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DEFINING SUBSETS OF £ 3 BY CUBES

R. B. SHER

This paper is concerned with compact subsets of Ez which
are the intersection of a properly nested sequence of compact
3-manifolds with boundary each of which is the union of a
finite collection of pairwise disjoint 3-cells. Such sets are
characterized by a property of their complements. Related
results are stated in terms of embeddings of compact 0-dimen-
sional sets and upper semicontinuous decompositions of Ez.

Theorem 1 below gives an affirmative answer to a question raised

by Stan'ko in [10].

l Definitions and notation* We use E3 to denote Euclidean
3-spaee. In [10], a compact set KczE3 is defined to be cellular-
divisible if there is a sequence {M^ of compact 3-manifolds with
boundary such that

( 1 ) if i = 1, 2, ., then Mi+1 c Int Mif

( 2 ) if i = 1, 2, •••, then M{ is the union of a finite collection
of pairwise disjoint topological cubes (3-cells), and

(3) K=n^M{.
We shall use the terminology of [9] and say that such a set is
definable by cubes. By the approximation theorem for 2-spheres [3]
there is no loss of generality in supposing that each Mt in the above
definition is polyhedral. If K is a continuum (i.e., compact and con-
nected) and is definable by cubes, then K is said to be cellular. If
K is compact and O-dimensional, then K is tame (wild) if and only if
K is (is not) definable by cubes. Tameness in this case is equivalent
to the existence of a homeomorphism of E3 onto itself carrying K
into a straight line interval. See [5] or [7],

We use Cl for closure, Bd for boundary, Ext for exterior, and
Int for interior. Int may mean "combinatorial interior" or "bounded
complementary domain" with context providing the proper interpreta-
tion in each case. If K is a subset of E3 and ε > 0, we use V(K, ε)
to denote the ε-neighborhood of K.

2* Subsets of E3 which are definable by cubes* The following
theorem affirmatively answers question 2 of [10]. An example of
Kirkor [8] shows that the hypothesis that J can be separated from
K by a 2-sphere cannot be replaced by the weaker hypothesis that /
can be shrunk to a point in Ez — K.

THEOREM 1. Suppose KczE3 is compact and fails to separate
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E\ Then K is definable by cubes if and only if for each polygonal
simple closed curve Ja Es — K, there is a 2-sphere separating K and J.

Proof. We only consider the "if" part of the proof since the
"only if" part is evident. Let / be as above. We first show that
there is a 3-cell C c E* — K such that J c Int C. Let S± be a 2-sphere
separating K and J. By the approximation theorem St may be supposed
to be polyhedral, and so if Ja Int Si we may take C = SiUlntSi.
If Jd Ext Si, let S2 be a polyhedral 2-sphere whose interior contains
Si U J. Let a be a polygonal arc from ae SL to be S2 whose interior
fails to intersect Si U S2 U J. Fatten a to a polyhedral 3-cell B whose
intersection with Sλ U S2 U J is the union of a pair of polyhedral disks
A c Sx and A c S2, and let A denote the annulus Bd B- (Int(A U A)).
Now let S3 be the polyhedral 2-sphere (S1 — A) U (S2 - A) U A and
let C = S3 U Int S3. From this and Lemma 7 of [4] it follows that
each polygonal finite graph in E3 — K lies in the interior of a poly-
hedral 3-cell in E" - K.

To show that K is definable by cubes we need only show that
for each open set U containing K there is a finite collection of pairwise
disjoint 3-cells in U whose interiors cover K. Let M be a compact
polyhedral 3-manifold with boundary such that K c Int M c M c [/.
Let F be the 1-skeleton of Bd M. By the remark at the end of the
preceding paragraph there is a polyhedral 3-cell E such that
F c Int EaEaE* — K. Using Bd E and the argument of the preced-
ing paragraph, we construct a polyhedral 2-sphere S such that
i Γ c I n t S and Fa ExtS. Now, using S, Bdikf, and Lemma 1 below,
we obtain pairwise disjoint polyhedral 2-spheres Rlf R2, •• ,i?w with
pairwise disjoint interiors such that Kcz [jT^lτARi and Bdikf lies in
each ExtRi. There is no loss of generality in supposing that K
intersects each IntJ?^ It then follows that if i — 1,2, •••, or m,
Ri U Int Ri c Int M. Hence R, U Int Ru R2 U Int R2, , Rm U Int Rm is
a collection of pairwise disjoint 3-cells lying in U whose interiors
cover K, and the proof of Theorem 1 is complete.

LEMMA 1. Suppose Tu Γ2, , Tn is a collection of pairwise
disjoint polyhedral 2-spheres with pairwise disjoint interiors, K is
a compact set that lies in Uf=1 Int T{, N is a compact polyhedral
2-manifold (with or without boundary) in Ez — K whose 1-skeleton
lies in each Ext Tiy and ε>0. Then there is a collection Ru R2y , Rm

of pairwise disjoint polyhedral 2-spheres with pairwise disjoint
interiors such that

(1) I Γ c U ί U l n t i ^
(2) N lies in each Ext2^, and
( 3 ) U-i Ri c (U?=i T,) U V(N, ε).
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Proof. We may suppose without loss of generality that each T;
is in general position with respect to N so that (U?=i ^ ) Π N is the
union of a finite collection of pairwise disjoint polygonal simple closed
curves. Consider a 2-simplex A of JV which intersects U?=i ^ a n d
let J be a component of (Uf=i ^ ) Π Δ with the property that if D is
the subdisk of Δ bounded by J, then D Π (U*=i T{) = J . Suppose J
lies on T, . Thicken D slightly to a polyhedral 3-cell C such that

( 1 ) Cc7(f l , f i) ,
( 2 ) C (Ί (U?=i τ ; ) is an annulus A in Γ5 Π Bd C,
( 3 ) C ΓΊ N = D,
( 4 ) D n Bd C - J, and

( 5 ) j s r n c = 0 .
Let e/x and J 2 be the boundary components of A and let D1 and J92

be the subdisks of Tά bounded by Jx and J2 respectively such that if
i — 1 or 2, then D{ f] A = Jίm Similarly, let Ώ[ and Dζ be the subdisks
of Bd C bounded by J1 and J2 respectively such that if i = 1 or 2,
then ΰ ; n A = J*. Let Γ^ = A U Z>ί and Th - J52 U J?;. We now
consider the following two cases.

Case 1. Int D c Int T3. In this case Tγ, Γ2, , Γ ^ , Γ i χ, Th,
Tj+1, •••, ΓΛ is a collection of pairwise disjoint polyhedral 2-spheres
satisfying all of the hypotheses of the Lemma and intersecting JV in
one less component than Tl9 T2, , Tn.

Case 2. Int D c Ext Ts. In this case either Th c Int Th or
Th c Int Th. We suppose that Th c Int Th. Since the 1-skeleton of
JV lies in Ext Td, either Bd Δ c Ext Th or Bd J c Int T, v We shall
only consider the case Bd A c Ext Th since the proof in the other
case in entirely analogous. Let ab be a polygonal arc from a point
a e Jx to a point be Δ — D such that αδ Π if = 0 , ab c F(ί?, ε), ώ f ] C =
{α}, and ab Π N = {&}. Now let c be a point of Bd Δ and let 6c be a
polygonal arc from 6 to c lying in A ~ D. Then αc = α& U be is a
polygonal arc from a e Th to CG Ext Th. Ordering ac from a to c,
let α! be the last point of ac lying in ϊ7^ and let b1 be the first point
of ac which follows aι and lies in Tj?. Then a1bί is a polygonal arc
from ax e Th to α2 6 T i 2 which spans the annular region between Th

and Th. Now push afa slightly off A so that the adjusted arc, which
we denote by a[b[, fails to intersect JV' U K and lies in V(Δ, ε). Since
the 2-spheres Tu T2y , Tn have pairwise disjoint interiors, a[b[ fails to
intersect \Jf t T{ except in its end points. As in the first paragraph of
the proof of Theorem 1, we use Th, Th, and a[b[ to construct a polyhedral
2-sphere T) such that K ΓΊ Int T] = if n (Int Γy), T; Π (U?=i Ti - Td) =
0 , r j n - Z V = ( T y i U T y ) n i V , and Int T i χ c E x t Γ;. Now Γ n Γa, •••,
Γi-i, Γj, Γy+i, •••, Γ» is a collection of pairwise disjoint polyhedral
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2-spheres satisfying all of the hypotheses of the Lemma and inter-
secting N in one less component than Tly T2, , Tn.

By the above two cases, we may inductively eliminate all com-
ponents of (U?=i T4) (Ί N to obtain a collection of pairwise disjoint
polyhedral 2-spheres Ru R2, , Rm satisfying conditions (l)-(3) of the
conclusion of Lemma 1.

The following corollary is a special case of Theorem 1 which gives
another characterization of tame compact O-dimensional subsets of E\
For other characterizations see [5] and [7].

COROLLARY 1. Suppose K is a compact ^-dimensional subset of
E\ Then K is tame if and only if for each polygonal simple closed
curve J CLE% — K, there is a 2-sphere separating K and J.

Bing [2] has given an example of a wild compact O-dimensional
subset K of Ed and a polygonal simple closed curve JaE* — K such
that, if peK, there is no 2-sphere in E* — K whose interior contains
p and whose exterior contains J. This example suggests the following
result, which is an improvement on Theorem 1.

THEOREM 2. Suppose KdE3 is compact and fails to separate
E%. Then K is definable by cubes if and only if for each point
peK and each polygonal simple closed curve J a Ez — K, there is a
2-sphere lying in Ez — K separating p and J.

Proof. As in the case of Theorem 1, we consider only the "if"
part of the proof. Let J be a polygonal simple closed curve in
E* — K. For each peK, let Sp be a polyhedral 2-sphere lying in
E* — K which separates p and J. By the first paragraph of the
proof of Theorem 1 there is no loss of generality in supposing that
p 6 Int Sp and J c Ext Sp. By compactness of K there is a finite
collection Slt S2y •••,£„ of such 2-spheres such that Ka [Jf^ Int S{.
Now by Lemma 2 below, applied to Sx and S2, there is a finite collec-
tion S[, S'2f ' — ,S'm of pairwise disjoint polyhedral 2-spheres with
pairwise disjoint interiors such that K Π (Ui=i I n ^ S*) c UίU I n ^ Si and
J lies in each Ext Si. Another application of Lemma 2 to the collec-
tion S[, S'2, -- ,S'm and S3 yields a finite collection S[', S", , S" of
pairwise disjoint polyhedral 2-spheres with pairwise disjoint interiors
such that K n ( U U I n t &) c U*-i I n* S" and / lies in each Ext S'/. Con-
tinuing in this manner we finally obtain a collection JBlf JB8> , Rj of
pairwise disjoint polyhedral 2-spheres with pairwise disjoint interiors
such that K c Uί=i I n t R% and / lies in each Ext Riu Running polygonal
arcs lying in E* — J between various members of the collection Ru R2,
• , Rj and using (once again) the idea of the first paragraph of the
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proof of Theorem 1, we construct a polyhedral 2-sphere S such that
and J c E x t S . By Theorem 1, if is definable by cubes.

LEMMA 2. Suppose Tu T2, , Tn is a collection of pairwise
disjoint polyhedral 2-spheres with pairwise disjoint interiors, K is
a compact set that lies in (J?=1Int T{, N is a polyhedral 2-sphere in
E3 — K, L is a compact set that lies in Ext AT and each Ext Tiy and
ε > 0. Then there is a collection Ru Ru , Rm of pairwise disjoint
polyhedral 2-spheres with pairwise disjoint interiors such that

(1) K c:\jT~ilrARi,

(2) ivn(ur=i^)- 0,
(3) L lies in each Extjβ;, and
( 4) UΓ=! Ri c (ULi Tt) U V(N, e).

Proof. The proof of Lemma 2 only differs slightly from that of
Lemma 1. There is no difficulty in carrying over the proof through
Case 1, so we begin here at Case 2, where the notation has been
carried over directly.

First consider the case where Th Π N = 0 = Th f] N. In this
case Th c Int N and Th c Ext N. The cube C has been constructed
so as to miss L, so L c E x t TJ2. We then obtain a collection of
pairwise disjoint polyhedral 2-spheres satisfying the conclusions of
Lemma 2 by replacing Tά by TJ2 and throwing out any Γ/s lying in
Int Th.

Now suppose Th Π N Φ 0 . The proof in the case Th Π N Φ 0
is analogous. Let ab be a polygonal arc from aeJx to beN — D
such that ab Π (JKΓU L) = 0 , aba V(D, e), α6ΓΊ C = {α}, and abf]N = {6}.
Now let c be a point of Γi2 Π iV and complete the proof as in the
proof of Lemma 1.

COROLLARY 2. Suppose K is a compact ^-dimensional subset of
E3. Then K is tame if and only if for each point pe K and each
polygonal simple closed curve JaEz — K, there is a 2-sphere lying
in E3 — K separating p from J.

The following theorem is a slight improvement of Theorem 4 of
[10] and will be proved here using Theorem 1.

THEOREM 3. Suppose LczK are compact subsets of Ez such that
K is definable by cubes, L fails to separate Es, and K — L is at
most 1-dimensional. Then L is definable by cubes.

Proof. Let / b e a polygonal simple closed curve in Ez — L. By
Lemma 3 below there is a homeomorphism h of E3 onto itself which
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is fixed on L and moves J onto a polygonal simple closed curve in
E3 — K. By Theorem 1 there is a 2-sphere S in E3 — K separating
K and h(J). Then h~\S) is a 2-sphere in E3 — L separating L and
J. By Theorem 1 L is definable by cubes.

LEMMA 3. Under the hypotheses of Theorem 3, if J is a polygonal
simple closed curve in Es — L, then there is a homeomorphism h of
E3 onto itself which is fixed on L and moves J onto a polygonal
simple closed curve in E3 — K.

Proof. Since K — L is at most 1-dimensional, there is no problem
in moving the vertices of J into E3 — K. We suppose that this has
been done. We now show how to move J into E3 — K moving one
simplex at a time.

Let 7 be a 1-simplex of J with end points a and b. Then / spans
a polyhedral solid cylinder C with bases A and A such that

(1) a e Int A and b e Int D2,
(2) ( A u A ) Π J = { α , δ } ,
(3) CΠJ=I,
(4) / is an unknotted chord of C, and
(5) CΠL= 0.

Denote the annulus Bd C — (Int (D1 U A)) by A. We now show that
no component of K Π A separates Bd A from Bd D2 in A.

Since C Π K is at most 1-dimensional, there is an arc ax from a
to b such that Int at c Int C and K Π cCi = 0 . Similarly there is an
arc α:2 from α to 6 such that Int α2 c Ext C and ϋΓ D &2 = 0 . Now
let JV be a component of K f) A, and suppose JV separates Bd Όι from
Bd D2 in A. Since if is definable by cubes there is a 3-cell E such
that NalntE and ^ U f l j C Ext i?. Using the fact that N separates
Bd A from Bd D2 in A, one can construct a simple closed curve Jr in
A Π Int £7 such that J ' separates Bd A from Bd A in A. Since
J' c Int J5 and at U #2 c Ext £7, J ' can be shrunk to a point in E3 —
(αx U <*2). But this is a contradiction, since J' and αx U a2 are linked.
Hence, no component oί K Π A separates Bd A from Bd A in A.

By the above paragraph, there is a polygonal arc / ' from a to b
in Bd C — K. Since / is an unknotted chord of C and C f] L = 0 , 1
can be pushed onto Γ by a space homeomorphism without moving
points of L or J — I. Adjusting each 1-simplex of J in turn, we
move J into E3 — K.

The following two results are special cases of Theorem 3.

COROLLARY 3. Every compact ^-dimensional subset of a cellular
l'dimensional continuum in E3 is tame.
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COROLLARY 4. If M is a continuum and A is a 1-dimensional
set such that A U M is cellular, then M is cellular.

The following result is an application of Theorem 3 and the result
of [6]. Here we use G to denote a monotone upper semicontinuous
decomposition of E3, H to denote the union of the nondegenerate
elements of G and P to denote the natural map from E* onto the
quotient space EzjG. For definitions see [1],

COROLLARY 5. Using the above notation, suppose that P(C1H)
is a compact O-dimensional subset of E*/G and that there is a 1-
dimensional set AaEz such that A U Cl H is cellular. Then G is
a cellular decomposition and Ed/G is homeomorphic to E*.

3* Remarks. In Theorem 3 it is necessary that K — L be at
most 1-dimensional. One can embed, for example, a noncellular arc
in a cellular, and in fact polyhedral, book with one page. Every
compact O-dimensional subset of a 2-dimensional polyhedron is tame,
but there are wild compact O-dimensional sets which lie on a 2-dimen-
sional cellular continuum.

I wish to thank Professors W. R. Alford and K. W. Kwun for
interesting conversations held during the preparation of this paper.
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