f(A)
is countable, it must have dimension zero. Let B> f(A4) be a G, so
that dim B = 0. Then dim(Y — B)=/kn and ¥ — B is an F,. Let
Y — B = Uz, F; be a countable union of closed sets. Letdim F,; = kn.
Since f~'(F;) € E™ — A, f~'(F) has no interior points and dim f~(F) <
n — 1. Now f|f(F,) is g-closed since E" is o-compact. The proof
is now completed by applying 1.5 to f|fY(F)).

1.12. COROLLARY. If X = E' and dim Y = m > 1, then 3K closed
m X, dim K = 0 with dim f(K) = m — 1.

The concluding theorem of this section is for an arbitrary con-
tinuous function which lowers dimension.

1.13. THEOREM. Let dimY = n and dim X = k(n + 1) where 0 <
n<co and 1=k < co; then 3IKC X, K closed, dim K =k with
dim f(K) = 0.

Proof. By induction on n. In case n =0, let K= X. Let
dim ¥ = n > 0 and suppose the theorem is true for all lesser values
of n. Let Y=AUB with 4 an F,, dimA4 =0 and dimB =n — 1.
We then have two cases.

Case (i). dim f~(4) = k.
In this case let 4 = |, F; closed and get an ¢ so that

dim f(F) = & .

Case (ii). dim f~(A) < k.

Then let C > f~'(4) be a G, so that dim C = dim f~(4) < k. Then
dim (X — C) = kn. Let X — C = Uz, F; where each F, is closed in
X. Then 37 so that dim F); = kn. Since f(F;)C B, dim f(F,) < n — 1.
We now apply our induction assumption to f| F; and theorem follows.

I.14. COROLLARY. If f lowers the dimension of any closed set of
the domain, then f takes a closed set of positive dimension onto a set
of dimension zero.
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II. Functions dimension preserving on closed subsets. In this
section we will show the following types of functions to be dimension
preserving on closed subsets and o-closed: (1) f open with f~'(y) discrete
with X separable; (2) f finite to one and open; (3) f o-closed, open,
f~Wy) discrete for all yeY; (4) f o-closed and exactly k& to one.
We will first prove (3) and then show that (1) and (2) follow. We
will then show that (4) is a result of (2). Some examples and other
theorems will be inserted at appropriate points in this chain of
argument.

II.1. THEOREM. Let f be open with f~'(y) discrete for all ye Y.
Then for all Kc X, dim K < dim f(K).

Proof. Let {A4,,.:ael,} be alocally finite open cover of X so that
diam (A4,,,) <1/nforallacl',. LetB,,={xcA,.:f " f(x)N A,,.=x}.
By the openness of f, B,,, is closed in A4,, as is f(B,,) in f(4..).
Therefore B, , and f(B,,) are F.s. It is easily seen that

S Baynt Baca = f(Ba,n)

is open. Since it is also one to one and continuous, it is a homeo-
morphism. Therefore dim K N B,,, = dim f(K N B,,,) for all n and all
ael’,. By the sum theorem, 3IB,, so that dimKn B,, =k if
dim K = k, noting that U.,.B., = X is o¢-locally finite, But then
dim f(K) = k.

11.2. ExAMPLE. Let I be the unit interval [0, 1] in E*' with the
ordinary topology and let I'* be the same set with the discrete topology.
Define f: I x I* — I so that f(a,d) = a. Then f is open and f~'(y) is
discrete for ally. Let 4 = {(a,a):acI}c I x I*. Then 4 is discrete
and closed, hence dim 4 = 0. But f(4) = I. Therefore we cannot prove
equality in II.1 even for closed K in X without additional assumptions

on f.

I1.3. THEOREM. If f is open, o-closed, and f~'(y) is discrete for
all yeY, then f is dimension preserving on closed subsets.

Proof. Since fis 0-dimensional we need only show that the second
condition of 1.10 holds. Let K< X with dim K = 0 and K closed and
suppose dim f(K) > 0. We may assume Kc A; for some ¢ where
X = U$. 4; as in the definition of o-closed. Let {A,,.:ael',} be a
locally finite open cover of X with diam (A4,,.) <1/n. Let F,,C A,
so that {F, ,:acl',} forms a closed cover of X. Let
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Qa,'n = {xEFa,n N K:f—lf(x) N Azx,n = x} .

Then @Q.,, is closed in X by the openness of f. Now {@Q.,.:ael,} is
locally finite, hence closure preserving. Since Q,..,.C A; and f|A; is
closed we get that {f(Q.,): «el,} is closure preserving in Y. By a
theorem due to Nagami ([8], p. 18) we have that if dim f(Q.,..) < %
foralla e I',, then dim U, f(Q.,.) =< k. Now f|Q.,, is a homeomorphism
onto f(Q.,), hence dim f(Q.,.) < 0. Now B, = U.cr, f(Q.,.) is closed
with dim B, = 0. We can easily verify that -, B, = f(K). Therefore
dim f(K) = 0, a contradiction of our assumption that dim f(K) > 0.
That is, f must be dimension preserving on closed subsets.

I1.4. THEOREM. If f is open with discrete point inverses and
X is separable, then f is dimension preserving on closed subsets.

Proof. Let {A;} be a countable basis for X, Let
Bi e {00 € A,;: f—lf(w) ﬂ A,’ = Q;}-

Then B; is an F, as is f(B;). Now f| B, is a homeomorphism onto
f(B;). Applying 1.3 we get that f is o-closed. Applying I1.3 we get
that f is dimension preserving on closed subsets.

II.5. Note. If we actually apply the proof of 1.8 to this case we
get X = U, 4;, A; closed, f(A,) closed, with f| A; a homeomorphism
onto f(4,).

I1.6. LEMMA. If f is open and exactly k to one, then f is closed.

Proof. Let y,— y be a sequence of distinet points in Y. Let
x,€f Yy, for all » and suppose that {x,} has no limit point in X.
Then we may choose {V;}:, a disjoint collection of open sets, each
containing no point of the set {x,} where z;e V; and f~*(y) = {z,, - - -, 24}.
By the openness of f, IN; such that » = N, implies that f~(y,) N V;+# @.
Let N = max {N;}t,. Then f~*(yy) N V; = @ for all «. But f~'(yy) con-
sists of exactly k points. Therefore there is exactly one point of f—*(yy)
in each V; and every point is in one of the V;’s. Therefore x, ¢ V; for
some %, a contradiction. Therefore the sequence {x,} must have some
convergent subsequence and f must be closed.

I1.7. THEOREM. If f is open and finite to one, then f is dimension
preserving on closed subsets.

Proof. Let Y, ={yeY:f'(y) has k or more points}. Let g«(y)
be the number of points in f~'(y). Since f is open, x is lower semi-
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continuous. Therefore Y, is open for all k. Therefore
Bk = Yk N (Y - Yk+1)

is an open set intersected with a closed set, hence is an F,. But
B, = {y: (y) = k}. Therefore f|f~*(B,) is closed onto B, by II.6 since
an open function restricted to an inverse set is open onto its image.
Applying 1.3 and II.3 we have that f is dimension preserving on closed
subsets.

I1.8. THEOREM. If f is closed and exactly k to one, then f s
dimension preserving on closed subsets.

Proof. Let yeY and let f~(y) = {, -+, 2}, If k=1, then f
is a homeomorphism. Suppose k > 1 and define

Y, = min {d(z;, ®,): x; = x;} .

Then %, > 0 for allye Y. Using the closedness of f it is possible to
show that if A, ={yeY:2,=1/n}, then A, is closed in Y and
flfY(A,) onto A, is open. Thus f is dimension preserving on closed
subsets by IL7.

I1.9. THEOREM. If f is d-closed and exactly k to one, then f is
dimension preserving on closed subsets.

Proof. Let X = U= 4; as in the definition of o-closed. We
may assume A;C A;,, for all 4. Let B, = {x e A;: f*f(x) < A;}. Then
f(B)) = {y e f(A): pi(y) = max p;} where p,(y) is the number of points
in f~Y(y) N 4;. If we define 3, = min {d(z;, x,); x; # «;} where f~'(y) =
{2, +--, 2, and then define C, = {yef(4):yef(B;) and X, = 1/n}.
Then using the closedness of f| A;, C, will be a closed set in Y. But
AB,) = U C,. Therefore f(B;) is an F, and since f~'f(B;) = B;, B;
is also an F,. Now if xe X, then since f~'f(x) is finite, 34, so that
fif(x) < A;. Therefore xe B; and U, B; = X. Now f|B; is closed
onto f(B;) since B; is an inverse set in a set on which f is closed.
Since f| B; is exactly k to one, f| B; is dimension preserving on closed
subsets. Thus f is dimension preserving on closed subsets. Thus f
is dimension preserving on closed subsets on all of X by the sum
theorem.

I1.10. CoROLLARY. If f is o-closed and exactly k to one except
for a set BC'Y which is an F, with dim B = 0 and f~(y) has less
than k points for all y € B, then f is dimension preserving on closed
subsets.
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Proof. Let C,={yeY — B: 3, = 1/n}. Then by the o-closedness
of f,C, is an F,. Now f|fC,) is o-closed onto C, and exactly %
to one, therefore dimension preserving on closed subsets. Now if
Kc X, K closed with dim K = 0 and dim f(K) > 0, then

dim f(K)NB > 0.

But by assumption dim B = 0. Therefore dim f(K) =0 and f is
dimension preserving on closed subsets.

II.11. ExamMPLE. Let I be the unit interval and C the Cantor
ternary set. Let f:C— I be the cantor ternary function onto the
interval. Then f is one to one except for a countable set Bc 1.
However, for yc B, f~(y) has two points. Therefore our assumption
that f'(y) have fewer than k points in II.10 was not superfluous.

I11. Closed K< X with dim K < dim f(K). The results which
motivated the theorems of this section are due mainly to Hurewicz
[3]. His basic result is the following.

III. 1. THEOREM. Let f be closed and finite to one with X and
Y separable metric spaces. Then if AimY —dim X =k = 0, then p¢
takes on at least k + 1 distinct values, where p(y) is the number of
points in f'(y).

Apparently there has been some difficulty in generalizing this
result to arbitrary metric spaces since the statement in J. Nagata [8,
p. 68] leaves out a considerable amount of the force of III.1. Also
his statement of Suzuki’s result (footnote p. 73 [8]) is again only a
partial result. Our results in this section will imply the full force
of III.1 in arbitrary metric spaces and will be considerably more
general. Our basic result is IIL.2,

II1.2. THEOREM. If f is o-closed and finite to one and if Kc X
18 closed with dim f(K) —dim K =k = 0, then p takes on at least
k + 1 values on f(K).

We will need a sequence of lemmas before we can prove III.2,

I1I.3 LEMMA. Let dim X = n and AcC X be an F, so that
dmA<n-1.
Then there is an NC X — A, N an F,, with dim N = 0 and
dim(X—-N)=n—-1.
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Proof. Let X=BUC withBan F,,dimB =% —1and dimC =
0. Then A U B is the union of two F,’s each of dimension less than
n. Therefore dim(AUB)=n—1. Let DDAUB be a G, with
dimD=n—1. Let N=X—-D. Then dimN =0 since NcC.

Clearly N has the other required properties.

I11.4. LEMMA. Let f be o-closed and finite to one. Let Y, =
{lyeY: (y) = m}. Then Y, is an F, in Y.

Proof. Let X = Uz, A; be as in the definition of o-closed. We
may suppose that A4;,c A4,,,. It is sufficient to show that

B, ={yeY,: f(y)C 4}

is an F, forallv. LetC,={yeY,nf4A): 3z, -+, 2, (y) N A
so that d(x;, ;) = 1/n for ¢ = j}. Then using the closedness of f on
A;, it is possible to show that C, is closed in A; for all n. But
Ui, C, = B;,. Therefore Y, is an F, as asserted.

II1.5. THEOREM. Suppose f 1is o-closed and finite to one. Let
Y., ={yeY:uy) =k). Let m =min{u):yecY}. Thenif Kc X is
closed with dim K < n and dim [A(K) N Y.l < n, then dim f(K) < n.

Proof. Let K satisfy the hypotheses of the theorem. We may
assume 7 to be finite. If n = 0, then dim [ f(K) N Y,.,] < 0 means that
f(KYN Y., =@. Therefore Kc (Y, — Y,.,). ByIL9dimf(K)=<
0. Now let » >0 and suppose that the theorem holds for lesser
values of n. By the hypothesis dim[f(K) N Y, ] <% — 1. Since
f is 0-dimensional we have dim [f(f(K)N Y,;) N K] <% — 1. Let
A=f(fK)NY,)NK. Then A is an F, in K by III.4. By III.3
let NC K— A be an F, so that dim N <0 and dim(K - N)<n — 1.,
Then Nc f~(Y, — Y,...). Since f is dimension preserving on closed
subsets on fY(Y, — Y,.,), dim f(N) < 0. Since f is o-closed, f(N)
isalsoan F,. Let N'c Y, N f(K) so that N'isan F,in Y,,, N f(K),
dim N’ < 0 and so that dim([Y,,, N f(K) — N] <n»n — 2. Note that
N’ is also an F, in Y, since f(K) and Y,,, are both F,’s. Now let:

Y' = f(K) — N'"Uf(N)
K' =7 Y"nK.

Then f(K') = Y’'. We also have;
dim[Y'N Y,ul =dim[f(K)N Yy, — Nj<n-—-1.

Now K'c K — N and therefore dim K’ < n — 1. Observing that
SF1F(Y") onto Y’ is o-closed and K’ is closed in f~(Y’) we can apply
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our induction assumption to get dim f(K')=dimY'<n—1. Let M=
f(K)—Y'. Then M = f(N) U N’ and since f(N) and N’ are both F,’s,
dim M < 0. By the sum theorem, dim f(K) < dim Y’ 4+ dim M + 1 < n.

II1.6. COROLLARY. If f is d-closed and finite to one and KC X
is closed with dim f(K) > dim K, then if m = min{u(y): y € f(K)},
then dim [f(K) N Y, = dim f(K) — 1.

Proof. In IIL5 let n = dim f(K) — 1.

Proof of I11.2. We simply apply II1.6 inductively in the following
manner. Let m, = min {(y): y € f(K)}. Then if £ = 0 we are finished.
Suppose k > 0. Then by III.6 we get that

dim [f(K) N Yp,4] 2 dim f(K) —120.

Let m, = min {¢(y): y € f(K) N Y, 4i}. Then m, > m, and p takes on
the value m, on f(K). Let K'= KN f(Y,) which is closed in
F(f(K)N Y,4). Sinece f restricted to this latter set is o-closed we
now can say that if £ — 1 > 0, then dim f(K’) —dim K’ =k —1>0
and we can repeat the above process for K’ to get an

m, = min {#(y): Yy € f(K') N Yuyui} «

We can continue this process until & — ¢ = 0, that is, at least & times

to get a sequence {m, < -+ < m,4,} with p(y;) = m; for some y; € f(K)
for each 7 < k + 1.

II1.7. THEOREM. If f 1s o-closed and K c X is closed and locally
Euclidean with dim f(K) — dim K = k > 0 then p takes on at least k + 2
distinct values in f(K).

Proof. Since K is locally Euclidean in the subspace topology it
must be locally separable and hence ind K = dim K. Therefore dimK =
sup {n: K contains a Euclidean neighborhood of dimension n}. Let us
assume ¢ takes on a finite number of values on f(K). Let m =
max {¢(y): y € f(K)} and let B = intg (f~'(Y.) N K) be the interior in
K of f(Y,)N K. Since B is open in K which is closed in X, K must
be an F, in X. Since Bc f (Y, — Y,...), dim f(B) = dim B < dim K,
Let K' = K— B. Then K’ is closed. Now f(K) = f(K')U f(B) is
the union of two F,’s. Therefore

dim f(K) = max {dim f(K’), dim f(B)} = dim f(K’) .

We now have two cases:
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Case (i). f(Y,)NK' =@.
In this case p takes on at least k 4 1 values on f(K’). It also
takes on the additional value m which makes k& + 2 values.

Case (ii). (Y. NK'=+@®.

In this case we repeat the construction of {m, < .- < m,,,} as
in II1.2 on f(K'). But simply note that for m = max {¢(y): y € F(K")},
f~(Y.,) N K’ has no interior points in K. Therefore

dim [f-(Y.) N K'] < dim K,

S0 we can continue the construction one more step to get a sequence
{m, < «o0 <My}

The last result shows that it is possible to generalize these results
to o-closed functions with Fr(f'(y)) finite for all ye Y,

111.8. THEOREM. Let f be o-closed with Fr(f~'(y)) finite for all
yeY; then if KC X 1s closed with dim f(K) — dim K =k > 0, then
of we let X,, = U {Fr(f~): Fr(f(y)) has exactly m points}, then
KN X, # @ for at least k + 1 distinct m’s.

Proof. We note that U;-, X, = X — U, int (f~'(%)) and conse-
quently Ug-, X, is closed. Therefore f restricted to this set is o-
closed and finite to one. If 4 = f(K) — f(KN (U X,)) then by the
o-closedness of f, A is the countable union of closed discrete sets,
therefore A is an F, of dimension zero. Since dim f(K) > 0, we must
have dim f(K) = dim f(K N (U X,.)). Applying III.2 to KN (U X,)
we get that KN X, = @ for at least k + 1 distinct m’s.

II1.9. THEOREM. If K 1s locally Euclidean in II1.8, then we can
replace k + 1 by k + 2.

Proof. Combining the proofs of III.7 and III.8 with slight modi-
fication will yield IIL.9,

IV. Final remarks. One may have in mind to generalize the
results contained in this paper to arbitrary sets without restricting
them to be closed. The following example serves to indicate that
without strong conditions on the function the prospects are not
promising.

IV.1. ExAMPLE. Let X = {(z,y)ecE30<x<landy=0ory=
1}. Let f: X—[0,1] so that f(x,y) = #. Then f is open and closed
and two to one. Let A be the rationals in [0, 1] and B the irrationals
in [0,1]. Let K= {0} x AU {1} x B. Then dim K = 0 and
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dim f(K) = 1.

Once one has this example in mind he will likely be able to con-
struct a variety of other examples. This indicates how important
our assumption was that the sets be closed.

The author wishes to thank Professor Edwin Duda for his patient
encouragement in directing this research.
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