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THEOREMS ON BREWER SUMS

S. F. ROBINSON

Let Vm(x, Q) be the polynomial determined by the recur-
rence relation

(1.1) Vm+2(χ, Q) = χ- Vm+i(χ, Q)~Q- Vm(χ, Q)

(m = 1, 2, •), Q an integer, with Vfa, Q) = x and Vz(x, Q) =
xz — 2Q. In a recent paper, B. W. Brewer has defined the sum

p - l

α=0

where χ(s) denotes the Legendre symbol (s/p) with p and odd
prime.

The purpose of this paper is to consider the evaluation of
A2n(ff) when n is odd. The principle result obtained is the
expression of A2n(Q) as the sum of χ(ζ>) Λn(l) and one half
the character sum ψ2e(l). ψze(l) can in turn be expressed in
terms of the Gaussian cyclotomic numbers (i, j). The values
of Λ6(Q) and Λ10(Q) follow immediately from this result utiliz-
ing values for Λ3(l) = Λz and Λ5(ϊ) = A5 computed by B. W.
Brewer and A. L. Whiteman.

2* T h e character sums Ωm{Q) and θm(Q) and Brewer's lemma*
Let p be an odd prime and λ a generating element of the multiplicative
group of GF(p2). Then Xp+1 = g is a primitive root of GF(p). Set
Q = gr = χr^+1\ 0 ^ r < p — 1. In order to facilitate the evaluation
of Λm(Q), Brewer defines the following two sums:

p~l
f) /Γ)\ V v Λ » ι ( p + l) i Γ)m>Λ ms{p + l)\

= Σ X(9ms + gnrg-m°)
8=1

and

(2.2)
V" 1 / ( t ( p — l ) + r ) I

Brewer relates the sums flw(Q) and θm(Q) to the sum yίm(Q) by the
equation [2, Lemma 2].

(2.3) 2Λm(Q) - 0m(Q) + Ωm(Q) .

(Compare also [1, Lemma 2] and [14, Lemma 1].)

The following theorem is fundamental [2, Th. 1].
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THEOREM 2.1. Let p be an odd prime, Am(Q) be defined as in
(1.2). If χ(Qf) = χ(Q) and Q' = n2Q (mod p), ίfcβw ΛW(Q') - χ(n)"Λm(Q),

3. The Jacobsthal sum* Closely related to the Brewer sum are
the character sums of Jacobsthal

(3.1) φe(n

and the related sum

(3.2) ψe(

We note

p - 1

P - l

p - l

w) = Σ x(he + ̂ )«

2 _ 2Q) = ψt(-2Q)> + χ(-2Q)

and

In general if m is even and βr a primitive root of

ΩJQ) = Σ Z ( Γ + Qwβf-ws)
(o.o) «=i

while if m is odd

ΩJQ) = Σ χ(fifms + Qmg~ms)
8=1

(3.4) s

The following results concerning Jacobsthal sums will be applied:
if p\x [10, Equation 3.8]

(3.5)

the reduction formula [10, Equation 3.9] and [7, Equation 6]

(3.6) φ.(n) + fe{n) = ψ2e{n)

and [7, Formula 10] if e is odd
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(3.7) ψu(n) = φ.(n) + X(n)-φ.(n')

where n n' = 1 (modp).

4* Cyclotomy* Let p be an odd prime and g a primitive root
of p. Let e be a divisor of p — 1, p — 1 = e-f. The cyclotomic number
of order e, (i, j) is the number of solutions of 1 + ges+i = # e ί + i (mod p),

If we write 2e/ — p — 1,

p-1

s=0

Σ

(1 g2es + 1 = g2et+a (mod p) a even
7(0 + 1) — sΛ ; I - 1 #2es + 1 = #2 e ί + α (mod p) a odd .

Thus in this case ψu{l) can be expressed in terms of the cyclotomic
numbers of order 2e

(4.1) ψ2e(l) = - ί - *Σ ( - l ) W ( O , i) .
2e *=o

In the theory of cyclotomy, the Jacobi sum and the related
Legrange resolvent play a fundamental role. In what follows we will
use some of the properties of the Jacobi sum.

Let β — exp(2πί/e), e / + 1 = p. The Jacobi sum is defined by
the equation

(4.2) ψ(βm βn) = Ύ\ βm inύa + ninύb
a+b=ί(τaoά p)

The following equalities for the Jacobi sum can be derived: [12,
Formula 2.4]

(4.3) ψ(β™, β") = ψ(β\ β™) - (-l)^ψ(β-m-\ βn) .

Placing n = 0 in (4.2) we have [12, Formula 2.5]

p - 2 m = 0
(4.4) t ( / S , /3) . , , _ . Λ

( - 1 1 <£ m ^ β — 1

and the important formula

(4.5) f (,Sm, £ ).<M8—, /5-w) = p

provided e does not divide m,n or m + n.
Since ^(/Sm, /3TC) is periodic in both m and n with respect to β, it

may be expanded into a double finite fourier series [11, Formula 2.6]
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(4.6) ψ(βm, β«) = {-l)m' Σ (h,
h,k=O

We may also write (4.6) in the inverted from [11, Formula 2.7]

(4.7) e\h,k)= Σ (-l)mff(βm, βn)β~mh~nk .

In (4.6) replace m by vn, where v is an integer, collecting the
exponents of β in the same residue class modulo e, we get an alternate
form of the finite fourier series expansion [11, Equation 2.8]

(4.8) ψ(βυn, βn) = ( - l)υnf Σ B(i, v)βni

where the fourier coefficients B(i, v) are the Dickson-Hurwitz sums

(4.9) B(i, v) = Σ (λ, i-vh) .
h=0

The inverted form of (4.8) is

(4.10) e-B(i, v) = Σ (-l)wo/r(/9^, βn)β~ni .

If e . / = - p _ i ? Whiteman [10, Formula 5.8] expresses the Jacobsthal
sum in terms of the cyclotomic function B(ί, v)

(4.11) eB(v,l) = |

( — 1 + ψe(4:gv) e even .

Thus if β'f— p — 1 with e odd, from (3.7) and (4.11) we can write

ψ2e(l) =(4.12) = 2 ( β . B ( i , l ) - ( p - l ) )

- 2β(JB(i, 1) - /)

where i is selected so that Agι = l(modp).

5* The evaluation of A2n(Q) for odd values of n. In this
section we will develop our principle result in the evaluation of A2n(Q)
for odd values of n. We will consider Ω2n(Q) and θ2n(Q) separately
and combine the results by use of equation (2.3).

THEOREM 5.1. // d is the g.c.d. of m and p + 1 and Q = λr(2)+1)

then

(5.1) φ(Q) = θd(Q^) .

Proof. This theorem is a direct result of the fact that if the
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g.c.d. of a and M is d, and {rly r2, , rM) is a complete residue system
modulo M, then the set (a ru a-r2, , α r^} contains the same elements
modulo ikf as the set {d r19d r2, •• ,<Z rJf}. Now if the g.c.d. of m
and p + 1 is d, then

= Σ
i=l
P+l

t=l

r/d))\

We note d < m unless p = — 1 (mod m). This exceptional case is
considered in the following two theorems.

THEOREM 5.2. Ifp = (4m) •/ - 1

(5.2) θm(Q) = θ2m{Q) - 0 .

Proof. {2m l, 2m 2, , 2m (p + l)/2m} has the same elements
as {2m l + 2m/, 2m 2 + 2m/, , 2m-(p + l/2m) + 2m/} modulo p + 1.
Also {m l, m 2, , m (p + l)/m} has the same elements modulo p + 1
as {m. 1 + 2m/, m 2 + 2m/, , m (p + 1/m) + 2m/}. Since
χ(λ(ί?2~1/2)) = - 1 when p = 3 (mod 4), we have

( 2 + ) /

Θ2ΛQ) = 2m Σ χ(λ2l"(<<"-1»+' ' + Q»-λ-*-(*ti.-«+r))
* = 1

-l\ (P+D/2»

i=l

and

p/

i

THEOREM 5.3. Ifp = (2/ + l)m - 1 with m = 2 (mod 4) and Q =

(5.3) 0m(Q) - ^

Proo/. Since now p Ξ 1 (mod 4), %^2-1/2) - 1. Let .F = 2/ + 1.
The set {m l , m 2, -. ,m (p + l)/m} U
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• , m-p + 1/m + mF/2} has the same elements as the set {m/2 l,
m/2 2, , m/2 2(p + l)/m} modulo p + 1. Thus

2 § *{Xmίi{P-l)+r) +

= _ V yA»/2(i(p-l)+2r) I

2 *=i

= KM).

THEOREM 5.4. // n is odd and p is an odd prime, then

(5.4) θ2n(Q) = Θ

Proof. lί p = — l(mod^), the result follows from Theorems 5.2
and 5.3. If p Ξ£ — l(modw), let the g.c.d. of n and p + 1 be d.
Then the g.c.d. of 2n and p + 1 is 2d and p = — l(modd). Thus

THEOREM 5.5. // n is odd and the g.c.d. of p — 1 and n is e,
then

(5.5) Ω2n(Q) = v,.(l) +

Proof. From equations (3.3), (3.4), and (3.6) we can write

β2M(Q) = t4*(Q2m) = ̂ (Q 2 ") + ίUQ ")

f ΛQ%n) + ΩM)

By equation (3.5) ψ2n(Qΐn) = χίQΓ ^ ί l ) = τMl) Now applying the
reasoning used in Theorem 5.1 with g a primitive root of p

(5.7)

The result now follows from (5.6) and (5.7).
We can now state the basic tool for the evaluation of A2n(Q)

when n is odd.
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Combining the results of Theorem 5.4 and 5.5 along with Equation
2.3, we have

THEOREM 5.6. Assume n is odd. Let e be the g.c.d. of n and
p — 1, then

(5.8) Atn(Q) = Λ(Q2) + Hu(l)

Applying Theorem 2.1 we can write

(5.9) A2n(Q) = χ(QM (i) + Hu(i).

COROLLARY. // n is an odd prime, p\Q and p ^ 1 (modw)

(5.10) ΛUQ) = χ(QM w ( i) - i .

6* The evaluation of Λ(Q) The values of Λ6 (Q) depend upon
the decompositions p — x2 + 4τ/2 and p = A2 + 3JB2 with the signs
selected so that x = 1 (mod 4), 2# = x (mod 3) and 4 Ξ 1 (mod 3).

p -φ. 1 (mod 6). By the corollary to Theorem 5.6,

Brewer [1] and Whiteman [14] have evaluated Λ3(l) — Az wi th t h e
results

p\= 3 (mod 4)

/fin Λ(Λ\-ry P Ξ 5 ( m o d 1 2 )
( 6 Λ ) M1)-)2x ^ 1 (mod 12) 3 | *

^-2x p = 1 (mod 12)

Thus we have for A&(Q) when p Έ£ 1 (mod 6).

(6.2, ^ . p f τ d l
( — 1 p Ξ 11 (mod 12)

p = 1 (mod 6). By Equation (5.9)

(6.3) Λ(Q) = Z ( Q M 3 + i t 6 ( l )

In this case (4.1) becomes

(6.4) ψ6(l) = JL £ {36(0, 2i) - 36(0, 2i + 1)} .

The values for the 36(o, h) can be determined from tables such as those
given by Hall [4, p. 981] or computed directly using Equation (4.7)
which becomes
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(6.5)

S. F. ROBINSON

36(0, A;) = Σ (-l)mfΉβm,βΛ)β-%h

where β — exp (2τri)/6. We can write

(6.6) = -j- Σ (-irw

The right side of (6.6) reduces to

— y
a "H
Ό w=0

(-i)mWfF)%(-iyt

, βs)

(6.7)

By (4.3) and (4.4) we have

(6.8)

Set

βι) = - A + i? ι/-3

Then f (/S5, /54) - -A - B\/^%.
Dickson [2, p. 410] proved if ψ{β\ βι) = - A +

A = 1 (mod 3). We can now write
^H, then

(6.9)
= - 2 -
- - 2 -

2J?ι/-3

and by (4.5)

(6.10) p = f (β\ βz) ψ(βδ, β4) = A2 + 3.B2.

Combining (6.1), (6.3), and (6.9) we have

- 1 - 2A p Ξ 7 (mod 12)

(6.11) Λ(Q) = • - 1 - 2ii + 2α? χ(Q) p = l (mod 12) 3 | x

-I- 2A-2x χ(Q) p = 1 (mod 12) 3|a?.

Using Equation (3.7), Equation (6.9) can be written in the form

(6.12) f6(l) = 2&(1) = - 2 - 4A .

Thus we have
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(6.13) ψd(l) - - 1 - 2A.

Which corresponds to the result of Von Schrutka [8].

7- The evaluation of Ao(Q)- If P = ^ + % 2 = ^ + 5^, Alϋ(Q)
is expressed as a linear combination of u, X, U, V and TF, where
X, ί7, F, and TΓ are solutions of the pair of diophuntine equations

16p - X 2 + 50J72 + 50F 2 + 125TF2 and XW = V2 - WV - U2.

Signs are selected so that 1 Ξ 1 (mod 5), and ^ΞΞ#(mod5) where
x = 1 (mod 4).

p Ξ£ 1 (mod 10). Brewer [2] has evaluated Jb(Q), Q = m2(modp),
with the results

f - 4 u χ(m) j> = 1 (mod20) 5 j x

(7.1) A(Q) - j 4%.χ(m) p Ξ 9 (mod 20) 5|aj

( 0 otherwise .

These results together with the corollary to Theorem 5.6 gives us for
p =£ 1 (mod 10)

[-1 + 4u-χ(Q) p = 9 (mod 20) 5Jfx
( 7 # 2 ) " l ϋ ^ ' ( - 1 otherwise.

p Ξ= 1 (mod 10). Say p = 10/ + 1. By Equation (5.9)

(7.3) Λo(Q) = χ(Q) Λ + i t i o ( l ) .

Whiteman [10] has expressed the cyclotomic numbers of order ten as
linear combinations of p, X, U, F, and W, where X, U, V, and W are
solutions of the pair of diophantine equations 16p = X 2 4- 50 ί72 -f
50 F 2 + 125 W2 and XW ^ V2 - WV ~-U2 with X - 1 (mod 5). However,
rather than evaluating ψm(l) directly from the cyclotomic numbers as
was done with ^6(1) in the case of J6(Q), it is more expeditions to
use (4.12). Thus (7.3) becomes

(7.4) A10(Q) - χ(Q) Λ(l) + 5(2?(i, 1) - 2/)

where i is selected so that Agι = 1 (mod p). Let gr = 2 (mod p) then
#2T = 4 (mod p). Thus i is selected so that 2r + i == 0 (mod p — 1).
Since (5(i, 1) is periodic with respect to e, we may write i =
— 2r(modβ). Whiteman [11, p. 101] gives the following values for
the B(i, 1):

55(0,1) - p - 2 + X

205(1,1) - 4p - 8 - X + 10C7 + 20F + 25TΓ

(7.5) 20J5(2,1) = 4p - 8 - X + 20ί7 - 10F - 25TΓ

205(3,1) - 4p - 8 - X - 20ί7 + 10F - 25W

205(4,1) = 4p - 8 - X - 10ί7 - 20F + 25TF.



596 S. F. ROBINSON

Thus if p = 1 (mod 10) we have the following values

(7.6) Λo(Q) =

46(1) - 1 + X r = 0 (mod 5)
χ(Q)Ά5(l) + i ( - 4 - X - 20U + 10 F - 25W)

r = 1 (mod 5)
χ(Q) Λ(l) + i ( - 4 - X + 10ί7 + 20F + 25W)

r = 2 (mod 5)
χ(Q) Λ(l) + i ( - 4 - X - 10 U - 20F + 25W)

r = 3 (mod 5)
χ(Q) Λ(l) + i ( - 4 - X + 20C7 - 10F - 25TF)

r == 4 (mod 5)

with the value of Λ(l) from (7.1)

— Au p = 1 (mod 20) and 51 x

0 otherwise .
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