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ON THE TETRAHEDRAL GRAPH

MARTIN AIGNER

Generalizing the concept of the triangular association
scheme, Bose and Laskar introduced the tetrahedral graph the
vertices of which are the ί g J unordered triplets selected from

n symbols with two points adjacent if and only if their corres-
ponding triplets have two symbols in common. If we let d(x, y)
denote the distance between two vertices x, y and j(x, y) the
number of vertices adjacent to both x and y, then the tetra-
hedral graph possesses the following 4 properties:

(BO) the number of vertices is ( 3 )

(Bl) it is connected and regular of degree S(n — 3)
(B2) if d(x, y) = 1 then j(x, y) = n - 2
(B3) if d(x, y) = 2 then j(x, y) = 4.
The question whether these conditions characterize tetra-

hedral graphs (no loops or parallel edges permitted) was an-
swered in the affirmative by Bose and Laskar for ^ > 16. In
the present paper characterizations of tetrahedral graphs are
derived by strengthening each one of (Bl), (B2), (B3) and these
results are utilized to prove the sufficiency of (B0)-(B3) for n=6.
(For n < 4 the problem is void, n — 4, 5 are trivial cases.)

All graphs considered in this paper are finite undirected without
loops or parallel edges. As is readily seen the line-graph G of the
complete graph with n vertices may be defined as a graph whose

vertices are the ( g ) unordered pairs taken from n symbols so that two

pairs are adjacent if and only if they have a symbol in common.
Letting d(x, y) denote the distance between x and y and A(x, y) the
number of vertices that are adjacent to both x and y, then G has the
following properties:

(AO) the number of vertices is ( o )

(Al) G is connected and regular of degree 2(n — 2).
(A2) d(x, y) = 1 implies d(x, y) = n — 2
(A3) d(x, y) — 2 implies J(x, y) = 4.
Conner [2], Shrikhande [7], Hoffman [3,4] and Li-chien [5,6]

showed that (A0)-(A3) completely characterize linegraphs of complete
graphs except for n = 8 where 3 nonisomorphic graphs satisfying (AO)-
(A3) exist. Bose and Laskar [1] took up the similar problem concerning
unordered triplets chosen from n symbols we mentioned above.

For n > 16 (B0)-(B3) characterize tetrahedral graphs as was shown
by Bose and Laskar in [1].

For n < 4 the characterization problem is meaningless.
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For n = 4 a graph G satisfying (B0)-(B3) is necessarily the
complete graph with 4 vertices and the vertices may be identified with
the 4 unordered triplets chosen from 4 symbols.

For n = 5 the conditions (B0)-(B3) are identical with (A0)-(A3)
hence a graph G satisfying (B0)-(B3) may be assigned as vertices the
10 unordered pairs of symbols taken from a set of 5 symbols with two
vertices adjacent if and only if their corresponding pairs share a
symbol. Replacing each pair by its complement in the set of the 5
symbols we obtain a graph G with triplets assigned to its vertices and
G is readily seen to be tetrahedral.

In the following we assume n ~Ξ> 6. K% will denote the complete
graph with i vertices, S(x) the set of the vertices adjacent to x,
T(x,y) the set of the vertices adjacent to both x and y.

II* Characterizations of tetrahedral graphs*

LEMMA 1. For a graph G satisfying (B0)-(B3) the following
properties are equivalent:

(Cl) For all xeG the subgraph induced by S(xY can be parti-
tioned into

Λ. — \Xu %2i ' * ' i %n—3/> •* — {ΊJli Vlf ' ' ' j Vn—Sff %ι = \Zγ, Z2, * * , Zn_^\

such that {xif yi9 z^ induces a Kz for i — 1, , n — 32.
(C2) For all x, y eG with d(x, y) = 1 the subgraph induced by

T(x, y) consists of a Kn__± and a K2 such that no vertex in Kn^ is
adjacent to either vertex in K2.

(C3) For all xeG the subgraph induced by S(x) can be partitioned
into SKn^s such that for any pair y, ze S(x) with d(y, z) = 2 there
are exactly 2 other vertices v, w e S(x) which are adjacent to both y, z.

Proof. It is evident that property (Cl) implies both (C2) and (C3).
On the other hand assume (C2) and let xt e S(x). In T(x, xλ) let
x2,

 mm *, xn-3 be the vertices in iΓ%_4 and let yuzί be those in K2. It
follows from (C2) that in T(x, yL) the iΓ2-part is constituted by xu zγ

and further that the n — 4 remaining vertices y2, —-,yn^ form the
ϋΓn_4-part and are distinct from x2, •• ,^%_3. Similarly for the pair
x, zγ the set T(x, zj is made up by xu yt as ίΓ2-part and by n — 4 vertices
22, , 2J«-3 different from x%, y{(i = 1, , n — 3). Hence S(x) has the
form displaved in Fig. 1. (B2) implies that each of xt, yiy z^i = 2, •••,
n—S) is adjacent to exactly 2 vertices in S(x) outside its own Kn_3.

1 By the subgraph induced by a set S of vertices in G we mean the subgraph
which has S as vertex-set and includes all edges between any two points in S.

2 By (B2) it is clear that there exist no edges joining vertices of one Kn-3 to
another other than those of the specified Kz's.
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FIG. 1

If e.g. &; were adjacent to yhyk{2 iίj,k) then the subgraph induced
by T(x, yά) would consist of a Kn_4 and a i£2 with ^ e i^_4, a?, G if2 and
rf(^ f 2/*) = 1> thus violating (C2). Hence each of xi9 yiy zt is adjacent to
exactly one vertex of the two Kn_3s not containing it—hence (Cl) holds.

Next let us assume (C3). Let X, Y, Z be the 3 KnJ$ of S{x) as
in (Cl). Given xλ e X: In order to prove (Cl) we have to exclude the
following two possibilities:

(A) xλ is adjacent to two vertices, say yuy2e Y9 lying in the
same Kn_3.

(B) xt is adjacent to say yίeY9z1eZ in different Kn_^s but
d(y19 zx) = 2.

Suppose (A): The set Y — {yu y2} is nonempty (since n ^ 6) and by
(C3) no y e Y ~ {yu y2} can be adjacent to any xe X. Hence let us
assume y.6e Y ~ {2/1,1/2} is adjacent to z19z2eZ. Since zt is adjacent
to exactly two points in S(x) outside Z (one of them being y3) we
conclude there is at most one vertex in S(x) adjacent to both x± and
zu thus contradicting (C3).

Suppose (B): By (C3) either yι is adjacent to some zeZ in which
case zγ must be adjacent to some x2 e X, or yί is adjacent to some
x2e X with zλ adjacent to some y2 e Y or to x2 also. Either possibility
brings us back to case (A) with zt respectively yt playing the role of
xx in (A).

REMARK 1. In a graph G satisfying (B0)-(B3) condition (Cl) implies
<C3'): For any pair of vertices xu y1 with d(xu yx) — 2 the subgraph
induced by the 4 vertices x2, xz, yi9 y% adjacent to both xlf yx is a cycle.

Proof. In the subgraph induced by S(xs), xί and y1 are in different
Kn_3's with a?! adjacent to a vertex, say x2, in the Kn^ containing yu

and yx in turn adjacent to y% in the Kn_3 containing xx. We have
d(x2, y2) = 2 and no other vertices in S(xz) are adjacent to both xu yla

Now let us consider S(x2). There x39 yx are in the same Kn_d, xx is in
another and y1 is adjacent to a vertex τ/3 in the Kn_z which contains
xx. Since y3 evidently is different from y2, it must be the fourth point
adjacent to xlf y^ furthermore d(x3, y3) = 2, d(x2iy3) = 1. Similarly one
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gets d(yz, yz) = 1; hence xi9 x89 y29 y3 induce a cycle.

REMARK 2. It can be shown with only a little difficulty that for
n = 6 the converse of Remark 1 holds i.e. (C3') implies (Cl) in a graph
satisfying (B0)-(B3). As we will not make use of this fact sub-
sequently the proof is omitted.

LEMMA 2. Let a graph G satisfy (B0)-(B3) and (Cl). Let X, Y,
Z be as in Lemma 1, i.e. S(x) = X U Y U Z. Then

S(z{) = (T(x, zt) - {xi9 y,}) U {x} U (T(xi9 zt) - {x, yt}) U R }

U (T(yi9 Zi) - {xf Xi}) U {Vi} for all i

with each one of the sets on the right hand side inducing a Kn_z.
For S(Xi), S(yi) the analogous statements hold.

Proof. Follows instantly from (Cl).
Note that Lemma 2 implies that Sfe) is completely determined by

S(x), Sfa), Sfa).

THEOREM 1. A graph G is tetrahedral if and only if G satisfies
(B0)-(B3) and any (and hence all) of the conditions (C1)-(C3).

Proof. Necessity follows readily from the definition. To prove the
sufficiency let us first interpret tetrahedral graphs geometrically.

For n^Q let Cn = {(i, j9 k) \ 1 ̂  i9 j, k ^ n; i, j9 k integral} i.e.,
the set of all integral lattice points of the 3-cube with sides extending
f r o m 1 ton. L e t C'n = {(ί9j9k)\l ^i,j,k <Ln;i-φjΦkφi; i,j,k i n t e g r a l }
then I C'n \ = n(n — l)(n — 2). Now it is evident that G is tetrahedral
if and only if its vertices can be identified with the lattice points in
C'n (each vertex appears exactly 6 times in C'n) such that two vertices
are adjacent if and only if they lie on a straight line parallel to a
coordinate-axis.

Thus in order to prove the theorem it suffices to show that the
vertices of a graph G satisfying (B0)-(B3) and say (Cl) can be arranged
in Cr

n in the above fashion.
For simplicity let us denote the vertices of G by the natural numbers.

from 1 to

Let

n —

2n -

2,

1,

4,

• , n — ί
• , 2w -

• Zn -

5

8,

be the 3 i£w_3's constituting S(l) with numbers in the same colum indue-
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ing if3's. Place 1 at the spots (3, 2,1), (2, 3,1), (1, 3, 2) in C'n and
{2, , n — 2} on the lattice points {{i, 2,1) | 4 <Ξ i ^ n} in this order,
{w - 1, , 2n - 5} on {(i, 3,1) | 4 ^ i ^ w}, and {2n - 4, , Sn - 8}
on {(i, 3, 2) I 4 ^ i ^ w}.

Next we look at the set S(2). Besides {1,3, , n — 2} inducing a
ifM_3, there are two more Kn_z's one headed by n — 1, the other by
2n — 4. (n — l,2n — A cannot be in the same Kn_z since both are
adjacent to 1.)

Thus

S(2) - j
( - 4,

with numbers in the same column inducing jδT3's.
Now place 2 at the spots {2,4,1} and (1, 4, 2) in Cή, {n - 1, 3^ - 7,

. . . ,4^ - 12} on the line {(ί,4,1) | 3 ^ i ^ n}, {2^ - 4,4^ - 11, •,5n - 16}
on the line {(i, 4,2) | 3 ^ i ^ w}. Now the situation is as follows (Fig. 2):
We claim:

3,
•7, ••

11, .

•, 4%

, 5w

- 2
- 12

- 16

d(n, 3w - 7) = d(2w - 3, in - 11) = 1

+ 1, 3n - 6) = d(2^ ~ 2, 4n - 10) - 1

^ - 11) = d(2^ - 3, %n - 7) = 2

+ 1, 4w - 10) = d(2^ - 2, 3^ - 6) = 2

It now follows from d(2, n) = 2 and Remark 1 that the fourth point
ί beside 1, 3, n — 1 adjacent to both 2, n has to satisfy d(ΐ, 1) = 2,
<Z(i, 3) = d(i, n — 1) = 1. Hence i must be 3^ — 7 and furthermore
d(n, An - 11) = 2, d(2n - 3,4π - 11) - 1, d(2n -3,3n-7) = 2. A similar
argument proves the other assertions. That no other points among
the ones introduced thus far are adjacent beside those already men-
tioned also follows easily with the help of Remark 1.

Next we consider S(3): {1,2,4, « , n — 2} induce one iΓ%_3; we have
already found that n, 2n — 3, 2>n — 7, An — 11 are also in £(3). Since
w, 2w — 3 are both adjacent to 1 they must be in different iΓ%_3's, and
so must Sn — 7, An — 11 be in different Kn_3's. Hence

1, 2, 4, . . , τ ι - 2

w, 3ra - 7, 5ra - 15, , 6n - 21

- 3, An - 11, 6n - 20, - -, In - 26

with elements in the same column inducing iζ/s.
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/ 3n-6

FIG. 2

Place 3 at (2, 5,1) and (1, 5, 2) in C"n, {n, Sn - 7, , Qn - 21}
on the line {(i, 5,1) | 3 g; i <; w}, {2w - 3, . , Ίn - 26} on the line
{(i, 5, 2) I 3 ^ ί ^ w}.

We claim:

d(n + 1, 5n - 15) = d(3n - 6, 5n - 15) = 1

d(2^ - 2, 6n - 20) = d(4^ - 10, 6^ - 20) - 1

d(w + 1, 6n - 20) - d(3n - 6,6n - 20) - 1

d(2n - 2, 5n - 15) = d(4^ - 10, 5w - 15) = 1

(1)

(2)

and similarly for the lines parallel to the y-axis starting at n + 2,
w + 3, resp. 2n — 1, 2^, . (1) follows as before by considering
3, n + 1; 3, Sn - 6; 3, 2n - 2, 3, 4^ - 10, and (2) is a consequence of (1).
Again we note that no other edges beside those already mentioned
exist between vertices 1 to 7^ — 26.

In this way one considers all sets S(a) for 1 ^ a ^ n — 2 and fills
the lattice points {(i, j , k) \ 1 ^ i ^ n, 1 ^ j ^ n, k = 1,2} in Ĉ  in the

same fashion, thus obtaining ίw 7 j + (n 7 j = (^ — 2)2 vertices.

Now we turn to vertices corresponding to points {(ί,j,k) \j = 3 , ^ = 1}
in C'n. In S(n — 1) two Kn_s's are already known: {l,n,n + 1, ,2w — 5},
{2, Zn - 7, , An - 12} with 1 = d(l, 2) = d(w, 3w - 7) = and further
2n - 4 G S(w - 1) Hence



S(n - 1)

ON THE TETRAHEDRAL GRAPH 225

1, n, n + 1,

2, Sn - 7 , 3% - 6,

4, (τi - 2)2 + 1, (w - 2)2 + 2,

with numbers in the same colum inducing K3's.
Place n - 1 at (1,4,3) and {2n - 4, (w - 2)2 + 1 , . . . , (n - 2)2 + (n- 4)}

on the line {(£, 4, 3) | 2 ^ i ^ w} in C'w.
We claim:

d(2w - 3, (n - 2)2 + 1) - d(in - 11, (w - 2)2 + 1) - 1

d(2n - 2,(n- 2)2 + 2) = d(4^ - 10, (n - 2)2 + 2) = 1

This assertion is verified by considering the pairs 2n — 3, n — 1; 4n — 11,
n — I; 2n — 2, n — I; An — 10, n — 1; - - - and applying. Remark 1.

In this manner we fill up all the lattice points {(i,j, k) \ 1 g i g n,

4 ^ i ^ w, A: = 3} thus obtaining ( n 7 ) new vertices. By Lemma 2
the vertices adjacent to 2n — 4, 2n — 3, i.e. to points on the line
{(ί,j, k) I 4 <: i, 3 = i, 2 = k} have already been taken care of, so we
may turn to points on the line {(ί,j, k)\j = 4:,k = 1}. We place 3n — 7
at (1, 5, 4) and proceed in the usual manner.

Proceeding in the same fashion we gradually fill up all the lattice
points {(ί,j, k)\j> k} in C'n obtaining finally

(n-
\ 2

i.e., all vertices of G.
It is easily seen that reflection about the plane y — z fills the

other half of C'n and that by means of this construction one actually
arrives at a tetrahedral graph.

Ill* The case n = 6*

LEMMA 3. Given a graph G which satisfies (B0)-(B3). Let
Di(x) = {yeG\ d(x, y) = i) i ^ 1. Then

( 3 ) I A(s) I = 3(w - 3)

( 4 ) | A ( * ) I = 3 ( Λ 2 8

(5) IUAWI-(% 3

for all vertice xeG.

Proof. (3) is condition (Bl) of the hypothesis. (B2) implies that
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there are exactly 3(w — 3) — (n — 1) = 2(n — 4) edges joining an arbitrary
vertex in D^x) with D2(x). Now since by (B3) any vertex in D2(x)
is adjacent to exactly 4 vertices in D^x) we have the equality
2(n — 4) 3(w — 3) = 4 | D2(x) | and hence (4). (5) is now a consequence
of (3) and (4).

COROLLARY. For % ^ 8 the diameter of G ^ 3.

(5) and the fact that (n ~ 3 ) < 3(n - 3) for n g 8 immediately
prove this assertion.

THEOREM 2. For n = 6 a graph G satisfying (B0)-(B3) is tetra-
hedral.

Proof. In the light of Theorem 1 we have to show that in this
case (B0)-(B3) imply any (and hence all) of the conditions (C1)-(C3').
Let us prove that (C2) follows from (B0)-(B3).

Let x be any vertex, then by Lemma 3

I A(a) l - 9 , | D2(x) | - 9 , | Dz(x) | = 1 .

Furthermore let z be such that d(x, z) = 3 then for any

y e Dx(x) U D2(x)(= Dx(z) U D2{z))

( 6 ) d(x, y) = l<=> d(z, y) = 2.
For simplicity let us denote the vertices of G by 1,2, , 20 and sup-
pose that

A(l ) = {2,3, . . . ,10}

A(l) = {11,12, •••, 19}

A(l ) = {20}

with d(2,19) - d(3,18) = = d(10,11) - 3.
By (B2) 2 is adjacent to 4 vertices in A(l)—say 3, 4, 5, 6. To

prove (C2) we have to show each one of 3, 4, 5, 6 is joined to exactly
one other vertex of this set.

(6) now implies

d(2,11) - d(2,12) - d(2,13) = d(2,14) = 1.

Case (A). 3 is adjacent to each one of {4, 5, 6}. Then by (B2)
d(3, 7) = d(3, 8) - d(3, 9) - d(3,10) = 2 and hence 1, 4, 5, 6,11,12,13,14
would all be adjacent to both 2 and 3, contradicting (B2).

Case (B). 3 is adjacent to two of {4, 5, 6} say 4, 5. Then by a
similar argument 1,4,5 and three vertices among {11,12,13,14} would
be adjacent to 2 and 3, a contradiction.

Case (C). 3 is adjacent to none of {4, 5, 6}. Then say d(3, 7) =



ON THE TETRAHEDRAL GRAPH 227

d(3, 8) = d(3, 9) - 1 and hence by (6) d(3,14) = d(3,13) = d(3,12) = 2
leaving only 1 and 11 as vertices adjacent to both 2 and 3—thus again
contradicting (B2).

Hence the only possible case: 3 (and similarly 4, 5, 6) is adjacent
to exactly one among {3, 4, 5, 6}, thus proving the theorem.

REFERENCES

1. R. C. Bose and R. Laskar, A characterization of tetrahedral graphs (to appear).
2. W. S. Conner, The uniqueness of the triangular association scheme, Ann. Math.
Stat. 2 9 (1958), 262-266.
3. A. J. Hoffman, On the uniqueness of the triangular association scheme, Ann. Math.
Stat. 31 (1960), 492-497.
4. f Qn the exceptional case in a characterization of the arcs of a complete
graph, I.B.M.J. 4 (1960), 487-496.
5. Chang Li-chien, The uniqueness and non-uniqueness of the triangular association
schemes, Science Record, Math. New Ser. 3 (1959), 604-613.
6. , Association schemes of partially balanced designs with parameters v = 28,
m = 12, τi2 = 15 and p2

n = 4, Science Record, Math. New Ser. 4 (1960), 12-18.
7. S. S. Shrikhande, In a characterization of the triangular association scheme, Ann.
Math. Stat. 30 (1959), 39-47.

Received May 19, 1967.

WAYNE STATE UNIVERSITY






