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HOMOMORPHISMS OF ANNIHILATOR
BANACH ALGEBRAS

GREGORY F. BACHELIS

Let A be a semi-simple annihilator Banach algebra, and
let v be a homomorphism of A into a Banach algebra. In
this paper we describe various continuity properties of v. Let
(*) be the condition that 7 0 3t(I) = A for all closed two-sided
ideals I, where 5ft(I) = {χ\Iχ = (0)}. If (*) holds, then we show
that there exists a constant K and a finite set of primitive
ideals such that 11 v(x) \\ ̂  ϋΓ 11#11 # \\y\\ whenever yx = x and
x is in the intersection of this finite set. If (*) does not hold,
then essentially the same conclusion is true, but with the
given norm replaced by one which is defined on a dense subset
of A. If A is a dual I?*-algebra, then v is continuous on the
socle.

We also consider the existence of unconditional decom-
positions in A. We show that (*) holds if and only if the
minimal-closed two-sided ideals of A form an unconditional
decomposition for A.

Let A and B be Banach algebras, and let v be a homomorphism
of A into B. In this paper we are concerned with deducing various
continuity properties of v when restrictions are placed only on A,
and B remains arbitrary. This problem has been considered by Bade
and Curtis [2] for A a commutative, regular semi-simple Banach
algebra, by Cleveland [6] for A a ί?*-algebra, and by Johnson [9]
for A the algebra of bounded operators on a Banach space. In this
paper we consider this problem for A a semi-simple annihilator
Banach algebra (see §2 for definitions), and we obtain results
analogous to those of Bade and Curtis. Since annihilator algebras
are in general noncommutative and only have identity when finite-
dimensional, techniques essentially different from those in [2] must
be employed. The main technical device is a noncommutative
version of the "Main Boundedness Theorem" of Bade and Curtis [6,
Corollary 3.2].

The main theorems of this paper are found in § 5. There we
show (Theorem 5.1) that if A is a semi-simple annihilator Banach
algebra in which /©3t(JΓ) = A for all closed two-sided ideals I, e.g.
if A is a proper ίf*-algebra [1], a dual j5*-algebra, or lp, 1 ̂  p < oo,
and if v is a homomorphism of A into a Banach algebra, then there
exists a constant K and a finite set of primitive ideals such that
11 v(x) || ^ lϋΓ 11 # 11 \\y\\ whenever yx — x and x is in the intersection
of this finite set. If A is an arbitrary semi-simple annihilator Banach
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algebra, then we show that essentially the same conclusion holds if
one replaces the original norm by a new one which is defined on a
dense subset of A. In § 7 we specialize to the case when A is a dual
I?*-algebra. We show that any homomorphism of A into a Banach
algebra is continuous on the socle and we obtain several decomposition
theorems about the closure of the range of an isomorphism of A.

In § 3 the question of the existence of unconditional decompositions
in a semi-simple annihilator Banach algebra A is considered. We
show (Theorem 3.4) that the minimal-closed two-sided ideals form an
unconditional decomposition for A if and only if J φ 9ί(/) = A for all
closed two-sided ideals I. We obtain a similar result for one-sided
ideals when A is assumed to have a proper involution. Both of these
results follow from a technical theorem which is established about
unconditional decompositions in Banach spaces. In § 4 the structure of
ideals and idempotents in A is considered. We show that the socle is
the set of elements possessing a left identity. In § 6 we establish several
properties of the separating ideal of a homomorphism of A into a Banach
algebra.

2* Preliminaries* For A an algebra, S a A, define 8(S) =
{x\xS = (0)} and ?H(S) = {x\Sx = (0)}. Let J be a closed right ideal
and let J be a closed left ideal in a Banach algebra A. Then A is
an annihilator algebra if 2(1) = (0) only when I ~ A and 3x( J) = (0)
only when J — A. The algebra is called dual if &Sf(I) = I and
Sf^p (J) = J for all such I and J. Dual algebras were introduced by
Kaplansky [10] and annihilator algebras by Bonsall and Goldie [4].
For the basic structure theorems concerning these algebras, the reader
is referred to the texts of Rickart [14] or Naimark [12]. The defini-
tions of terms not defined in this paper are those of [14].

If A is a semi-simple annihilator Banach algebra, we will denote by
77 the set of primitive ideals, which Civin and Yood [5] have shown
are the same as the maximal-closed two-sided ideals. We will denote
the set of minimal-closed two-sided ideals by HJΐ, and the set of maximal-
modular two-sided ideals by Ξ. The socle (the algebraic sum of the
minimal left or right ideals) is denoted by F. We will always assume
that our Banach algebras are complex.

3* Unconditional decompositions* In this section we consider
the question of when certain families of ideals of a semi-simple an-
nihilator Banach algebra form an unconditional decomposition. Since
much of this problem can be stated in a Banach space framework,
we will work in that more general area whenever possible.

Throughout this section, we will always assume that A is a
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Banach space and that ^ = {Ia \ a e C} is a collection of closed sub-
spaces with dense linear span such that Ia 0 cl (Σ«*ιs Iβ) = (0) for all
aeC, where Σ Iβ denotes the algebraic sum of {Iβ} and "cl" means
"closure".

DEFINITION 3.1. An element xeA is called ^-decomposable if
x — Έιx«i where xa^L and convergence is with respect to the net of

a

finite partial sums. We denote the set of ^-decomposable elements
of A by D(A, J^) and we say that ^"is an unconditional decomposi-
tion for A if A = D{A,

If an element x has an expansion as described above, then this
expansion is necessarily unique, and also {a \ xa Φ 0} is countable. If
each Ia is one-dimensional, with generator δα, then <y is an uncondi-
tional decomposition for A if and only if {ba} is an unconditional
Schauder basis for A [7, p. 73],

DEFINITION 3.2. For xeD(A,»/), define

|a?U = sup || Σ a«ll ,

where ^ denotes the collection of finite subsets of C.
It is straightforward to verify that | U defines a norm on

Z>(Λ,w^), that l α ? U ^ | | α ; | | , a ; e ί ) ( A , ^ ) , and that JD(A,w "̂) is
complete in this new norm. When there is no confusion, we write
D for D(A, J?),) . I for | . U α r̂f Σ / / ^ Σ « / . We first prove the
following:

PROPOSITION 3.3. D(D(A, ^), J?) = D(^, ̂ ) .

Proof. One sees that cl(/α) = Iu and that /« Π cl(Σ^^ ̂ ) = (0), a e C,
where the closure in both cases is taken with respect to the norm
( (. Hence D(D{A, J?), J?) is well defined. If % e D, ε > 0, choose
JoεJ^ such that J f] Jo = 0 implies || Σ / ^ II < e. If .Λ e J ^ , *Λ D JO,
then y ^ x - Σ ^ a?« e D and it follows that 12/1 = sup || Σ / - ^ ^ II ύ ε.
Thus a? = Σ*α(l 1), so xe D(JD(Af "^

We now give necessary and sufficient conditions on ^ which are
equivalent to ^F being an unconditional decomposition for A.

THEOREM 3.4. Let A be a Banach space, and let J^ ={Ia\aeC}
be a collection of closed subspaces with dense linear span such that
la Π cl(Σ Iβ) = (0), aeC. Then the following statements are equiva-

βφa

lent:
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(1) J^is an unconditional decomposition for A.
(2) The norms | \^ and || || are equivalent.
(3 ) There exists a constant K such that, if au - , an are

distinct elements of C and xζ e Ia., then

m n

i~l i—l

( 4 ) If C = &{J C2, with d Π C2 = 0 , then there exists a constant

K(Cιy C2) such that xe^Iay y e Σ ^ imply \\x\\ <^ K{CU C2) | | x + y |(.

Proof.1 Since 7) is dense in A, (1) is equivalent to D being closed
in A. Therefore the equivalence of (1) and (2) is given by [15,
Corollary 1.11] and the fact that || || ^ | |. The equivalence of (1)
and (3) follows from [15, Th. 1.13].

Clearly (3) implies (4). Suppose that (4) does not imply (3). Then
there exist disjoint finite subsets {Bly CJ c C, and elements xx e Σ ^ la,
Vi e ΣιcL la such that [| χι || > [| xι + yι ((. Assume that pairwise disjoint
finite subsets {B19 , Bn, Cu , Cn} c C and elements xlf •••,»«,
y19 > ,yn have been chosen so that xk e Σ ^ L, yk e Σf7^ Lyl^k^n
and such that || xk\\>k \\ Xt + y, ||, 1 ^ & ̂  w. Let £ = U*=i ( ^ U C*)
Since i? is finite, supG c f : K(G, C ~ G) <°°. Thus since (3) fails, there must
exist disjoint subsets {Bn+1, Cn+1} aC ~ E and elements xn+1 e Σ * Λ + 1 «̂>
2/n+i e Σσ Λ + 1 ί« such that | |x Λ + 1 | | > (u+1) ||x%+1 + ̂ + 1 1 | . Now α n + 1 and
2/n+1 are each contained in the linear span of a finite subset of {Ia \ a e C},
so Bw + 1 and Cw+1 may be taken to be finite. Now let Hx— \}°ζ=ιBk,
H2 = C ~ Hλ. Then xn e Hu yn e H2 for any n, so K(HU H2) > n for
all n, which is a contradiction. Therefore (4) implies (3) and the
theorem is established.

We now apply the preceding theorem to the case when A is a
semi-simple annihilator Banach algebra and

THEOREM 3,5. Let A be a semi-simple annihilator Banach
algebra. Then the following statements are equivalent.

(1) The minimal-closed two-sided ideals of A form an uncondi-
tional decomposition for A.

(2) 1 0 91(7) = A for all closed two-sided ideals I.

Proof. We note that it is always true that cl(7 0 91(7)) = A for
any closed two-sided ideal 7.

( 1 ) implies (2): Let 7 be a closed two-sided ideal in A and let
xeA. If Me2K, then Mai or McSR(7), and hence every summand
in the infinite series expansion of x is either in 7 or 3ΐ(7). Thus

1 The author is indebted to Professor R. C. James for suggestions which greatly
shortened the original proof.
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(2) implies (1): It suffices to show that (4) of the preceding
theorem holds, with ^ = Wl = {Ma \ a e C}. Suppose C = d U C2, with
d Π C2 = 0 , and let Λ = Σ ^ ΛΓβ, fc = l, 2. Then Jx 0 91(70 = A, so
it follows from the Closed Graph theorem that there exists a constant
K such that || u || ^ K\\ u + v ||, u e Ju v e 3ΐ(Ji). Now J2 c 9ΐ(Ji), so (4)
is established.

COROLLARY 3.6. // A satisfies the conditions of the above
theorem, and I is a closed two-sided ideal in A, then

(2) I is a semi-simple annihilator Banach algebra, with
{Me Tt I Ma 1} its set of minimal-closed two-sided ideals, and I
satisfies the conditions of the above theorem.

Proof. If a?el, then all of the summands in its infinite series
expansion are in minimal-closed two-sided ideals which are contained
in /. Hence I = cl(XMC/ M). The proof of the rest of the assertions
is straightforward.

REMARK. The above theorem holds if A is a proper if*-algebra,
a dual J3*-algebra, or lpj 1 ^ p < oo.

We next apply Theorem 3.4 to the case when A is a semi-simple
annihilator Banach algebra with involution x -—• x* such that xx* = 0
implies x — 0 (such an involution is called proper), and v^is a family
of right ideals generated by a family of orthogonal hermitian
idempotents. We note that if ^ — {eaA\aeC}, where {ea\aeC} is
an orthogonal family of idempotents, and if x is *J?~-decomposable,
then the infinite series expansion of x is given by x — ]Γ,α eax.

The proof of the following lemma is routine and is omitted.

LEMMA 3.7. Let A be a semi-simple annihilator Banach algebra
with proper involution. Then

(1) c l (/0 £(!)*) = A for all closed right ideals I.
(2) cl(/φ3ΐ(/)*) = A for all closed left ideals I.

THEOREM. 3.8. Let A be a semi-simple annihilator Banach
algebra with proper involution. Then the following statements are
equivalent.

(1) // {ea} is a maximal family of orthogonal hermitian
idempotents, then xeA implies x = Σ«β«^

(2) // {ea} is as in (1), then xeA implies x — ^jaxea.
( 3 ) 7 0 8(/)* = A for all closed right ideals I.
(4) 7 0 3ΐ(7)* = A for all closed left ideals I.
Moreover, the above conditions imply that A is dual.
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Proof. ( 1 ) implies (3): Let I be a closed right ideal in A, and
let {ea I a e CJ be a maximal family of hermitian idempotents in 7.
Extend this family to a maximal such family in A, {ea\aeC}. Let
J = cl (Σiβe^ββA). If J n 7=^(0), then J ( Ί 7 contains a hermitian
idempotent p. But then eap = 0, αeCΊ, which contradicts the max-
imality of Cx. Hence xel implies x — Σ ^ eax = Σ * ^ eax e IΠ J = (0),
so eβx = 0,β<£C1. It follows that c U Σ ^ ^ A ) c 8(7)*. Therefore
xeA implies x = Σ<72 eax + Σa0Cl &a% e 7 φ 8(7)*.

( 3 ) implies (1): If {ea | a e C} is a maximal family of orthogonal
hermitian idempotents, and *J*~ = {eaA\aeC}, then the hypotheses of
Theorem 3.4 are satisfied. The proof of (1) now follows in a manner
analogous to the proof of "(2) implies (1)" in Theorem 3.5.

The other equivalences now follow from left-right symmetry and
properties of the involution.

Suppose that one of conditions (1) through (4) holds, and let 7 be
a closed right ideal in A. Then £( !)* n S(8(/)*)* = (0). But 8(8(7)*)* -
918(7), and thus it follows that 7 = 918(7). Similarly if 7 is a closed
left ideal, then 7 = 831(7). Thus A is dual.

REMARK. The above theorem holds if A is a proper H*-algebra
or a dual 7>*-algebra.

We conclude this section with an analysis of D(A,Jf) in case A
is a Banach algebra and each Ia is a closed right ideal.

L E M M A . 3.9. ( 1 ) D is a dense right ideal in A and \xy\<L

\x\ \\y\\, xeD, ye A.

( 2 ) If each Ia is two-sided, then D is two-sided and \xy\<^

\\x\\-\y\,xeA,yeD.

( 3 ) (D, I I) is a Banach algebra which is semi-simple if A is

semi-simple.

Proof. Since D Z) X 7α, D is dense in A. If x e 7), y e A, then xy =
( Σ * χa)y = Σ«(α«2/). Therefore αy e 7). Since || Σ J V«V II ^ I α I II2/ II,
J e ^ " , we have that | &$/1 ^ | x \' \\ y \\. Statement (2) is established
in a similar manner.

From (1) it follows that (D, | |) is a Banach algebra. Let R be
the radical of D. Then [8, p. 10] R = 2(D) n ΰ c 8 ( ΰ ) = 2(D) = 2(A).
Hence D is semi-simple if A is.

Using the preceding lemma and the fact that a semi-simple
Banach algebra is an annihilator algebra if it can be expressed as the
topological sum of annihilator algebras, we have the following theorem.
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THEOREM. 3.10. Let A be a semi-simple annihilator Banach
algebra, and let <_X — {Ia\aeC} be a collection of closed two-sided
ideals of A. Suppose that either ^ — Tt or that A is dual and
equals the topological direct sum of ^y. Then (D(A, ^), | \^) is a
semi-simple annihilator Banach algebra.

We now give an explicit characterization of D(A, Wl) in case
A — C(G) for G a compact abelian topological group.

THEOREM. 3.11. Let G be a compact abelian topological group,
and let A — C(G), with convolution for multiplication. Then D(A, Ti)
is bi-continuously *-isomorphic to LJfi), where the latter has point-
wise multiplication.

Proof. Let G — {ea}, and let Ma = {cea \ c complex}. Then SK =
{Ma}. Let x e D. By considering real and imaginary parts, one shows
that

Σl&*e«(0)l ^ 4 |α; |^ , geG ,
a

where * denotes convolution multiplication. Now G is discrete, so it
follows that the left hand side of the above equation is just the LL

norm of x, the Fourier transform of x. Thus x-+x is a continuous
mapping of D into L^G). It is straightforward to verify that the
mapping is bicontinuous and a ^-isomorphism onto

COROLLARY. 3.12. // A is as above, then Jφ9ϊ(/) = A for all
closed ideals I if and only if G is finite.

Proof. If the first statement holds, then D(A, 2R) = A. Thug
the Fourier transform of every element of A is in L^G). Thus, by the
Inversion Theorem, every element of C(G) is the Fourier transform
of an element in L^G), so by [16, Th. 4.6.8], G is finite.

4* Structure and representation theorems* Throughout this
section we assume that A is a semi-simple annihilator Banach
algebra. We investigate the structure of ideals and idempotents in A.
The first lemma shows the relationship between Wl and Π.

LEMMA. 4.1. M —• 2(M) is a one-to-one mapping of 9Jί onto Π,
If A is dual, then P—+ίR(P) is a one-to-one mapping of Π onto 3K.

Proof. L e t Meffll. T h e n t h e r e e x i s t s a n i d e m p o t e n t e e M s u c h
that M - c\(AeA). Let P = {x \ xA c A(l - e)}. Then PeΠ. Now
2(M)d2(eA) = A(l - e), and 2(M) is a closed two-sided ideal con-
taining P. Therefore 2(M) = P.
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If Pe/7, then 3ΐ(P) contains a minimal idempotent β. Thus
M = cl(AeA) e 3ft and 2(M) = P. Thus M -> 2(M) is onto. Since the
minimal-closed two-sided ideals annihilate each other, it follows that
the mapping is one-to-one.

Suppose now that A is dual. Let Pe Π and let M e 3ft such that
S(Λf) = P. Then 9t(P) - 3ΐS(M) = M. Thus P-> 3t(P) is the inverse
mapping of M —• S(M) and hence is necessarily one-to-one and onto.

We next establish a representation theorem which essentially
reduces to the Gelfand representation theorem when A is commutative.

LEMMA. 4.2. // PeΠ, then A/P with the quotient norm is a
primitive, topologically simple, annihilator Banach algebra.

Proof. The proof is straightforward and is omitted.

DEFINITION. 4.3. Let &*A/P denote the direct product of
{A/PI P e Π}, and let ( Σ A/P)o denote the set of fe & A/P such that
{PI || f(P) II ̂ ε} is finite for all ε > 0. For fe ( Σ A/P)o, define || / || =
sup || f(P) ||. Now, for xeA, define xe^ A/P by x(P) = x + P, and
PeΠ

define the carrier of x, car(x) = {P | x(P) Φ 0}.

THEOREM 4.4. ( Σ A/P)o is a semi-simple annihilator Banach
algebra, and x —• x is a norm-decreasing isomorphism of A onto a
dense subset of ( Σ A/P)Q.

Proof. The proof of the first statement is sketched in [14, pp.
106-7]. It is easily seen that x —* x is an isomorphism of A into
& A/P. Let x e A, e > 0. Then there exist M{ e 3ft and x{ e Mif

l ^ i ^n, such that || x - Σ?=i»»II < ε Let P< = S(M<); then
car (xj c {Pi}. Thus P ί {Pu , Pn} implies

\x(P)\\ = <e,

SO X 6 ( Σ A/P)o.

Since | | ί ( P ) | | ^ | |^ | | , the mapping is norm-decreasing. Thus it
remains to show that the range of the mapping is dense in (Σ A/P)o.
It is sufficient to show that the set of x with finite carriers is dense
in the direct sum of {A/P\Pe Π}, since this latter set is dense in
(ΣA/P)0. So, suppose / e ( Σ 4 / P ) 0 , that / vanishes except for
Pe{Pu -- ,Pn}, and let ε > 0. Now chooseM{ e 3ft such that S(M,) =
Pi. Since cl (Jlf< + Pi) — A, the image of M{ is dense under the
natural map from A onto A/Pi. Thus there exist x{ e Mi such that
||Xi(Pi)-f(Pi) \\<ε,l^i^n. If x = Σ?=i^, then car (x)a{Pl9 , P J
and || x - f\\ = sup^s. || UPi) - f(Pd II < e.
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REMARK. In general, the mapping x —> x is not bieontinuous.
However, if A is a i?*-algebra, then A is isometrically *-isomorphic
to (Σ^/n[n,τh. 8.1].

We now turn our attention to the decomposability of idempotents.

THEOREM. 4.5. Every idempotent in A can be expressed as the
sum of orthogonal minimal idempotents.

Proof. Let e be an idempotent in A. First, suppose that e is
contained in some MeWl. Let / be a minimal left ideal in M and
let x —> L(x) be the left regular representation of M as compact
operators on I (see [4, Th. 9 and 10]). If S = range (L(e)), then S
is closed and L(e) is the identity on S. Hence S is finite-dimensional.
Thus there exist orthogonal bounded projections with one-dimensional
range, Eu , En such that Ex+ + En = L(e). Since the range
of x —> L(x) includes all bounded operators on / with finite-dimensional
range, each Ek is the image of some ek e M. Thus {e19 , en} is a set
of orthogonal minimal idempotents, and e = ex + + en.

Now, suppose that e is any idempotent in A. Then e is an
idempotent in (]Γ, A/P)o and hence car (e) is finite, say car (e) —
{Pu , Pn). Let Mk e Wl, 2(Mk) = Pk. It is straightforward to verify
that every idempotent in A/Pk is the image of some idempotent qk e Mk

under the natural map from A onto A/Pk. Hence qk(Pk) = e(Pk), and
by the first part each qk is the sum of orthogonal minimal idempotents.
Since MkMά — (0), k Φ j , it follows that e = q1 + + qn and hence
that e is the sum of orthogonal minimal idempotents.

The following corollary has been shown by Barnes [3] for the
more general class of modular annihilator algebras.

COROLLARY. 4.6. Let e be an idempotent in A. Then eAe is
finite-dimensional. Hence A is finite-dimensional if it has an identity.

Proof. If e and / are minimal idempotents, then eAf is (0) or
one-dimensional.

Using the above corollary, we now establish the following result
about Ξ, the set of maximal-modular two-sided ideals.

PROPOSITION. 4.7. The following statements are equivalent.
(1) A is strongly semi-simple.
( 2 ) Π = Ξ.
(3) Each Me 3ft is finite-dimensional.
(4) Each MeWfl has identity.
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Proof. IΐPoeΠ ~Ξ, and Me Wl, S(M) - Po, then M e n {P\ Pe B}.
Therefore (1) implies (2). If (2) holds and MeWl, then 2(M)eΞ, so
A/2(M) has identity and hence is finite-dimensional. The mapping
x —> x(2(M)) is one-to-one on M, so M is finite-dimensional. Therefore
(2) implies (3). If (3) holds and Me 3ft, then (see Theorem 4.5) M is
isomorphic to all the operators on any of its minimal left ideals.
Hence M has identity. Thus (3) implies (4). If Meΐΰl, then S(M)
is maximal-closed. If (4) holds, then 2(M) is also modular, so Π =
{2(M) I Me m} = Ξ. Therefore (4) implies (2). Clearly (2) implies (1).

The rest of this section consists of structure theorems for certain
kinds of one-sided ideals in A. Although the theorems are stated and
proved only for right ideals, the corresponding statements for left
ideals also hold.

THEOREM. 4.8. Let eu

 Λ ,en be idempotents in A. Then there
exists an idempotent ee A such that eA — etA + + enA.

Proof. We note that if eu -* ,en are orthogonal, then e can be
taken as eγ + + en.

It suffices to prove the theorem for n — 2, since the general case
then follows by induction. First, suppose that eι and e2 are both
contained in the same Me 3ft. Let x—+ L(x) be as in the proof of
Theorem 4.5 and let Sk = range (L(ek)). Then Si, S2 are finite-
dimensional, so there exist bounded projections Pl9 P2 such that
range (P,) = S, and range (P2) = S2 ~ Sx. Thus E = PL + P2 is a
bounded projection, so there exists an idempotent ee M such that
L(e) = E. Now L(e)L(ek) = L(ek), so etA + e2A c eA. Also, L(ek)Pk =
Pk9 so it follows that e A c ^ A + e2A.

Now suppose that ex and e2 are any idempotents in A. Since any
minimal idempotent is contained in some Me 2)1, it follows from
Theorem 4.5 that e1 = pul + + pn,ι and e2 = pί>2 + . . . + pnΛ, where
each pkfj is an idempotent in Mk e Wl, j — 1, 2,1 ̂  k ^ n. By applying
the previous case to each pair {pkΛ, pk)2} and using the fact that
M{Mj — (0), i Φ j , the theorem is established.

As a consequence of Theorems 4.5 and 4.8, we obtain the following:

COROLLARY. 4.9. The socle of A is the union of the idempotent"
generated right ideals of A.

We conclude this section with an analysis of a special class of
right ideals which arise in the study of homomorphisms. If y e A
we denote by J{y) the closed right ideal {x \ yx = x}. The following
fact about J(y) will be used in establishing Theorem 5.1.
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LEMMA. 4.10. Let ye A and let G = {P\ \\y(P)\\ ^ 1}. Then G
is a finite set, and car (x) c G for all x e J(y).

Proof. If 0 Φ x e J(y), P e car (x), then y(P)x(P) = x(P) Φ 0.
Therefore | |#(P) | | ^ 1, so PeG. Since y e ( Σ A/P)o, G is finite.

THEOREM. 4.11. J(y) is idempotent-generated for all ye A.

Proof. First, suppose that J(y) is contained in some MeW, and
let x —> L(x) be as in the proof of Theorem 4.5. If S = {x | L(2/)β = a;},
then S is closed and L(y) is the identity on S, so S is finite-dimensional.
Thus there exists a bounded projection £7 with range S, and so there
exists an idempotent ee M such that L(e) — E. It follows that ye — e,
and hence eAaJ(y). If ue J(y), then L(y)L(u) = L(w), so L(e)L(u) =
JL(%). Therefore u e eA.

If 7/ is any element of A, let {P| | | y ( P ) | | ^ 1} = {P,, . . . , P J .
Since A/P& is topologically simple, by the previous case there exist
idempotents qk e A/Pk such that qk(A/Pk) — J(y(Pk)). Thus there exists
an idempotent ee A with carrier {Ply , Pn] such that e(Pk) = qki

1 ^k ^n. It follows that eA = J(y).

COROLLARY 4.12. The socle of A is the set of elements possessing
a left identity.

5* Continuity properties of homomorphisms* We now apply
the results of the previous two sections to the study of continuity
properties of homomorphisms of semi-simple annihilator Banach algebras.
Our first objective is to establish the following analog for annihilator
algebras of a theorem by Bade and Curtis [2, Th. 3.7],

THEOREM 5.1. Let A be a semi-simple annihilator Banach
algebra in which I@ΪR(I) = A for all closed two-sided ideals 7, and
let v be a homomorphism of A into a Banach algebra. Then there
exists a finite set of primitive ideals, Πo, and a constant K such that

\\v(x)\\^K\\x\\-\\y\\

for all x and y in A such that yx — x and car($) c Π ~ Πo.

The proof of this theorem will be given after several lemmas
have been established. If A is any semi-simple annihilator Banach
algebra, then it will be possible to make a slightly weaker conclusion,
but with || || replaced by | |^.

We will make repeated use of the following theorem, which was
proved in the commutative case by Bade and Curtis [2].
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THEOREM 5.2. Let A and B be Banach algebras, and let v be a
homomorphism of A into B. If {xn} and {yn} are sequences in A such
that

and

(2) ynxm = 0 , nΦm ,

then

i m o ιι/ιι&niι ιi2/*ιι < ^

Proof. This is proved in [6, Corollary 3.2]. The hypotheses in
[2] and [6] have (2) replaced by the stronger condition ynym — 0,
n Φ m. However, this is not necessary.

In proving Theorem 5.1, we will use a construction which is basi-
cally the same as that in [2]. Through Lemma 5.8, we will assume
that A ϊs a semi-simple annihilator Banach algebra in which
JΓ®3l(I) = A for all closed two-sided ideals I, and that v is a
homomorphism of A into a Banach algebra. By Theorems 3.4 and
3.5, the norms || || and | | ^ are equivalent. Since we are dealing
with continuity properties of v, there is no loss of generality in as-
suming that these norms are numerically equal. We will do so as it
simplifies the computations.

DEFINITION 5.3. Let 3(? be the set of E c Π such that
sup{||i;(aj)||/||ίc||.||2/l|:i/α - x, car (x) Ucar (y) c E] = K(E) < oo.

We will show that Sif has a largest element whose complement
is finite.

LEMMA 5.4. // {Eδ} is a pairwise disjoint family of subsets of
Π, then there exists a constant K such that K(Eδ) ̂  K> and hence
Eδ e ^f', for all but finitely many δ.

Proof. Suppose the conclusion is false. Then there exists a dis-
tinct sequence {EδJ and sequences {xn} and {yn} such that ynxn = xnf

cs,r(xn) U car( i/ Λ ) c Eδn a n d || v(xn) | | /[ | x n \\ || y n \ \ > n. B u t car(ynxm) c
Eδ%f]Eδm = φ, nφm, so that ynxm — 0, nφm, which contradicts
Theorem 5.2.

LEMMA 5.5. Suppose that EL and E2 are disjoint subsets of Π
and that x and y are elements of A such that yx — x and car (x) (J
car (y) c E1U E2. Then for k = 1,2 there exist xk, yk eA such that
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( 1 ) V&k = %ic , car (xk) (j car (yk) c Ek

( 2 ) x, + x2 = x, Vi + y2=y

( 3 ) H ^ H ^ I I a ί l l , || yk \\ £ \\ y || .

Proof. Since B is ^-decomposable, and car (a;) czE^E^ x has an
infinite series expansion in which each summand has its one element
carrier either in Ei or E2. Hence x can be factored into x1 + x2 where
car (xk)aEk, and similarly for y. Since yx — x and Eί Π E2 = φ, it
follows that ykxk = &*. Statement (3) follows from the fact that

LEMMA 5.6. // {Eu ---, En}a£z?, then U J U #*€<%" and

Proof. It suffices to establish the conclusion for n = 2, since the
general case then follows by induction. Without loss of generality,
we may assume E1f) E2 = φ.

Suppose that yx — x and car (x) (j car (y) c Eγ U £̂ 2. Now chose a?Λ

and yk as in the previous lemma. Then

V̂ >/ II < II ̂ Λ^iJ ~r ^(,^2; 11 < 11 ̂ V^i; 11 _j_ 11 ^y^2J

and hence the conclusion follows.

LEMMA 5.7. There exists a constant K such that K(E) ̂  K
for all

Proof. Suppose the conclusion is false. Then there exists a se-
quence {Ek} c ^ T such that K{E,) > 1 and K(Ek) >(k + l)K(Ek^). Let
At = Ex and let Aw = En ~ \Jlz\ Ek. Then {An} is a pairwise disjoint
sequence in ^ίf. Now UKί ί?* e fl" and (UΠί ̂ ) U 4 - J£Λ. Thus,
using the preceding lemma, it follows that K(An) > 2K(En_1) ^ 2if(^4%_1),
so K(An) > 2W-1, which contradicts Lemma 5.4.

LEMMA 5.8. U £%f is an element of έ%f.

Proof. Let Eo be the union of everything in Sίf. Suppose that
yx = x and that car (x) (J car (y) c Eo. Then by Lemma 4.10, car (x)
is finite, so it is contained in the union of a finite number of elements
of Sίf', say Eγ. Now Eι e Sίf, and in view of Lemma 5.5 there is no
loss of generality in assuming that car (y) c Et. Thus if K is as in
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Lemma 5.7, then || v(x) \\/\\x\\ \\ y || ^ K(EX) ^ K. Thus K(E0) g K and

Proof of Theorem 5.1. Let Eo and i£ be as in previous lemmas
and let Πo be the complement of Eo. By Lemma 5.4, Πo has only
finitely many elements. Suppose that yx — x and car (#) c 2£0. Now
choose y1 such that yxx = x, car (^J cz Eo and || ^ || ^ || 3/1|. Then

COROLLARY 5.9. // A is strongly semi-simple, then

\\v(x)\\^K\\x\\.\\y\\

for all x and y such that yx = x.

Proof. Let PeΠ = Ξ, and choose MeM such that 2(M) = P.
Then ikf is finite-dimensional, so v \ M is continuous. Therefore {P} e
Thus /7 e

EXAMPLE. If v is the discontinuous isomorphism of l2 constructed
in [2], and if pn is the sequence whose first n terms are one and the
rest zero, then pn — p2

n and || v(pn) \\ = n = || pn ||
2.

The next lemma shows that is A if any semi-simple annihilator
Banach algebra, and v is a homomorphism of A into a Banach algebra,
then we can apply Theorem 5.1 to v by considering it as a homomor-
phism of D(A, 2K).

LEMMA 5.10. Lei A be a semi-simple annihilator Banach alge-
bra. Let ΠD denote the primitive ideals and WlD the minimal-closed
two-sided ideals of D(A1 2ft). Then

( 2 ) ΠD = {PΠ D(A, m) I P e 77},

( 3 ) (£)(A> 2ft), I \gβ) is a semi-simple annihilator Banach algebra in
which I©R(I) = D(A,-iDl) for all closed two-sided ideals I.

Proof. The first assertion follows from the fact that || || = | | on
each Mαe2ft and that cl(Σ«Mα) = A. By Theorem 3.10, (D, j |) is a
semi-simple annihilator Banach algebra. Hence (2) follows from (1) and
Lemma 4.1. Statement (3) follows from (1), Proposition 3.3, and
Theorem 3.5.
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THEOREM 5.11. Let A be a semi-simple annihilator Banach
algebra, and let v be a homomorphism of A into a Banach algebra.
Then (1) // yx = x, then x e D(A, 3ft) and there exists yι e D(A, 3ft) such
that yxx — x.

(2) There exists a constant K and a finite set of primitive ideals
Πo such that

\\v(x)\\ ^K\x\m-\y\m

for all x and y in A such that yx = x, car (x) c Π ~ Πo and y e D(A,W).

Proof. The first assertion follows from Theorem 4.11 and its
corollary. By the preceding lemma, we can apply Theorem 5.1 to v
considered as a homomorphism of D. Statement (2) now follows from
this and the fact that primitive ideals in D are just the intersection
with D of primitive ideals in A.

6* The separating ideaL If A and B are Banach algebras, and
v is a homomorphism of A onto a dense subset of B, than define the
separating ideal of v in JS,

The separating ideal was first introduced by Rickart [13]. For
basic properties of S, see [18] or [6]. If A is a semi-simple annihila-
tor Banach algebra, then we have the following.

PROPOSITION 6.1. Let St = v-\S). Then
(1) SrAddi^φ)).
(2) If A is dual, then S, - cl (ir^O)).
(3) If v is an isomorphism, then Sι = (0).

Proof. Let K = xr-l(0). Let Me 3ft. If M Π Si - (0) then SJIf c
MπSiCiK. Otherwise, M Π Sx = M, so Mc Sx: If e is an idempotent
in M then e e Slf so by a theorem of Yood [6, Th. 4.8] i (e) = 0. Thus
the socle of M is contained in K, so MaK. Thus S^MciK for all
ΛfG3ft so (1) follows.

If A is dual, then St is a semi-simple dual Banach algebra. Now
the socle of S1 is contained in K and hence S^cK. Clearly KdSl9

so (2) holds.
If v is an isomorphism, then by (1), Sι<z2(A) = (0).

7* Homomorphisms of dual B*-algebras* In this section we
specialize to the case when A is a dual i?*-algebra. By using a
theorem of Johnson [9] which says that any homomorphism of the
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compact operators on Hubert space into a Banach algebra is con-
tinuous, we can strengthen Theorem 5.1 in this case. Throughout
this section, F denotes the socle of A.

THEOREM 7.1. Let A be a dual B*-algebra, and let v be a
homomorphism of A into a Banach algebra. Then v is continuous
on F.

Proof. By Theorem 5.1 there exists a constant K and a finite
set of primitive ideals Πo such that || v(α ) || ^JBT||ic||-||2/ll whenever
yx = x and car (x)aΠ ~ ΠQ.

Let xe F. Then by Corollary 4.9 there exists an idempotent e
such that ex = x. By Theorem 4.5 there exist orthogonal minimal
idempotents e19 , en such that e = βx + + en. Now any minimal
left ideal in A is a Hubert space in the given norm and x —• L(x) is a
*-isomorphism. Thus an examination of the proof of Theorem 4.5
in this special case shows that the one-dimensional subspaces,
range (L(ek)), can be taken as mutually orthogonal, and hence the ek

can be taken as hermitian. Thus we may (and do) assume that e is
a hermitian idempotent, and hence that | | β | | = 1.

Now, let 770 = {P19 . . . , Pm}, and choose MkeWl such that 2(Mk) = Pk.
Then x — x0 + + xm, where xk e Mk, 1 ^ k ^ m, and x0 is in the
sum of the remaining members of Wl. Thus ex0 = xQ and car (x0) c 77 ~ Πo,
so || v(x0) || ^K\\xo\\. Each Mk is isometrically *-isomorphic to the com-
pact operators on a Hubert space, so by the theorem of Johnson, v
is continuous on each Mk. Since | | ^ | | ^ | | ί ( ? | | , 0 ^ A : ^ m , it follows that
there exists a constant Kf independent of x such that || v(x) \\ ̂  K'\\ x \\.

REMARK. Since v \ F is continuous and F = A, there exists a
unique continuous homomorphism of A onto a (not necessarily dense)
subset of cl (v(A)) which agrees with v on F.

We now establish two decomposition theorems about the range of
an isomorphism of a dual B*-algebra. These theorems are analogous
to a theorem of Bade and Curtis on homomorphisms of commutative
B*-algebras [2, Th. 4.3].

THEOREM 7.2. Let A be a dual B*-algebra, and let v be an
isomorphism of A onto a dense subset of a Banach algebra B. Let
μ be the continuous homomorphism of A into B which agrees with
v on F, let λ = v — μ, and let S be the separating ideal for v in B.
Then

(1) μ is an isomorphism
(2) S = cl(λ(A))
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(3) μ(A) is a closed two-sided ideal in B and B = μ(A) φ S
(4) μ(A)S — Sμ(A) = (0) and X is a homomorphism.

Proof. (1) By [6, Lemma 5.3] there exists a constant L such
that || x || ^ L || v(#) ||, xeA. Suppose μ(x) — 0. Then there exists a
sequence {xn} c JP7 such that xn —> a?. Hence i;(a?n) = μ(xn) —> μ(#) = 0, so
#w—> 0. Therefore μ is an isomorphism.

(2) Let x e A and let {xn} c F , α?w —> a?. Then ι>(#w) = μ(xn) —> μ(a?).
Thus a; — xn —> 0, i;(α? — #w) —> X(x), so X(A) aS. If ye S and xn —• 0,
v(ffn) —* 2/, then λ(a?n) = (i; — μ) (α?w) - > 2 / - 0 G S , SO S c cl (λ(Λ)).

(3) By [6, p. 1104], μ(A) is closed and B = v(A)®S. If xeA,
y e F, then v(x)μ(y) = y ( ^ ) = ^(XT/) G μ(A). Therefore v(A)μ(A) c
cl(/^(A)) = jti(A), and similarly / / ( A ) J ; ( A ) C ^ ( A ) , so μ(A) is a two-sided
ideal in B. If / φ ) e S, then y(&) = (λ 4- μ) (x) e S, so v(α?) = 0 = x.
Thereforeμ(A)Γ\S = (0). ThusB = v(A)@S= (X + μ)(A)@Saμ(A)ζBS,
so B = /i(A) 0 S.

(4) The first statement follows directly from (3). If x, y e A then
X(x)μ(y) = μ(x)X(y) = 0, so

λ(α)λ(!/) - ((/£ + X)(x) ((μ + X) (y)) - μ(xy)
= (v - μ) (xy) - X(xy) .

Therefore X is a homomorphism.

Before proving the second decomposition theorem, we digress to
establish the following theorem about homomorphisms of a large class
of B*~algebras. This was proved in the commutative case by Yood
[17, Corollary 5.5].

THEOREM 7.3. Let A be a B*-algebra in which every primitive
ideal is modular. Let v be a homomorphism of A into a Banach
algebra B such that cl (v(A)) — B and v~\G) is closed. Let R denote
the strong radical of B.

Then R = S and B = v(A) φ R,

Proof. We note that the hypotheses for A will be satisfied if
A has identity, if A is commutative, or if A is a strongly semi-simple
dual algebra.

First, suppose that v is one-to-one. By a theorem of Cleveland
[6, Th. 5.5] B = y ( A ) φ S , and by a theorem of Yood [18, Th. 3.5]
Rz) S. Hence to complete the proof for this case we only need show
that v{A) f]R= (0).

Now there exists a constant L such that \\x\\ ^ L\\ v(x) 11, xeA.
Let PeB and let e be a two-sided identity for A modulo P. If
cl (v(P)) = B then there exists a sequence {xn} c P such that v(xn) —> v(e).
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Thus xn —> e, so e e P, which is a contradiction. Thus cl (v(P)) is a
proper modular two-sided ideal and hence is contained in a maximal
such ideal, JP. It follows that v~~\JP) = P and hence that

(0) - n {v~\JP) I P e Ξ} ^ y- 1^) .

Hence the conclusion follows if v is one-to-one.
If v-\0) is closed, then Ax = A/v^O) is a J5*-algebra. Let π be

the natural map from A onto Ale By considering inverse images
under π, we see that every primitive ideal of At is modular. Also,
it is straightforward to show that the mapping vx defined by vx o π = v
is an isomorphism of At onto v(A). By the first case,

B = VM © R = v(A) © # .

Let Si be the separating ideal for vγ in J5. Since π is continuous,
S c St. On the other hand, suppose there exists a sequence {xn} c A
such that π(xn) —>0 and î(τr(a?n)) —>yeB. Then there exists a sequence
{wj c y-^O) such that \\xn + ^ w || —> 0. But y(α;w + wn) = v(xn) —> ?/, so
ί/eS. Thus S = Si = J2, and the theorem is established.

As a direct consequence of the preceding two theorems, we have
the following.

THEOREM 7.4. Let A be a strongly semi-simple dual B*-algebraJ

and let v be an isomorphism of A onto a dense subset of a Banach
algebra B. Let μ be the continuous isomorphism of A into B which
agrees with v on F\ let λ = v — μ, and let R denote the strong radi-
cal of B. Then

(1) c\(X(A)) = R.
(2) μ(A) is a closed two-sided ideal in B and B = μ(A) 0 R.
(3) Rμ(A) = μ(A)R = (0), and X is a homomorphism.
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