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A GENERAL CORRESPONDENCE BETWEEN DUAL
MINIMAX PROBLEMS AND CONVEX PROGRAMS

R. TYRRELL ROCKAFELLAR

The Kuhn-Tucker theory of Lagrange multipliers centers
on a one-to-one correspondence between nonlinear programs
and minimax problems. This correspondence has been extend-
ed by Dantzig, Eisenberg and Cottle to one in which every
minimax problem of a certain type gives rise to a pair of non-
linear programs dual to each other. The aim here is to show
how, by forming conjugates of convex functions and saddle-
functions (i.e. functions of two vector arguments which are
convex in one argument and concave in the other), one can
set up a more symmetric correspondence with even stronger
duality properties. The correspondence concerns problems in
quartets, each quartet being comprised of a dual pair of convex
and concave programs and a dual pair of minimax problems.
The whole quartet can be generated directly from any one of
its members.

Our results grow out of a rather surprising fact, which we establish
as Theorem 1: saddle-functions are really just convex functions ip
which FenchePs conjugate operation has only been partly applied, i.e.
only in some of the variables. In fact, there is a canonical one-to-
one correspondence between the (minimax) equivalence classes of closed
convex-concave functions K on Rm x Rn and the closed convex func-
tions F on Rm+n. (The values of these functions are allowed to be,
not only real numbers, but + co and — oo, so that, as explained in
[8] and [9], there is no loss of generality in considering only functions
which are everywhere defined on the given space.) The closed convex
functions F on Rm+n can be paired with the closed concave functions
G on Rm+n by reversing signs in the conjugacy correspondence for
convex functions. At the same time, the equivalence classes of closed
convex-concave functions K on Rm x Rn can be paired with the equiva-
lence classes of closed concave-convex functions J or Rm x Rn by
changing certain signs in the conjugacy correspondence for saddle-
functions in [8].

Given four functions F, G, K, J corresponding to each other in this
fashion we consider the problems

( I ) minimize F(x, v) subject to x ^ 0, v >̂ 0;
( II) maximize G(u, y) subject to u ;> 0, y ;> 0;
(III) minimaximize K(x, y) subject to x ^ 0, y ^ 0;
(IV) maximinimize J(u> v) subject to u ^ 0, v ^ 0.

(The formal definition of these problems is given in § 5. In (III) one
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minimizes in x and maximizes in y, whence "minimaximize." In (IV)
one maximizes in u and minimizes in v.)

A concept of "stable solution" is introduced for these problems.
We prove that, under very mild restrictions, all solutions are stable.
The most interesting result is a double duality theorem: if any of the
four problems has a stable solution, then all four have stable solutions
and the four extrema are equal. Other theorems give criteria for the
existence of solutions and characterize these solutions in terms of
subdifferentials and complementary slackness.

It should be emphasized that constraints other than nonnegativity
may be incorporated into the problems above by the device of infinity
values. For example, let fo,f19 •••,/« be finite convex functions on
Rm, and for v = (μu , μj e Rm let

Ux) if fax) + μ, ^ 0 for i = 1, . . . , m,

+ co if not.

Then F is a closed convex function on Rm+n, and minimizing F(x, v)
subject to x ;> 0 and v ^ 0 as in (I) amounts to minimizing fo(x) sub-
ject to the constraints x ^ 0,/;(#) ^ 0, i = 1, , m.

The nonnegativity conditions in our problems involve no real loss
of generality, of course. As is well known, a free variable can always
be expressed as a difference of two nonnegative variables, just as a
linear equation can be expressed as a pair of weak linear inequalities,
and these situations are dual to each other. If, for example, one
wants to remove the nonnegativity constraint from the first component
of x in (I), one has to remove the nonnegativity constraint likewise
from the first component of x in (III) and at the same time strengthen
the constraint on the first component of u (the variable dual to the
first component of x in the sense of the complementary slackness
conditions in Theorem 4) from ^0 to =0 in (II) and (IV). The
theorems below are then applicable to the modified problems. This
follows exactly as in the theory of linear programs.

Although in this paper we discuss only a four-way correspondence,
a more extensive correspondence is actually implied. In problem (I),
we have a function F on a space i?Λr, where each vector of RN is
decomposed into a component x e Rm and a component v e Rn. Now
there is nothing unique about this decomposition: we could just as
easily partition the N canonical coordinates in RN in some other way,
so that each vector is decomposed into a component xf e Rm' and vr e Rn',
mf + n' = N. This would have no effect on the dual problem (II), but
it would lead to entirely different minimax problems (III) and (IV).
Thus what we really have is a theory which represents (I) and (II) in
a finite number of different ways as a dual pair of minimax problems.
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We shall show elsewhere that such representations are closely related
to the "simplex tableaux" encountered in the pivotal theory of linear
and nonlinear programs.

2* Skew-conjugate functions. We begin with a quick review
of terminology. The main object is to set down various formulas
involving the "skew-conjugate" operation. This is the same as the
conjugate operation except for certain changes of sign, but it offers
so many notational advantages in this particular context that we feel
it warrants some explicit attention.

A convex function on / on Rm is, in our terminology, an every-
where-defined function / with values in the extended real interval
[—00, +00] such that

f (1 — X)x2) <̂  Xμt + (1 — X)μ2

whenever

fix,) ^ μxeR,f(x%) ^ μ2eR , 0 < λ < 1 .

The closure of such a function / is the function cl / defined by

(cl/)(#) = liminf/(z) (if / nowhere has the value - o o ) ,
(2.1)

(el/)(ft) = — oo for all x (if / has the value — oo somewhere) .

When cl/ = /, we say / is closed. In particular, c l/ is itself a closed
convex function (cf. [3]).

A function g is concave if — g is convex. The closure operation
for concave functions is of course defined by

(cl g)ix) = lim sup giz) (if g nowhere has the value + °°) ,
(2.2)

(cl g)(x) = + oo for all x (if g has the value + °° somewhere) .

Again, g is closed if cl g = #.
For any convex function / o n i£m, the function # defined by

(2.3) giu) — infx {fix) — <#, %)>} ,

where ζx, uy denotes the ordinary inner product of vectors x and u9

will be called the skew-conjugate of /. It is really just the negative
of the conjugate of / in [3] and [4]. Hence g is a closed concave
function and

(2.4) (cl f)(x) = sup* {giu) + <u, ̂ >} .

Dually, starting with any concave function g on Rm, the skew-conjugate
of g is the closed convex function / on Rm defined by
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(2.5) f{x) = sup% {g(u)

The skew-conjugate of / is then in turn cl g. In particular, formulas
(2.3) and (2.5) set up a one-to-one correspondence between the closed
convex functions / on Rm and the closed concave functions g on Rm.

An everywhere-defined extended-real-valued function K on Rm x Rn

is called a convex-concave saddle-function if K( , ?/) is a convex func-
tion on Rm for each T/, and K(x, •) is a concave function on Rn for
each x. We denote by c^ K the function constructed by closing K in
its first argument for each fixed value of the second argument, and
similarly cl2 K. Both c^ K and cl2 K are again convex-concave saddle-
functions, as we proved in [8]. The function F on Rm+n obtained by
taking the skew-conjugate of K in its concave argument, i.e.

(2.6) F(x, v) = sup, {K(x, y) + <v, y}} ,

will be called the convex parent of K. Dually, the concave parent G
of K is defined by applying the skew-conjugate operation to the convex
argument:

(2.7) G(u, y) = inf. {K(x, y) - <x, u)} .

Two saddle-functions are said to be (mίnimax) equivalent if they have
the same parent functions. A saddle-function K is closed if it is
equivalent to c\K and cl2iΓ. (This differs from the definition in [8],
but is equivalent to it by Corollary 2 to Theorem 1 in that paper.)
The situation for concave-convex saddle-functions is virtually the same
—the roles of the arguments are reversed.

As an important example [8] of an equivalence class of closed
saddle-functions, let K be any finite continuous convex-concave function
defined on A x J5, where A is a nonempty closed convex set in Rm and
B is a nonempty closed convex set in Rn. Define K and K by

K(x, y) =

K(x,y) =

(K(x, y) if x e A, y e B ,

cχD if x$A, yeB ,

oo if y £ B

'K(x,y) if xeA, yeB ,

- oo if xe Ay y $ B ,

oo if x$A .

The equivalence class consists of K and K and all the other convex-
concave extensions of K to Rm x Rn lying between K and K. In
particular, if A = iϋm and B = Rn then i£ is a closed saddle-function
and is the sole member of its equivalence class.

The parents F and G of a convex-concave saddle-function iΓ can
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be expressed in terms of the gradients of K in some cases. Suppose
that K is finite and differentiate everywhere on RmRn. Let V^x, y)
denote the gradient of K(',y) at x, and let V2K(x,y) denote the
gradient of K(x, •) at y. It can be seen that

F(x, v) = K(<c, y) - <V2K(x, y), y> for v. = - V2K(x, y) ,

G(u, y) = K(x, y) - <yxK(x9 y), x} for u = VxK{x, y) .

These gradient expressions are the basis of the duality theory in [2].
Given any closed convex-concave saddle-function K on Rm x Rn,

the functions

J(u, v) = inf, sup, {K(x, y) - <x, u>

J(w, v) = supy infβ

are closed concave-convex saddle-functions on Rm x Rn equivalent to
each other, and they depend only on the equivalence class of K, as
shown in [8]. Any function J in the class containing J and J will
be called a skew-conjugate of K. For such a /, the functions

K(x, y) - inf, sup. {J(w, v) + <u, x} <y v>}

K( ) i f {J( ) < >K(x, y) =i supu inf, {J(u, v)

belong in turn to the equivalence class containing K. In this way,
we get a skew-conjugate correspondence between the closed convex-
concave saddle-functions on Rm x Rn and the closed concave-convex
saddle-functions on Rm x Rn which is one-to-one up to equivalence.

3* Four-way correspondence* It will be shown in this section
that each equivalence class of closed saddle-functions on Rm x Rn is
generated by a closed convex function on Rm+n. The first assertion of
Lemma 1 has already been noted by Moreau [6].

LEMMA 1. Let K be any saddle-function on Rm x Rn, let F be
its convex parent, and let G be its concave parent. Then F is a
convex function on R7n+n and G is a concave function on Rm+n.
Moreover, K is closed if and only if F and G are skew-conjugate to
each other.

Proof. We may assume K is convex-concave. By definition (2.6),
F is a supremum of convex functions on Rm+n, one for each given
value of y. The convexity of F is an easy consequence of this. One
proves in the same way that G is concave. Now, since F(x, •) is the
skew-conjugate of K(x, •) for each fixed x, the skew-conjugate of
F(x, •) is in turn the closure of K(x, •). Thus
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(3.1) (cl2 K)(x, y) = inf, {F(x, v) - ζy, v>}

(3.2) F(x, v) = sup, {cl2 K(x, y) + <y, j/>} .

For parallel reasons,

(3.3) (diK)(x, y) = supM {G(u, y) + <u, x»

(3.4) G(u, y) = inf. {clx K(x, y) - <x, u>} .

According to (3.2) and (3.4), F is the convex parent of cl2i£ and G is
the concave parent of cli K, always. Thus K is closed if and only if
F is the convex parent of c^ K and G is the concave parent of cl. K.
That would mean by (3.1) and (3.3) that

F(x, v) = sup^ {supw {G(u, y) + <u, x>} + <y, i/>} ,

G(u, y) = inf. {inf, {F(x, v) - <y, v>} - <α?, u>} .

But this says that F and G are skew-conjugate as functions on Rm+n.

LEMMA 2. Let F and G be functions on Rm+n skew-conjugate to
each other, where F is convex and G is concave. Let

K{x,y) = inf9{F(x,v) - <y,v>} ,

K{x, y) = supw {G(u, y) + <u, x» .

Then K and K are convex-concave saddle-functions on Rm x Rn having
F and G as parents (and hence K and K are in the same equiva-
lence class).

Proof. Since K(x, •) is the skew conjugate of the convex func-
tion F(x, •), it is concave. We must also prove for each y that K{ ,y)
is a convex function. In other words, given

(3.5) K(χl9 y) £ μt e R, K(x2, y) ^ μ2eR , 0 < λ < 1 ,

we must show that

(3.6) K(\x, + (1 - λ)x2, y) £ Xfr + (1 - X)μ2 .

For an arbitrary ε > 0, (3.5) and the definition of K imply the existence
of some v1 and v2 in Rn such that

μ1 + ε ^ F(xlf v,) - <>, ̂ > ,

μ2 + e ^ ^ ( ^ 2 , v2) - O , v2> .

Now F is convex, so it follows that

+ (1 - λ)[/it + ε + O , v2>]

+ (1 - λ)a?2, λVi + (1 - X)v2) .
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Hence, for v — \vt + (1 — λ)v2,

Since ε was arbitrary, this implies (3.6). Thus K is a saddle-function.
As the skew-conjugate of G, F is closed. In particular, F(x, •) is
closed for each x, and hence it is in turn the skew-conjugate of its
skew-conjugate K(x, ). Therefore F is the convex parent of K. The
concave parent of K, on the other hand, is given by

inf. {K(x, y) - <», μ>} = inf.

which is just G(u, y). The proof for K is analogous.
Lemmas 1 and 2 imply that every F and G skew-conjugate to

each other on Rm+n are the parents of a unique equivalence class of
closed convex-concave saddle-functions K on Rm x jβ\ But the same
arguments must work for concave-convex saddle-functions, too. Speci-
fically, suppose F and G are the convex and concave parents of the
closed convex-concave saddle-function K. Then, as in Lemma 2, the
functions

J(u, v) = inf

J(u, v) -

will be closed concave-convex saddle-functions on Rm x Rn having F
and G as parents. Substituting (2.6) and (2.7), we see that J and J
are the skew-conjugates of K defined in (2.8). This proves the follow-
ing theorem.

THEOREM 1. There is a canonical four-way one-to-one corres-
pondence between the closed convex functions F on Rm+n, the closed
concave functions G on Rm+n, the (equivalence classes of) closed convex-
concave saddle-functions K on Rm x Rn and the (equivalence classes
of) closed concave-convex saddle functions J on Rm x Rn. The relation-
ships in this correspondence are that F and G are skew-conjugate to
each other, K and J are skew-conjugate to each other, and F and G
are the parents of K and J.

4* Effective domains and subdifϊerentials* Henceforth we as-
sume that F, G, K and J are four functions corresponding to each other
in the manner described in Theorem 1. We shall also assume these
functions are proper, i.e. we exclude the case in Theorem 1 where all
four functions are identically + co and the case where all four are
— oo. Then the sets

dom F = {(a?, v) \ F(x, v) < + oo} ,

dom G = {(u, y) \ G(u, y) > - oo}.
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are nonempty and convex in Rm+n. They are called the effective
domains of F and G. The restriction of F to domF is a finite
convex function in the ordinary sense. The effective domain of K is
defined by

dom K — don^ K x dom2 K

where

! K — {x I K(x, y) < -{- oo for all y) ,

dom2 K = {y \ K(x, y) > — oo for all x) .

The latter are nonempty convex sets. It is shown in [8] that, for
each y e dom2 K, the effective domain of the convex function K( ,y)
lies between don^ K and its closure. Likewise for the concave func-
tions K(x, •)• The restriction of K to the relative interior of dom if
is a so-called relatively open saddle-element (the kernel of K) which
completely determines the minimax equivalence class containing K.
The effective domain of J is similarly defined by

dom J — dom! J x dom2 J

where

^ J = {n\ J(u, v) > — oo for all v} ,

dom2 J — {v I J(w, v) > + oo for all u}.

Since these effective domains enter into the hypotheses of two of our
later theorems, it is helpful to know the following result about their
relationship.

LEMMA 3.

dom2 K = {x I (x, v) G dom F for some v} ,

dom2 J — {v I (x, v) G dom F for some x) ,

άoraι J = {u | (u, y) e dom G for some y} ,

dom2 K — {y \ (u, y) e dom G for some u) .

Proof. Since F(x, •) is the skew-conjugate of the convex function
K(x, •)> it is identically +oo if and only if K(x, y) = + oo for some y.
This fact is equivalent to the formula for dom! K. The other formulas
can be established in the same way.

There is also a striking relationship between the subdifferentials of
F, (?, K and J which will be at the heart of our programming theory.
These subdifferentials are most easily defined by first considering the



DUAL MINIMAX PROBLEMS AND CONVEX PROGRAMS 605

case of a convex function / on Rm. A vector u is called a subgradient
of / at x if

(4.1) f(z) ^ f(x) + <z - x, uy for all z .

The set of these is a closed convex subset of Rm denoted by df(x).
The map x —* df(x) is the subdifferential of /. If f(x) is finite, the
directional derivative

(4.2) f'(x; z) - lim [f(x + λz) - f(x)]/X
no

exists for all z e Rm and is a convex function of 2. One has u e df(x)
if and only if

(4.3) f'(x; z) ^ <u, z} for all z ,

In particular, if / is differentiate in the ordinary sense at x, then
df(x) consists of just one vector, the ordinary gradient V/(x). The
situation for concave functions is the same, except that the inequalities
need to be reversed in (4.1) and (4.3). (For more information about
subdifferentials, we refer the reader to the bibliography in [9].) The
meaning of dF(x;v) and dG(u,y) is now clear, since F and G are
convex and concave functions on Rm+n. The subdifferential of K is
defined by

dK(x, y) = dJSΓία?, y) x dtK(x, y)

where, for each y eRn,d1K(x,y) consists of the subgradients in Rm of
the convex function K( ,y) at x, and so forth. One defines dj(u,v)
in the same way.

LEMMA 4. The following conditions on a set of four vectors x,
y^u^v, are equivalent:

(a) (u,y)eθF(x,v),
(b) (-a?, -v)edG(u,y),
(c) (u, -v)edK(x,y),
(d) (-x,y)edJ(u,v).

These conditions imply that the four values F(xy v), G(u, y), K{x, y),
J(u, v), are finite.

Proof. If / and g are convex a,nd concave on Rm, skew-conjugate
to each other, and not identically + °° or — co, then the three condi-
tions

(4.4) u e θ/(α?), -xe dg(u), f(x) - g(u) ^ <x, uy ,

are known to be equivalent and to imply the finiteness of f(x) and
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g(u). One can quickly verify this using the definition of the skew-
conjugate correspondence. Hence (a) and (b) are equivalent and imply
the finiteness of F(x, v) and G(u, y). We next use the same basic fact
to show (c) implies (a) and (b). By definition, (c) means that u e d^x, y)
and — v eθ2K(x, y), which itself means

K(z, y) ^ K(x, y) + <z - x, u> for all z ,

K(x, w) ^ K{x, y) + ζw — y, —vy for all w .

We can write this equivalently as

K(x, y) - <x, u> ^ G(u, y) ,

K(x, y) + <y, v> ^ F(x, v) ,

because F and G, being the parents of K, are given by (2.6) and (2.7).
Of course, then

(4.6) F(x, v) - G(u, y) ^ <x, u} + ζy, v}

so that (a) and (b) hold by the equivalences in (4.4). The finiteness
of K(x, y) also follows from this and (4.5). Now suppose conversely
that (a) and (b) hold. In particular, y is a subgradient of F(x, •) at
v, and the closed convex function F(x, •) is not identically +oo or
— oo. The skew-conjugate of F(xf •) is c\2K(x, •), so

F(x, v) - cl2 K(x, y) ^ <y, v> ,

again by the equivalence of the conditions in (4.4). Likewise

cli K(x, y) - G(u, y) ^ <x, u} .

These two inequalities imply (4.5), which we have shown to be equiv-
alent to (c), because

cli K(x, y) <: K(x, y) ^ cl2 K(x, y) .

The equivalence of (d) with (a) and (b) can be proved in the same way.

5* The four programming problems* The four problems intro-
duced in § 1 can be expressed more specifically as follows.

( I ) Determine x ^ 0 and v ^ 0 such that F(x, v) is finite and
F(x, v) ^ F(x, v) for all x ^ 0 and v ^ 0 .

( I I ) Determine ΰ ^ 0 and y ^ 0 such that (?(ΰ, y) is finite and
G(u, y) ^ G(ΰ, y) for all u ^ 0 and y ^ 0.

(III) Determine x ^> 0 and y ^ 0 such that K(x, y) is finite and
K(x, y) ^ K(x, y) ^ K(x, y) for all x ^ 0 and y ^ 0.

(IV) Determine ΰ ^ 0 and ^7^0 such that J(^, v) is finite and
, v) ^ J(^, v) ^ J(ΰ, v) for all u ^ 0 and v ^ 0.
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Naturally, a pair (x, v) of the type described in (I) is called a
solution to (I). The real number F(x, v) is then denoted by "min (I)".
Similarly for (II), (III) and (IV). Note that we do not speak of solu-
tions unless the extrema are finite.

We shall be interested mainly in what we call "stable" solutions.
These are defined as follows. First consider the notationally simpler
case of a convex function / on Rm. Let x ^ 0 be a point where / is
finite, and let

(5.1) M = {\{x - x) \ λ ^ 0, x ^ 0} .

The infimum of / subject to x i> 0 is achieved at x if and only if the
directional derivative function satisfies

(5.2) f'(g; z) ^ 0 for all z e M .

Now it can happen in certain peculiar situations that (5.2) holds, and
yet

(5.3) inf f'(x; w + z) — — oo for some w^M.
zeM

Then we say that the infimum is achieved unstably at x (otherwise:
stably). This terminology is suggested by the fact that, if (5.2) and
(5.3) hold, the infimum of /subject to x }> εw is a function of ε whose
righthand derivative at ε — 0 is — oo. In other words, the infimum
would drop off at an initially infinite rate if the nonnegativity con-
straint on x were relaxed slightly. We shall not elaborate this here;
a similar stability notion has been developed in detail in [9].

We speak of a solution (x,v) to (I) as stable, if the infimum of
F(x, v) subject to x ^ 0, v ^ 0 is achieved stably at (x, v) in the sense
just defined. Stable solutions to (II), where G is concave instead of
convex, are defined in the obviously analogous manner. Next consider
(III). A solution (x, y) involves K{%, y) having a minimum at x sub-
ject to x ^ 0 and K(x, y) having a maximum at y subject to y :> 0.
We therefore say (x, y) is a stable solution to (III) if these two sepa-
rate extrema are stably achieved. The definition for (IV) is practically
the same.

The following theorem gives elementary criteria for stability of
solutions. (The relative interior of a convex set C is, of course, the
interior of C with respect to its affine hull, the intersection of all
subspace translates containing C.)

THEOREM 2. // the relative interior of dom F contains at least
one (XyV) ̂  0, then all solutions to (I) (if they exist) are stable. If
the relative interior of dom G contains at least one (uyy) >̂ 0, then
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all solutions to (II) are stable. If the relative interior of dom K
contains at least one (x, y) ^ 0, then all solutions to (III) are stable.
If the relative interior of dom J contains at least one (u, v) J> 0, then
all solutions to (IV) are stable.

Proof. We start out again with a convex function / on Rm and
its effective domain dom/ = {x \f(x) < + °°}. Suppose that dom/
contains some x :> 0 in its relative interior. Suppose also that the
infimum of / subject to x ^ 0 is finite and achieved at x. Then / is
certainly not identically + co, nor can it have the value — oo any-
where, since it is known that a convex function which takes on — oo
must have this value throughout the relative interior of its effective
domain. Thus / is a proper convex function in the sense of [7], so
that Theorem 2 of that paper can be applied. According to this
theorem, there exists some ΰ ;> 0 such that

inf/(a) = g(ΰ)

where g is the skew-conjugate of /. Since <(#, uy ^ 0, then

(5.4) f(x) = inf. {f(x) - <x, ΰ>} £ inf. {f(x) - <x - x, ΰ>} .

This says that ΰ is a subgradient of / at x.. Taking x = x in (5.4),
we also see that ζx, u} = 0, since both x and ΰ are nonnegative.
Thus <(z, u} ^ 0 for all ze M, where M is the convex cone defined in
(5.1). We therefore have for any w

(5.5) inf f'(x; w + z) ^ inf ζw + z,ΰ,y = <(w, u} > — oo .
zeM zeM

Thus the infimum is achieved stably at x, as we wanted to prove
The assertion of the theorem about (I) differs only in notation from
the fact just proved. The assertion about (II) follows analogously.
A double application is needed to take care of (III). The relative
interior of dom K contains a nonnegative element if and only if some
x :> 0 belongs to the relative interior of dom! K and some y ^ 0 belongs
to the relative interior of dom2 K. Suppose (x, y) is a solution to (III).
The relative interior of the effective domain of the convex function
K(-,y) is the same as the relative interior of domx K, as shown in [8].
Taking f(x) = K(x, y), we may conclude therefore that the infimum
of K(x, y) subject to x >̂ 0 is stably achieved at x. Likewise, the
supremum of K(x, y) subject to y ^ 0 is stably achieved at y. But
this means that (x, y) is a stable solution to (III). The argument for
(IV) is virtually the same.

6. Programming theorems* We can now establish our main
results, a double duality theorem, a characterization theorem, and an
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existence theorem. The first two will have joint proof.

THEOREM 3. If any one of the problems (I), (II), (III), (IV), has
a stable solution, then all four problems have stable solutions and

(6.1) min (I) = max (II) = minimax (III) = maximin (IV) .

THEOREM 4. The following conditions on a set of four vectors
x, y,ΰ ,v, are equivalent.

(a) (x, v) is a stable solution to (I) and (u,y) is a stable solu-
tion to (II).

(b) (x,y) is a stable solution to (III) and (u,v) is a stable
solution to (IV).

(c) x,y,u,v, satisfy one of the equivalent subdifferential
conditions in Lemma 4, as well as the complementary slackness
conditions:

(6.2) x ^ 0, u ^ 0, <x, ΰ} = 0, y ^ 0, v ^ 0, ζy, v} = 0 .

Proof. Once more consider a convex function / on Rm having a
finite infimum subject to x ^ 0. We shall show that this is achieved
stably at x ^ 0 if and only if there exists some ΰ ^ 0 such that
u e df(x) and (x, iζ> — 0. To start with, let us suppose that x and u
have the latter properties. Then ζz,u}^0 for all zeM(the set in
(5.1)), and (5.5) holds for every w. Thus the minimum is stably
achieved at x by the argument already used in the proof of Theorem
2. Now suppose conversely that the infimum is achieved stably at x.
The function h defined by

(6.3) h(w) = inf f'(x;w + z)
zeM

then nowhere has the value — oo. Furthermore, h is a convex func-
tion on Rm. This follows from the fact that /'(#; •) is a convex
function and the set M is convex. Namely, given

h{wύ <£ μ1 e R, h(w2) ^ μ 2 e R , 0 < X < l ,

and any ε > 0 there exists zιeM and z2eM such t h a t

μi + ε ;> f'(x\ w, + zx) and μ2 + ε ^ f'(x; w2 + z2) .

Then we have

\μt + (1 - λ)^2 + ε ^ f'(x; X(wt + zx) + (1 - λ)(w2 + z2)) .

Since λ^ + (1 — λ)z2 e M and ε was arbitrary, we conclude

^ h(Xwt + (1 - X)w2) ,
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thereby completing the proof that h is convex. Fenchel showed in
[3] (in the other notation) that a convex function which nowhere has
the value — ̂  majorizes at least one (finite) affine function. Applied
to the case at hand, this means there exists some ΰeRm and aeR
such that

(6.4) a + ζΰ, wy ^ h(w) ^ f'(%; w + z) for every z e M and w .

Taking w = — z in (6.4), we see that <ΰ, z) ^ 0 for every zeM.
Hence ΰ ^ 0 and <Ίr, ΰy = 0. Taking z — 0 in (6.4), we may also
deduce at once that ΰedf(x). This finishes the demonstration of the
stability condition stated at the outset of the proof. In the context
of (I), the condition says that (x, v) is a stable solution if and only
if (6.2) is satisfied for some (ΰ, y) e dF(x, v). (Here we are also making
use of the fact that, by Lemma 4, the existence of a subgradient
{u, y) implies F(x, v) is finite.) When the stability condition is applied
in like manner to the other three problems, we get the following
characterizations. In (II), (ΰ, y) is a stable solution if and only if (6.2)
is satisfied by some ( — x,—v)edG(ύ,y). In (III), (x, y) is a stable
solution if and only if (6.2) is satisfied by some (u, —v)edK(x,y).
And in (IV), (ΰ, v) is a stable solution if and only if (6.2) is satisfied
by some ( — x,y)e dJ{ΰ, v). By virtue of the equivalences in Lemma 4,
these characterizations prove Theorem 4, and all of Theorem 3 except
(6.1). In the proof of Lemma 4, however, it was shown that the four
equivalent subdifferential conditions on x,y,u, v, imply

(6.5) K(x, y) - <ic, ΰy ^ G(ΰ, y) and K(x, y) + <y, vy ^ F(x, v) .

In the same way they imply

(6.6) J(u, v) + ζu, %y ̂  F(x, v) and J(ΰ, v) - ζy, vy ^ G(ΰ, y) .

On the other hand, we have

(6.7) F(x, v) - G(ΰ, y) ^ ζx, ΰy + <v, yy

by definition of the skew-conjugate correspondence. Now <(x, ΰy = 0
and <37, vy = 0 for stable solutions according to (6.2), so when (6.5),
(6.6) and (6.7) are put together they yield

F(x, v) = G(ti, y) = K(x, y) = J(ΰ, v) .

This is (6.1), the desired conclusion.

THEOREM 5. // there exist vectors x ^ O , y ^0, u^O, v ^>0 such
that (x, v) belongs to the relative interior of dom F and (u, y) belongs
to the relative interior of domG, then stable solutions exist for (I),
(II), (III), (IV).



DUAL MINIMAX PROBLEMS AND CONVEX PROGRAMS 611

Proof. Since F and G are skew-conjugate to each other, the
hypothesis implies by Theorem 2 of [7] that (I) and (II) have solutions.
These solutions are stable by Theorem 2 of the present paper. Prob-
lems (III) and (IV) then also have stable solutions by Theorem 3.
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