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RELATIONS AMONG CONTINUOUS AND VARIOUS
NON-CONTINUOUS FUNCTIONS

R. V. FULLER

In this paper a number of conditions on a function from
one topological space to another are considered. Among these
conditions are those of a function or its inverse preserving
closedness, openness, or compactness of sets. Other conditions
are having a closed graph and a concept generalizing continuity,
subcontinuity, which we introduce.

Some interesting results which are uncovered are the
following: (1) A function which is closed with closed point
inverses and a regular space for its domain has a closed graph.
(2) If a function maps into a Hausdorff space, continuity of
the function is equivalent to the requirement that the func-
tion be subcontinuous and have a closed graph. (3) The usual
net characterization of continuity for a function with values
in a Hausdorff space is still valid if it is required only that
the image of a convergent net be convergent (not necessarily
to the "right" value).

Also several theorems of E. Halfar [2], [3] are extended including
some sufficient conditions for continuity.

All spaces X and Y are topological spaces and no function is
assumed to be continuous unless explicitly stated to be so. For any
concepts which we do not define or elaborate upon, the reader is
referred to Kelley's book [4]. We will denote nets by a symbol such
as xa1 letting context distinguish between a net and a point of the
range of the net and suppressing explicit mention of the directed set.
A subnet of a net xa will be denoted by xNb where b is a member of
the domain of xNb and N is the appropriate function from the domain
of xNb to the domain of xa.

1* Functions with closed graphs* A function / : X~-> Y has a
closed graph {relative to X x Y) if and only if {(#, fx): xe X} is
closed in the product topology of X x Y. Using a characterization
of closed sets in terms of nets (see Kelley [4, Chapter 2)] a function
f:X—> F has a closed graph if and only if (xa,fxa) converges to
(p, q) in X x Y implies that q = fp. The well-known example of the
differentiation operator from Cx[0,1] to C[0,1] shows that a function
with a closed graph need not be continuous.

Let Ea be a net of sets in a topological space, X. A point p
in X belongs to lim sup Ea (lim inf Ea) if and only if Ea frequently

(resp., eventually) intersects each neighborhood of p. This generali-
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zation of the lim sup and lim inf of sets from sequences to nets has
been studied by Mrόwka [8, p. 237],

LEMMA 1.1. // / : X—• Y is a function, ya is a net in Y, and
p e l i m s u p / " 1 ^ ] , then there is a net xNb in X such that xNb—>p
{xNb converges to p) and fxNb is a subnet of ya.

Proof. Assume ya is a net in Y and p elim sup f~ι[ya]. Then
for each index a and each neighborhood of p, U, there is an index
N(a, U) ̂  a such that f~ι[yN(a,zn] U Φ φ. Now direct the neighbor-
hoods U downward by inclusion, give the pairs (a, U) the product
direction, and choose xNia>u) ef^lvma.m] U, thus obtaining a net xNiatU).
Finally note that fxN{afU) = yN{a,u) is a subnet of ya and xNU}U) —> p.

The following characterization of a function with a closed graph
appears in Kuratowski [5, Defn., p. 32] in a considerably restricted
form.

THEOREM 1.2. If f: X~* Y is a function, the following condi-
tions are equivalent:

(a) The function f has a closed graph.
(b) Ifva^q in Y, then lim sup f-ι[ya] c / - 1 ^ ] .
(c) If Va—*Q ^ Y* then lim inf f~ι[ya] czf-^q].

Proof. Assume (a) holds. Let ya -* q in Y and q e
By Lemma 1.1 there is a net xNh in X such that xNh—>p and /α?^ is
a subnet of $/α. Thus we have (xNb, fxNb) —> (p, q). Since / has a closed
graph q = fp or ίJG/" 1 ^]. Consequently (b) holds.

If (b) holds then, since lim inf Z " 1 ^ ] is a subset of lim sup/"^yj,
(c) evidently holds.

Assume then that (c) holds. Suppose (α?β, /a?β) —> (p, g). Then
ί/α = /#α ̂ ^ ̂  and p e lim inf /~x[i/α]. Therefore p e /-1[9] oτ q — fp and
(a) holds.

2* Subcontinuous and inversely subcontinuous functions*
The function / : X —* Y is said to be subcontinuous if and only if
xa-+p in X implies there is a subnet of fxa,f%Nbf which converges
to some point q in Y. Similarly a function / : X—> Y is said to be
inversely subcontinuous if and only if fxa —* g in Y implies there is
a subnet of xa, xNh which converges to some point p in X, that is, if
and only if ya—>q in Y and a^e/- 1 ^] implies that a subnet of α?β,
xNb1 converges to some point p in X.

Our concept of a subcontinuous (inversely subcontinuous) function
is a generalization of a function whose range (resp., domain) is com-
pact. In addition, a subcontinuous function is a generalization of a
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continuous function whence its name.
More generally it is clear that if / : X —> Y is function and each

point p in X (in Y) has a neighborhood U such that f[U] (resp.,
f~ι[U]) is contained in a compact subset of Y(resp., of X) then / is
subcontinuous (resp. inversely subcontinuous).

There are a couple more analogous pairs of facts about subcontin-
uous and inversely subcontinuous functions with analogous proofs of
these facts. This seems to suggest that each pair of proofs could
have been integrated into a single proof concerning a multiple-valued
subcontinuous function. However such an approach seemed somewhat
astray from the present study.

The following theorem says that a subcontinuous (inversely sub-
continuous) function / : X —> Y where Y (resp. X) is completely re-
gular is very nearly such that / (resp., f"1) preserves compactness.
Unfortunately nearly is often not good enough. However subcontin-
uous (inversely subcontinuous) functions have advantages over those
such that the function (resp., the inverse) preserves compactness as
will be seen later.

THEOREM 2.1. Let f: X—> Y be a function. If f is subcontinu-
ous (inversely subcontinous) and Y (resp., X) is completely regular
then for each compact subset of X (resp., Y), K, f[K]~ (resp. f^lK]")
is compact, ("denotes closure).

Proof. We prove only the assertions for / inversely subcontinuous,
the proof for / subcontinuous being entirely analogous.

Let K be a compact subset of Y. Let {zafae A} be a net in
f~ι[K\~. Let δ be a uniformity for X. Direct B downward by
inclusion and let A x B have the product order. For each (a, b) e A x B
choose xia>b) in b[za] f~ι[K]. Since K is compact, a subnet of fx{a,b)

converges and thus a subnet x{Ne,Mc) of x(a,b) converges to some p in X.
Clearly pef~\K}-.

Now consider the net zNc which is a subnet of za. We proceed
to show Zffe—'p. Let beJ5. There is a symmetric bxeB such that
ft^ftjicfe. By choice of the xίa,b), it is clear that (zNc, x(Nc,Mc)) is even-
tually in δlβ Since X{NC,MC)-+PΛ%(NC,MC),P) is eventually in bx. Thus
(zNc,p) is eventually in B and zNc—>p. Consequently f~ι[K]~ is
compact.

3* Functions and inverses which preserve closedness and com-
pactness* Let / : X—> Y be a function. If f(f~ι) takes compact sets
of X (resp., Y) onto compact sets of Y (resp., X) then / is said to
be compact-preserving (resp., compact). If f(f~ι) takes closed sets of
X (resp., Y) onto closed sets of Y (resp., X) then / is said to be
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closed (resp., continuous).
Pursuing further the similarities noted in the previous section,

we characterize compact and compact preserving functions in terms
of inverse subcontinuity and subcontinuity, respectively.

THEOREM 3.1. Let f: X—+ Y be a function.
(a) The function f is compact if and only if f \ f~\K]: f~ι[K] —> K

is inversely subcontinuous for each compact set Ka Y.
(b) The function f is compact-preserving if and only if

f\K:K—>f[K] is subcontinuous for each compact set KaX.

Proof. The proof of (b) is entirely analogous to that of (a) and
so only (a) is proved.

Assume / is compact. Let K be a compact subset of Y and fxa

a net in K which converges to q in K. Then xa, being in the com-
pact set f^[K], has a subnet xNh converging to some p in f~\K\.
Thus /1 f~\K]: f~ι [if] —> K is inversely subcontinuous.

Now assume the subcontinuity condition. Let K be a compact
subset of Y and let xa be a net in f~ι[K\. Then fxa has a subnet
converging to a point in K and thus using the condition, xa has a
subnet converging to a point in f~\K\. Therefore f~ι[K] is compact.

The following theorem giving sufficient conditions that a function
be compact or compact preserving is deduced immediately from
Theorem 3.1.

THEOREM 3.2. Let f: X—> Y be a function. If f is subcontinuous
{inversely subcontinuous) and f[K] (resp., f~\K\) is closed for each
compact subset, K, of X {resp., Y) then f is compact preserving (resp.,
compact).

From Theorem 3.6 it will then follow that / has a closed graph
and is subcontinuous (inversely subcontinuous) implies / is compact-
preserving (resp., compact).

COROLLARY 3.3. Let f: X—> Y be a function. 1/ X(Y) is Haus-
dorff and f is both closed and subcontinuous (resp., continuous and
inversely subcontinuous) then f is compact-preserving (resp., compact).

We turn now to gathering some more facts about functions with
closed graphs and their relation to other functions. In particular, the
following two theorems show that the closed graph property comple-
ments the two subcontinuities in interesting ways.

THEOREM 3.4. Let f:X—+Ybe a function. A sufficient condi-
tion that f be continuous is that f have a closed graph and be sub-
continuous. If Y is Hausdorff, the condition is also necessary.
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Proof. {Sufficiency) Let xa be a net in X which converges to
some point p. Suppose fxa does not converge to fp. Then fxa has
a subnet, fxNb, no subnet of which converges to fp. However, by
subcontinuity, some subnet of fxNb,fNMe, converges to some point q.
Thus we have (xMNc, fxNMc) —* (p, q). But by the closed graph property
of /, q = fp and we have a contradiction.

(Necessity) Assuming / is continuous then evidently / is sub-
continuous. If (xa,fxa) —> (p, q) then xa—>p and thus fXa—^fp. As-
suming Y is Hausdorίf we conclude that q = fp and / accordingly
has a closed graph.

THEOREM 3.5. // the function f:X—>Y has a closed graph and
is inversely subcontinuous, then f is closed.

Proof. Let C be a closed subset of X. Suppose f[C] is not
closed. Then there is a q in Y — f[C] and a net xa in C such that
fxa—*q. Thus by inverse subcontinuity there is a subnet of xa,xNb,
which converges to some p in X. Since C is closed p 6 C. Con-
sequently we have (xNh9 fxNb) —> (#>, #), but q Φ fp since q & f[C]. This
contradicts the closedness of the graph of /.

Theorem 3.4 tells us that if f:X—*Y is continuous with Y
Hausdorff then / has a closed graph. The Hausdorίf requirement
cannot be dropped in general for if i : X —* X is the identity on X,
the graph of i is closed in X x X if and only if X is Hausdorff.

We can also see from Theorem 3.4 the dependency of the closed-
graphness of a function / : X—* Y upon the space Y in which f[X]
is imbedded.

Let / : X —> Y be a function which has a closed graph and is not
continuous. Let F* be a compactification of Y. Then / : X—» F* is
subcontinuous (showing also the dependency of subcontinuity on the
space in which the range is embedded). Thus if / : X—•> F* had a
closed graph then it would be continuous. But continuity does not
depend upon the embedding space for the range so that / : X —> Y
would be continuous contradicting our assumption.

Assuming the range is embedded in a Hausdorff space, the next
theorem says, roughly, that a function with a closed graph handles
compact sets somewhat less successfully than a continuous function
but its inverse does just as well as the inverse of a continuous func-
tions in the treatment of compact sets. The theorem follows from an
exercise in Kelley [4, Ex. A, p. 203] but we also include a proof.

THEOREM 3.6. Let the function f:X—+Y have a closed graph.
If K is a compact subset of X(Y) then f[K] (resp., f~ι[K}) is a closed
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subset of Y (resp., X).

Proof. We prove only the second case, the proof of the first
being entirely analogous.

Let K be a compact subset of Y. Suppose /^[K] is not closed.
Then there is a p in X — f~ι[K] and a net xa in f~ι[K] such that
xa —> p. Evidently fxa has a subnet /a^δ which converges to some q
in K. Thus we have (xNh,fxNh) —> (p, tf) so that pe/" 1 !?] c / - 1 ^ ] .
But this contradicts the choice of p.

Having already discovered in Theorem 3.4 conditions under which
a continuous function has a closed graph, we proceed to find such
conditions for a closed function. The characteristic function of the
interval (0,1] mapping E1 into {0,1} shows us that a closed function
does not always have a closed graph. One should note that this func-
tion does not have closed point inverses.

Let us call a function / : X —> Y locally closed if for every neigh-
borhood, U, of each point p in X, there is a neighborhood of p, V,
such that VdU and f[V] is closed in Y (Whyburn [12, p. 198] has
used the same term differently). It is not clear that a closed function
is always locally closed but if the domain of a closed function is regular,
then the function is locally closed. Also if a function f:X—• Y is
such that X is regular and locally compact and / takes compact sets
onto closed sets, then / is locally closed.

A locally closed function need not be closed as the following
example shows. Let X be the reals with the discrete topology, Y the
reals with the usual topology, and f:X—> Y the identity function.
Then / is locally closed and, in fact, continuous but certainly not
closed.

THEOREM 3.7. If f:X—*Y is a locally closed function then
y*—*q in Y implies limsup f~\ya\ c f~ι[q\~.

Proof. Let ya —• q in Y and p e lim sup f^lVa]. Suppose p g f~ι[q\~.
By Lemma 1.1 there is a net xNb in X such that xNb —> p and fxNh

is a subnet of ya. Now X — f~\q\~ is a neighborhood of p and thus
there is a neighborhood of p, U, such that 17c X — f~ι[q]~ and f[U]
is closed in Y. But xNh is eventually in U so that fxNh is eventually
in f[U]. This means fxNb is eventually in the complement of a
neighborhood of q, namely Y — f[U]. We therefore have a contra-
diction to the fact that fxNb must converge to q, being a subnet of ya.

COROLLARY 3.8. If f;X—*Y is a locally closed function and
has closed point inverses then f has a closed graph.
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Proof. The statement follows immediatelly from Theorem 1.2.

COROLLARY 3.9. If the function f:X~+Yis closed with closed
point inverses and X is regular then f has a closed graph.

COROLLARY 3.10. / / the function f;X—> Y is closed and subcon-
tinuous with closed point inverses and X is regular then f is con-
tinuous.

Proof. We have this result directly from 3.9 and Theorem 3.4.
The last corollary generalizes a theorem of Halfar's [2, Th. 3]

by replacing compactness of Y with subcontinuity of / . See also in
this connection Rhoda Manning [6, Th. 1.5].

THEOREM 3.11. If f: X—> Y is a function where X is regular
and locally compact, the following conditions are equivalent:

(a) / maps compact sets onto closed sets and has closed point
inverses.

(b) / is locally closed and has closed point inverses.
(c) / has a closed graph.

Proof. We have already commented that (a) implies (b). By
Corollary 3.8, (b) implies (c). Thus it remains to show (c) implies (a).

Assuming / has a closed graph, Theorem 3.6 gives us that /
maps compact sets onto closed sets. Furthermore since points are
compact, the same theorem yields that / has closed point inverses.

The following theorem, which should be compared with Theorem
3.2, is essentially a special case of one to be found in Berge [1* Th.
3, p. 116]. The theorem extends one of Halfar's [2, Th. 1] by remov-
ing the requirement that / be continuous. Also of interest in this
connection are Michael [7, Lemma 5.18, p. 172] and Whyburn [11,
Th. 3 & Cor. 2, pp. 689-690],

THEOREM 3.12. / / f X —>Y is closed and has compact point
inverses, then f is compact.

4* Compact functions, compact-preserving functions, and hi
spaces* It is intuitively clear that a mapping / : X—» Y which is com-
pact or compact preserving will have no particular tendency to treat
other topological properties nicely unless the topologies of X or Y or
both are to a considerable extent dictated by the compact sets. In
this section we define some topological spaces which are, in a sense,
determined by their compact sets, and prove a couple of theorems
concerning these spaces and compact preserving functions.
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Let X be a topological space and p e X. X is said to have pro-
perty kx at p and only if for each infinite subset A having p as an
accumulation point, there is a compact subset of A + p, B, such that
p e B and p is an accumulation point of B. X is a kγ space if it has
property kx at each of its points.

X has property k2 at p if and only if for each set A having p
as an accumulation point, there is a subset of A, B, and a compact
set KZD B + p such that p is an accumulation point of B. We call
X a k2 space if it has property k2 at each of its points.

X is a kό space if and only if U is an open set in X precisely
whenever U K is open in K for each compact set K in X.

Halfar defines property kγ at a point in one of his papers [3,
Defn. 2], Property k2 at a point is a slight variation of a definition
I believe is due to S. B. Myers. A definition differing slightly from
that of a k3 space is discussed by Kelley in his book [4, p. 230]. If
X is Hausdorff, the k2 and kz definitions agree with those of Myers
and Kelley respectively.

It is immediate that X is kγ at p implies X is k2 at p. Also it
is not difficult to show that a k2 space is always a k3 space, but I do
not know whether k2 space and kd space are equivalent concepts. It is
easy to see that a locally compact or first countable space is a k2 space.
Finally the following example shows that X being k2 at a point p
does not necessitate X being kx at p.

EXAMPLE 4.1. This example provides a k2 space which does not
have property kι at any point.

Let F be the space of all functions mapping [0,1] into [0, 1J
with the topology of point-wise convergence. Let j>f be the collection
of all finite subsets of [0, 1] and ω the set of positive integers. For
each A in j ^ and n in ω let fnA be the function in F defined by
fnAx = l/n for x in A and fnAx = 1 otherwise. Letting ^/ be directed
upward by inclusion, ω have the usual order, and ω x s^ have the
product order, then {fnA, (n, A) e ω x j^f} is a net in F.

It is easy to see that fnA converges to the zero function, 0*, and
thus that 0* is an accumulation point of {fnΛ : (n, A) e ω x <s>/}. We
proceed to show F lacks property kL at 0* and the proof that F has
property kL at no point will then be clear.

Let p = {fnA : (n, A) eω x s>/\ and let B be any subset of P
which has 0* as an accumulation point. Then {n, A) : fnA e B} must
be cofinal in ω x s/ for if for any (nQ, Ao) there is no (nu Aλ) ^ (n0, Ao)
such that fniAι e B then there is no member of B in the neighborhood
of 0* given by {feF: \fx\ < l/n0 for xeA0}.

Now let fn(jAo e B. For every k in ω choose fnfcAk e B such that
nk > nk^ and Ak Z) Ak_lΛ Consider Q = Σ{Ak: k e ω}. Let feFhe
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defined by fx — 0 for x in Q, fx = 1 otherwise. The sequence f%kΛk

converges to / and / Φ 0*,0,/?P since Q is countable. Thus 2? + 0*
is not closed and since F is Hausdorff it is consequently not compact.

We conclude F does not have property kx at any point, but on
the other hand since by the Tychonoff theorem F is compact, it is
clearly a k2 space.

The next theorem extends one of Halfar [2, Th. 2] by requiring
that / have only a closed graph instead of being continuous and by
requiring that Y only be a fc3 space instead of locally compact Haus-
dorff. The theorem should be compared with a similar one in Whyburn
[11, p. 690].

THEOREM 4.2. Let f:X—>Ybea compact function and Y a k3

space. A sufficient condition that f be closed is that f have a closed
graph. If X is regular Hausdorff, the condition is also necessary.

Proof. Assume / has a closed graph. Let C be a closed subset
of X. Since Y is a k3 space, to show that f[C] is closed we have
only to show that the intersection of f[C] with each compact set Y,
K, is closed in K.

Let if be a compact subset of Y. Then f~\K] is compact, and
it follows that C - f~\K] is compact. By Theorem 3.6 we have that
f[C /" '[K]] is closed. Finally since

f[C] K is closed in Y and thus in K.
Now assume that X is regular Hausdorff and / is closed. Then

/ being compact, point inverses are closed. Thus by Corollary 3.9, /
has a closed graph.

Comparing Theorem 3.5 and the sufficiency part of the one im-
mediately preceding, we see that in the former theorem "/ is inver-
sely subeontinuous" replaces "/ is compact" and no requirements are
put on the space Y. The example which follows shows that the
requirement that Y be a k3 space cannot be dropped in Theorem 4.3.
These observations illustrate that in some instances / being inversely
subeontinuous is effectively a stronger requirement than / being
compact.

EXAMPLE 4.3. We will display a function which is compact and
has a closed graph but which is not closed.

Let X be an uncountable set. Let ^ be the topology for X
consisting of all compliments of countable sets (plus the empty set).
Let ^ 2 be the discrete topology on X. It is known that the only
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compact subsets of either (X, ^ i ) or (X, ^ 2 ) are the finite sets.
Consider the identity map i : (X, ^ 2 ) —> (X, ^ i ) . The function i

has a closed graph as we now show. Let (xa, ixa) —> (p, q). Then xα

must eventually be the constant p in (X, ^ ) and so also must ixa — xa.
If ixa converged to q Φ q then we would have a contradiction to the
fact the points are closed in (X, ^ i ) .

The inverse of i carries compact (finite) subsets of (X, ^ i ) onto
compact (finite) subsets of (X, ^ 2 ) and i is consequently compact.
Finally since ^ is a strictly large topology than ^ ΐ is not closed.

THEOREM 4.4. Le£ f:X—>Ybe a function where X and Y are
Hausdorff and X has property k2 at a point p. If f is compact
preserving and has closed point inverses, then f is continuous at p.

Proof. Suppose / is not continuous at p. Then there is a neigh-
borhood F * of fp such that for each neighborhood of p, U, there
exists a point xυ in U with the property that fxπ$ V*. The col-
lection A — {xσ : U is a neighborhood of p) has p as our accumulation
point. Thus A has a subset B and a compact set K ZD B + p such
that p is an accumulation point of B.

Consider the function f\ K: K—*Y. The function f\ K is (strongly)
closed since Y is Hausdorff. As

f\K has closed point inverses. The range of f\K is compact and
thus f\K is subcontinuous. Finally, with the observation that K
being compact Hausdorff is regular, we may conclude from Corollary
3.10 that f\K is continuous.

However if we choose a net xa in B c K such that #o —»39 then
/ # α is never in the neighborhood V* of fp. This contradiction proves
the theorem.

The last theorem, 4.4, is a generalization of two theorems of
Halfar [3, Ths. 2 and 5], Halfar's Theorem 5 is the same as our
Theorem 4.4 except that Halfar requires X to have property kλ at p
instead of k2 at p. Our Example 4.1 shows then that Halfar's Theorem
5 is not as strong as our 4.4 and in particular does not apply to all
locally compact spaces.

5* Another characterization of continuity* In this section we
give a second characterization of continuity (The first occurred in
Theorem 3.4). This characterization was discovered while pursuing
the question "How much must the usual net characterization of con-
tinuity (see Kelley [4, Th. 1, p. 86]) be relaxed in order that some-
thing less than continuity be achieved?" One reasonable answer to
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this question is the subcontinuity concept defined in §2. The principal
theorem of this section seems to suggest this answer.

THEORM 5.1. Let f:X—+Ybe a function where Y is Hausdorff.
The following conditions are equivalent:

(a) The function f is continuous.
(b) // xa—>P in X, then there is a q in Y such that fxa —> q.
(c) If xa^>p in X, then there is a subnet of xa,xNh, such that

(d) For each p in X there is a q in Y such that xa —» p implies
there is a subnet of xa, xNb, such that fxNh —> q.

Note that (b), probably the most interesting equivalence, says
that the usual net characterization of continuity is still valid even if
it is not required that the image of a convergent net converge to
the "right" value. In order to prove that (b) implies (a) we will use
the following lemmas which we state separately since they may be
of interest in other applications of nets.

LEMMA 5.2. Let (A, >α) and (J5, >6) be disjoint directed sets
which are isomorphic (i.e., there is a one-to-one function h from A
onto B such that ax >aa2 if and only if hax >bha2). Then there is
a directed set (C, >c) such that A and B are cofinal subsets of C and
C = A + B.

Proof. Let C = A + B and define >c as follows: If rruy2eA
then % >C72 if and only if 7i >α72 and similarly if 7i, 72ei3. If
7χ6 A and 72eB then yx >cy2 if and only if hrfx >hΊ2 and 72 >cΊι if
and only if 72 >bhy1. In brief, we order C by leaving the order of
A and B the same and identifying points in A with their images in B.

It is not difficult to show that (C, >β) is directed set, and it is
clear that A and B are cofinal in C.

LEMMA 5.3. Let X be a topological space and {xa, a e A} and
{zb, beB} nets in X with disjoint directed sets which are isomorphic.
Then there is a net {we, ceC} in X such that xa and zb are subnets
and wc—>p if and only if xa—»p and zb —+ p.

Proof. Let C be the directed set constructed as in the previous
lemma and define wc = xc if c e A, we = zc if ceB. The assertions
of the lemma are then clear.

Proof of Theorem 5.1. Since each of conditions (b), (c), and (d)
are clearly implied by continuity, we have only to show that each of
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these conditions implies continuity.
Assume condition (b) holds. Let xa —> p. Then fxa —> q for some

q in Y. Suppose q Φ fp. Let zb be a net which is constantly p and
whose directed set is disjoint and isomorphic to that of xa. Then by
Lemma 5.3 there is a net wc such that xa and zb are subnets and
wc —> p. However fxa —• q and fzb —> /p. Since F is Hausdorff, fwc

cannot converge and we have a contradiction.
Assume condition (d) holds. We will show condition (c) holds.

Let pe X and q be the corresponding point assured by the condition.
We wish to show that q = fp. But this is evident for if xa is a net
constantly p then xa —»p and thus fxa —> /p. Since Y is Hausdorff

Finally we show condition (c) implies continuity. Suppose con-
dition (c) holds and / is not continuous. Then there is a p in X and
an open neighborhood of fp, V*, such that for each neighborhood of
p, U, there exists a point xΌ in U such that fxπ $ V*. Now the func-
tion xσ defined on the collection of neigborhoods of p directed down-
ward by inclusion is a net converging to p. On the other hand it is
clear that for no subnet of xn,xNb, is it true that fxNb—*fP This
contradiction completes our proof.

The following corollary has as a corollary to it a theorem an-
nounced by Yu-Lee Lee to the effect that if / is a function from uniform
space to another which preserves Cauchy nets, then / is continuous.

COROLLARY TO 5.1 (b) 5.4. Let f:X—* Y be a function where
(Y, 5O is a Hausdorff uniform space. If f maps convergent nets onto
Cauchy nets then f is continuous.

Proof. Let (h, Y*, 2*"*) be the Hausdorff completion of (Y, 5^)
where h is a uniform isomorphism of Y into Y*. Note feo/maps
convergent nets onto Cauchy nets. Since Y* is complete, it follows
from 5.1(b) that hof is continuous. But then so is / since h is a
homeomorphism.

6* Open functions and continuity of their inverses* One
feels intuitively that openness of a function should be related to con-
tinuity (in some sense) of the inverse function. In this section we
find a sense and a setting in which this is indeed the case for the
set-valued inverse function.

By an open function, we will mean a function f:X—* Y such
that U is open in X implies f[U] is open in Y.

THEOREM 6.2. If f:X—*Y is a function, the following condi-
tions are equivalent:
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(a) / is open.
(b) ya~*Q implies f~\q\ c lim inf Z " 1 ^ ] .
(c) ya -> ? implies /"'[q] c lim sup /""^j/J.
(See § 1, second paragraph for definitions)

Proof. Assume (a) holds. Let ya—*q and pef^lq]. Suppose
pg liminf/^[yj. Then there is an open set, U9 containing p such
that frequently f~ι[ya\ U — φ. Thus yβ is frequently outside /[Z7]
But this is absurd since /[ U] is a neighborhood of q. Thus (b) holds.

Clearly if (b) holds then (c) holds. Hence assume (c) holds. Sup-
pose / is not open. Then there is an open set, U, in X and a net
ya in Y — f[U] such that ya~-^q for some q in f[U]. Thus /-1[g] c lim
sup/~x[2/a]. Let p e / " 1 ^ ] ' 17. Then U is a neighborhood of p and
thus /"^i/β] U is frequently nonempty. But this means ya is fre-
quently in f[U] in contradiction to our choice. Therefore (a) holds.

If E* is a net of sets in a topological space X such that lim inf
Ea — lim sup Ea = £7, then we say that the limit of Ea exists and we
write lim Ea = E. With this definition the following theorem follows
from the previous theorem and Theorem 1.2.

THEOREM 6.3. The function f:X—+Yis open and has a closed
graph if and only if ya-+q in Y implies l i m / " 1 ^ ] = f~\q\.

Proof. By the theorems cited above, / is open and has a closed
graph if and only if ya —> q in Y implies

f~\q\ c lim inf f-\ya] c lim sup f-\ya] c f~\q\ .

Thus the theorem holds.
A theorem similar to the one immediately preceding is given in

Whyburn [10, Th. 4.32, p. 130] for metric spaces.
Now let X be a locally bicompact space (i. e. one which has a

basis of open sets with compact closures), and 2X be the collection of
all nonempty closed subsets of X. Consider all sets of the form

{Ae2x:A Ui = φ and A- C\(Vj) - φ

for i — 1, , n and j = 1, , m)

where the Z7< and V5 are open and have a compact closure in X.
These sets from a basis for a topology for 2X which Mrόwka calls

the I be topology. Mrόwka proves in his paper [9, Th. 4] that for a
locally bicompact space X, convergence in 2X relative to the I be
topology is the same as the convergence of sets previously described
(i. e. when lim inf = lim sup). Since by Theorem 3.6 if / : JSΓ—» Fhas
a closed graph then f~ι[y] is closed for each y, the following theorem
follows from the preceding comments and Theorem 6.3.
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6.4 THEOREM. Let f:X—>Y be a function where X is locally
bicompact. Let F be the function on Y defined by Fy = f~λ[y]. Let
2X have the 1 be topology. If f is open and has a closed graph then
f: Y—>2X is continuous. Conversely, if f has closed point inverses
and F: Y—>2X is continuous then f is open and has a closed graph.

THEOREM 6.5. Let f be an open, continuous function of X onto
Y where X is locally bicompact and Y is Hausdorff. Let

and let £& have the relativized lbc topology. Then Y and & are
topologically equivalent.

Proof. By Theorem 3.4, since / is continuous and Y is
Hausdorff, / has a closed graph. Thus by the previous theorem
F: Y-+D defined by Fy = f~ι[y] is continuous. Thus it remains only
to show that F"1 is continuous.

Let /^[y*] converge to f~\q\ in <3f. Then

limsup/- 1 ^] = f~\q\ .

By Lemma 1.1, if p e lim sup f^lVa] there is a net xNh in X such that
%Nb —>p in X and fxNh is a subnet of ya. Now / is continuous and
thus fxNb converges to fp — q. But

Since f~\fxNh\ is a subnet of /-1[2/α], it follows by Theorem 5.1(c)
that F*1 is continuous.

Theorems somewhat similar to the previous two theorems may be
found in a paper of E. Michael [8] (see in particular Theorem 5.10.2).
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