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MEAN VALUES OF POWER SERIES

T. M. FLETT

This paper gives a unified account of a body of work on
mean values of functions regular in the unit disc, relating
particularly to the fractional derivatives and integrals of such
functions.

Two types of fractional derivative and integral are dis-
cussed. For each of the two types of fractional derivative
considered, a function analogous to the Littlewood-Paley g
function is defined, and the properties of these two #-type
functions are discussed. The results obtained here include
several new inequalities, and, in particular, an extension
(Theorem 5) of a theorem of Hirschman for indices less than or
equal to 1.

The remaining contents are as follows. In §4 the Hardy-Littlewood
maximal theorem is applied to obtain an inequality for fractional deriva-
tives. In §10 an auxiliary theorem equivalent to one of Hardy and
Littlewood is proved, and this is used to obtain a new proof of a theorem
on majorants. In §§11-12 new proofs of the Hardy-Littlewood theorem
on fractional integrals and of some related results are given, and in §13
a theorem of Hardy and Littlewood on the convolution series of two
power series is completed and extended.

The results obtained have obvious applications in the classical
theory of Fourier series, via M. Riesz's theorem on conjugate functions,
but these are not stated explicitly.

2* Notation and theorems used. We assume throughout this
paper that φ is a function regular in the unit disc J = {zeC: \ z | < 1},
and that

φ(z) = Σ <>nz* ( z e J ) .

We write

-±-\_^ I φ(peiβ) \'dθj (0 < p< + oo) ,

M(φ; p) = M+Jφ; p) = sup | φ(peiβ) \ .
β

It is familiar that if 0 < p <; + °°, then Mp(φ; p) increases with p,
and therefore tends to a finite limit or + oo as p—*l — . We define

(2.1) ~#,ty) = Mm M,(φ; p) (0 < p ^ + oo) ,

the value + ^ being allowed. The class of φ for which the limit in
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(2.1) is finite is, of course, the class H*. It is familiar that if φ e Hp,
then φ has a radial limit φ(eiθ) — \imφ(peiθ) for almost all θ, and that

( £ > - » l -

(φ) = ess sup i

For any real- or complex-valued function / measurable in the in-
terval [~7Γ, π] we write

= {^\[ I fiβ) \pd

M) = ess sup

the value + oo being allowed. The class of / for which ^fp(f) is
finite (where 0 < p ^ +^o) is the class Lp( — π, π).

For any number p used as an index (exponent) and such that
1 < p < + oo, we write p' — p/(p — 1), so that p and pf are conjugate
indices in the sense of Holder's inequality. We extend this notation
to include p — 1 and p — +°o by interpreting 1/0 as +oo and 1/+°°
as 0. All indices and other parameters are assumed to be finite except
where otherwise stated.

Any inequality L ^ R quoted or proved is to be interpreted as
meaning ' if R is finite, then L is finite, and L ^ R\

We use A(b, c, •••) to denote a positive constant depending only
on 6, c, , not necessarily the same on any two occurrences; A by
itself will denote a positive absolute constant. We also sometimes
write B for constants of the form A(b, c, •••); these too are not
necessarily the same on any two occurrences.

We collect together here a number of known theorems which we
use in the course of our proofs.

THEOREM A. Let

p ^ 1 , g ^ l , — = — + — - 1 ^ 0 ,
r V Q

let f, g be real- or complex-valued functions measurable on [ — π, π],
and let

M<?) = -^r\ f(θ-t)g(t)dt

Then
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This is a well-known inequality of W. H. Young (see, for example,
[22, i. p. 37]).

THEOREM B. Let f be a function measurable on the interval
]0, +oo[, let f(x)^0 for x > 0, and let Fδ(x) be the Riemann-
Liouville integral of f of order δ with origin 0, i.e.

Fs{χ) = ^\'

If λ > —1 and either

k ^ l ^ l , δ > l/l - 1/fc, or k > I > 1, δ = l/l - 1/fc ,

then

| l } ^ A(k, I, δ,

For δ > 1/Z — 1/fc this is essentially an elementary application of
Holder's inequality; for δ = l/l - 1/fc, the result lies deeper, the case
λ = —l/l being the Hardy-Littlewood theorem on fractional integrals
of real functions (see [5, Th. 2]).

THEOREM C. If φe Hp, where 0 < p ^ + oo, then φ can be ex-
pressed in the form φ — φγ + <p2, where φ1 and φ2 are regular and
have no zeros in Δ, and

ΛΊ(<Pi) S 2Λ,(φ) (i = 1, 2) .

This is a familiar theorem of Hardy and Littlewood ([8, p. 207]).

THEOREM D. If 0 < p ^ + oo and μ = max {0, 1/p - 1}, then

This also is due to Hardy and Littlewood ([12, Theorem 28]).

THEOREM E. Let 0 <η < 1, and let S(θ) = Sη(θ) be the open subset
of Δ bounded by the two tangents from the point eiθ to the circle with
centre 0 and radius η, together with the longer arc of this circle
between the points of contact. Let also φ be regular in Δ, and let

Then for 0 < p ^ + co
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This is the Hardy-Little wood ' Complex Max' theorem (see, for
example, [22, i, p. 278]).

THEOREM F. Let φ be regular in Δ, and let

If P > 0, k ^ 2, σ > max {1, k/p], then

^P(Tk,o) ^ A(k, p, σ)^//p(φ) .

This is one of the consequences of the Littlewood-Paley (/-theorem
(see [3, Th. 15]).

THEOREM G. Let feLp( — π,π), where p > 1, let the complex
Fourier series of fbe Y^looΊne

ni*\ and let ψ(z) = Σ?=i7»zn(3 € Δ). Then

This is equivalent to M. Riesz's theorem on conjugate functions
(see Hardy and Littlewood [9] for further explanations).

In addition to these theorems we also make extensive use of
Holder's inequality, and of Minkowski's inequality in the form

where k ^ 1, and /, g, h are nonnegative. We use also the analogous
result for k = + oo f namely

sup jj/(α, y)h(y)dy} ̂  j|sup/(a;, y)jh(y)dy .

3* Fractional derivatives and integrals, first type* The defini-
tion of fractional derivative and integral which is used in §§3-13 is
as follows. Let φ be defined as in §2, i.e. φ is regular in Δ, and

φ(z) = Σ cX (zeΔ) .

Then for any β ^ 0 the fractional derivative ΰ βφ of φ of order β is
given by

(3.1) ΰ?φ(z) = Σ n?cnz
n (z e A) .

Clearly ϋ ̂ φ is regular in Δ, and

(3.2)
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for all nonnegative β, 7.
The corresponding definition of the fractional integral applies only

to functions vanishing at the origin. Thus if φ(0) = cQ = 0, then for
any a ^ 0 the fractional integral -&aφ of φ of order a is given by

(3.3) $aφ{z) = Σ n-*cnz* {zeA) .
ln=l

As for the fractional derivative, the fractional integral &aφ is regular
in A, and

(3.4) #«{#&) = #a+rφ

for all nonnegative a, 7.
When φ(0) = 0, (3.1) and (3.3) can be used to define $aφ and ϋ*φ

for all real α, β (so that #αφ = &~aφ for all real α), and then (3.2)
and (3.4) hold for all real α, β, 7.

The functions ϋ aφ and ϋβφ defined above seem to have been first
studied by Hadamard [7]1. For a > 0, i~a^aφ(peiθ) is the Weyl frac-
tional integral of order a of the function θ~*φ(peiG), and for any
positive integer m

Thus the definitions (3.1) and (3.3) correspond roughly to differentiation
and integration with respect to θ. We note also that if m is a posi-
tive integer, then

(3.5) &mΦ) = (z-^)mφ(z),

so that &1 has its traditional meaning of z—.
dz

For a > 0 the fractional integral ϋ aφ is connected with φ by the
relation

(3.6)

where 0 < p < 1; this relation is easily obtained by term-by-term in-
tegration, using the formulae

(3.7) ̂

p-n[\\ogp/σy-'σ^dσ = Γ(log l/sy-'s^ds = [^t^e-^dt = n-aΓ(a) ,
Jo Jo Jo

1 Hadamard writes @\ in place of our & (for all real 8). We have followed Hardy
and Littlewood in using inferior letters for integrals and superior letters for deriva-
tives.
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where a > 0, n > 0, p > 0.
The formula (3.6) was obtained by Hadamard [7, p. 157], but does

not seem to have been used by subsequent writers on fractional de-
rivatives and integrals. In §§4-12 we develop the theory of the
functions ϋβφ and ΰ aφ, making systematic use of the formula (3.6).

4* As our first application of Hadamard's formula (3.6), we
prove:

THEOREM 1. Let Sv(θ) be the kite-shaped region defined in Theo-
rem E, where 0 < η < 1, let

Φ{θ) = SUP I <p(z) I ,
zeSη(θ)

and let β > 0. Then for 0 £ p < 1

(4.1) I &φ(peiθ) I ̂  A(β, η)p(l - p

A similar result for a different type of fractional derivative is
proved by Hardy and Littlewood [17, Th. 5] (see also Hirschman [18,
Lemma 4.1], and Flett [6, Th. 8]).

Suppose first that β is a positive integer, m say, and let C be

the circle with centre z = peίθ and radius —τ?(l — p). By (3.5), for
Δ

z Φ 0 we have

dzJ Ψ 2πi)c(ζ - Z)
m+ι

where P is a polynomial of degree m — 1 in ζ, z depending only on
m. Since CaSη(θ), it follows that

(4.2) lo-11 &™<p(peiθ) I ̂  A(β, η)(l -p)~mΦ{θ) ,

and this implies (4.1), since ϋ mφ{0) — 0.
Next, let β be nonintegral, and let m = [β] + 1 (where [/3] denotes,

as usual, the integral part of β). Since ΰ βφ = &m-.β(&mφ), (3.6) gives

(4.3) ΰ»φ(peit)=

and since log 1/x ^ 1 — « for a; > 0, and m — /3 5Ξ 1, we obtain from
(4.3) and (4.2) that

(4.4) I ^φ(peiβ) I ^ A(/S, η)Φ(θ)p-m+^ι\\ρ - σ ) — ^ ( 1 - c r ) - " ^ .
Jo

On substituting σ = 1 — (1 — /t>)a?, we see that the integral on the
right is equal to
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(4.5)

(x - iγ-?-ιχ-md% ^ (1 - ρ)~β\ = A(β)(l - p)~β ,

and (4.4) and (4.5) together imply (4.1) for 1/2 ^ p < 1. On the other
hand, if 0 < p < 1/2, then the integral on the right of (4.4) does not
exceed

~?-ιdσ = 2mpm~?/(m, - β)

and again the inequality (4.1) follows.

THEOREM 1. COROLLARY 1. / / 0 < p ^ + o o j < 5 > o , then for
Q^p<l

M,(ΰ*φ\ p) £ A(p, β)p(l - py^/SP(φ) .

This follows from the main theorem and Theorem E, with η = 1/2
(say). Applying this corollary to the function z—> φ(pί/2z), we deduce
also

THEOREM 1. COROLLARY 2. Let 0 < p ^ +<*>, and let

Mp(φ; p) ^ e(ρ) (0 ^ p < 1) .

Then forβ>0

; p)

5 Theorems of Littlewood-Paley type* We consider next a
group of three theorems closely related to results of Littlewood and
Paley, Hirschman, and the author.

For any φ regular in the unit disc J, and for any positive k and
β, let

T H E O R E M 2. If β > 0, and either k ^ l ^ l , d > l/l - Ilk, or
k > I > 1, 3 = l/l - 1/k, then for each θ

(5.1) S?kiβφ) ^ A(k, Z, β, δ)S?l, β + δ(θ) .

In particular, if k ^ 1 and 7 > β > 0, then for each θ

(5.2) S?ktβ(θ) £ A(k, β, y)Sfk,r(θ) .

THEOREM 3. If p > 0, k :> 2, β > 0,
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(5.3) ^ p ( S ^ ) ^ A(k, p,

THEOREM 4. 1/ p > 1, 1 < k <; 2, /3 > 0, and φ(0) = 0,

(5.4) ^r,(<p) ^ A(fc, p, β)^P(S?k,β) .

The results of Theorems 3 and 4 with gf ̂  replaceb by the func-
tion g M given by

r f i "j i/fc

(5.5) ^ ( 0 ) - Ijo(l - p)*.5-1^* I # V ( ^ ) \kdpj

are already known. The cases k = 2, β = 1 and A; = p, β = 1 of these
results for gktβ were proved by Littlewood and Paley [19], the func-
tion #2,1 being the well-known Littlewood-Paley ^-function The re-
maining cases where β = 1 are due to Marcinkiewicz and Zygmund
[20], and the cases where β Φ 1 are due to Hirschman [18] and the
author [4, 6]. The crucial result for these theorems for gk)β is that
for g2>1 corresponding to Theorem 3 (i.e. the Littlewood-Paley (/-theo-
rem), all the other results being obtainable from this.

It is easy to pass from (5.3) to the corresponding inequality for
gktβ and vice-versa, for it is obvious that if k > 1, β > 0, then

(5.6) s?

and in vir tue of Theorem 1, we have also

(5.7) gϊM = Γ/ + [ £ A{k, β)Φ\θ) + A(k,
JO Jl/2

for k > 0, β > 0. It is also not difficult to deduce Theorem 4 from
the result for gktβ corresponding to Theorem 3. However, the argu-
ments involved in the proofs of these various results, at least for
β Φ 1, apply much more naturally to &k,β than to gk)βf and it seems
worth while to give independent proofs of Theorems 3 and 4.

The inequality (5.1) is new. It shows in particular that the cases
k Φ 2, β = 1 of Theorems 3 and 4 are implied by the cases k = 2 of
these results, and thus provides a new proof of the results of Mar-
cinkiewicz and Zygmund mentioned above. The simple special case
(5.2) also enables us to reduce the proof of Theorem 3 to the case
where β is a positive integer, and this in turn simplifies one of the
estimates involved.

6. We begin with the proof of Theorem 2. If β > 0, δ > 0 then

&βφ = #ξ(&+aφ), so that, by (3.6),
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The required inequality (5.1) is therefore a consequence of the follow-
ing lemma.

LEMMA 1. Let h be a function measurable on the interval ]0,l[,
let h(ρ) ^ 0 for 0 < p < 1, and let

/ / β > 0, cmd eiίfter k ^ ί ^ 1, δ > lβ - 1/k, or k>l>l,δ = l/l- 1/k,

then

log ! ) « « V
pJ p J

This follows easily from Theorem B by the transformation

1/x = log 1/p, 1/y = log 1/σ, /(a;) - aj-'"1^-1^), λ = /8 - 1 .

The lemma may also be proved independently of Theorem B. In
our arguments we make essential use only of the case k = I (this
gives the inequality (5.2)), and since the direct proof of this case of
the lemma is particularly simple, we give it here for the sake of
completeness.

Let k ^ 1, β > 0, o > 0, and choose μ, depending on k, β, δ, such
that δ/k' < μ < β + δjk\ For k > 1 we have, by Holder's inequality,

(6.1) {Γ(δ)hs(p)}k

the second factor on the right of the first line of (6.1) being easily
evaluated by means of the substitution 1/x = log 1/p, 1/y = log 1/σ.
If k = 1, the final inequality in (6.1) holds trivially (where 1/k' is
interpreted as 0). Writing c — kβ + &<?/&' — fcμ, we therefore have
f or k ^ 1

(6.2, g ) « , , )
JA pJ p

σ
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On substituting s — log 1/p, t = log 1/σ we see that the inner integral
on the right of (6.2) is equal to A(k, β, <5)(log l/σ)c+δ~\ and the result
now follows.

7 We take next the proof of Theorem 3, and here we use
Theorem F (so that the proof, like that for gktβ, depends ultimately
on the Littlewood-Paley ^-theorem).

As remarked above, it is enough to prove (5.3) when β is a large
integer. We note now that if E(z) = 1/(1 — z) then

= — Γ pei9-itφ'(ρei9"itψ''1E(peit)dt .
2π J-»

It is immediate from (3.5) that for positive integral β.2

(7.1) I ̂ -lE(peu) I ^ A(β)p \ 1 - peu \~β ,

and therefore also

\ \π \*'ipeiΦ~2} dtY

dt .

Replacing p by p2 in the integral for &*,β, and noting that

(log l/p^-y"-1 ^ A(k, β)(l - p)^-1 ,

we thus obtain (again for positive integral β)

^ A(k, β)Tkfkβ_2k+2(β) ,

where T is defined as in Theorem F. Since we may assume that
kβ — 2k + 2 > max {1, k/p}, the required inequality follows from Theo-
rem P.

When p = + °o, the inequality (5.3) is known to be false for β = 1
(take 0>(s) = (1 — 2)0> and is almost certainly false for all β > 0.

8* For the proof of Theorem 4 we use an argument of a type
first employed by Littlewood and Paley for the case β = 1 of the
0fc)/9-theorems, and subsequently extended by Hirschman [18] and the
author [6] to the case β Φ 1. For &ktβ, the argument takes a very
symmetrical form.

2 The inequality (7.1) continues to hold for nonintegral β > 0, but its proof for
such β is less trivial (see [4, p. 378]).
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To prove Theorem 4, it is enough to show that if p > 1, 1 < k ^ 2,
β > 0, then

(8.1) Mp(φ; R) g A(k, p,

for 0 < R < 1. Since the expression on the left of (8.1) is equal to

sup — 1 φ(Reiβ)Vφ)dθ
2ττ j — x

where the supremum is taken over all complex-valued trigonometric
polynomials Vsatisfying ^£V,{V) — 1, it is therefore enough to prove
that for any such V

(8.2)
ΔK J-

φ(Re«)V(θ)dθ S A(k, p,

when 0 < R < 1.
Let V(θ) = ΣNn=-NKnenie, let ξ(z) = Σ*=i*-«z\ and for any 7 > 0 and

0 < R < 1 let
k'γ-1 rJn Λ Ilk'

A(k,

By Theorem 3 and Theorem G,

(8.3) '.r) ̂  A(k, p,
= A(k, p, 7) .

We note now that

φ{Reiβ)Vφ)dθ =

and hence, by the formulae (3.7), for any positive β, 7,

(8.4)

[ φ(Reiθ)V(θ)dθ =
Γ(β + 7) JoV - p/ p J-

Γ dθΫ(\og—Y+ϊ~l&βφ{ρeiΘ)&ξ(Rpe-iθ)!^ .
J - * JoV βJ pΓ(β + 7) •

By Holder's inequality with indices fc, k\ the absolute value of the
inner integral on the right of (8.4) does not exceed &k,0)^k>,A — Θ)*
and therefore, by Holder's inequality with indices p, p'.

(8.5)
Δ1ΐ J -

ψ(Rei')V{θ)dθ
2πΓ(β +7) J-

Γ(β + 7)
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Taking 7 = 1 (say), we obtain from (8.5) and (8.3) the inequality (8.2),
and this completes the proof.

When p = +oo, the inequality (5.4) is false for all β > 0. To
prove this, we take φ(z) — ΣΓ=2(wΊog w)"1^, so that φ is unbounded
in A. Then for β > 0 we have

\&<p(pei0)\ ̂ Σ,n3~1(logn)-1pn ^ A(β)p\l - p)-β(log ——Y ,
»=2 \ 1 — p /

whence &k,β(θ) ^ A(k, β) for all θ (since k > 1), and this proves the
statement.

We note in passing that the results for the function gktβ defined in
(5.5) corresponding to Theorems 3 and 4 are now immediate consequences
of (5.6) and (5.7). When k > 1 we have also an inequality for gk>β

corresponding to (5.2), but we postpone the proof of this until §16.

9* It is probable that the inequality of Theorem 4 holds for
p > 0, 0 < k <Z 2, β > 0. We are unable to prove this in full gener-
ality, but we can deal with the case 0 < k ^ 1 for certain values of
/3.3 In contrast to Theorem 4, the case p = + co is true here.

THEOREM 5. // φ(0) = 0, and either (i) 0 < p ^ + co, 0 <k<*l,
β ^ l/jfc, or (ii) 0 <p = k^ l, β > 0,

(9.1) ^Λψ) = A(kf p, β)

We consider first the case where φ is regular in the closed disc
J, and we show that in this case the inequality (9.1) holds for
0 < p ^ +co, 0 < & ̂  1, /5>0; the limitations on p and /3 in (i)
and (ii) arise only in the reduction of the general case to this special
one.

Suppose then that φ is regular in Δ and that 0 < p rg -f co f

0 < k ^ 1, β > 0. It is enough to show that

(9.2) Mp(φ; 1) ^ A(k, p, β)^

Since φ is regular in I, the formulae (3.7) give

and therefore

(9.3) I φ{ei{

3 A partial result for 0 < p ^ 1, k = 2, β = 1 is proved in [2].
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This trivially implies (9.2) for k = 1, so that we may suppose k < 1.
Let Φ be defined as in Theorem 1, with η = 1/2 (say). Then

θ) I S A(β)p(l - ρ)~βΦ(θ) ^ A(β)(log lfp)

whence, by (9.3),

(9.4) I <p(eiθ) I ^ A(k, β)Φι~k(θ)[\\og l/p)^3-1 \ ^φ(peiθ) \kp~ιdp

= A(k, β)Φ1

If p < + αo f then (9.4) gives

Mp(φ; 1) ^ A(k, p,

Applying Holder's inequality with indices 1/(1 — k), 1/k, and then
Theorem E, we obtain

(9.5) Mp(φ; 1) ^ A(k, p,
£ A(k, p, β)Mp~

k(φ;

and since Mp(φ; 1) is finite, this implies (9.2). If p = +oo, then (9.5)
follows immediately from (9.4), and again we obtain (9.2).

Suppose now that φ is regular in A, and let 0 < R < 1. Apply-
ing the special case to the function z~>φ(Rz), we get

(9.6) M;(φ; R) £ A(k, p, β)\[dθ{^(log - ί ) ^ &φ(Rpe«) |

If β ^ Ilk, then

σ

Hence

AΓ to Λ) ^ A(fc, p,

and this implies (9.1).
If k = p, /3 > 0, then (9.6) gives

kdθ

Since the inner integral on the right increases with R, we may replace
R on the right by 1, and this again implies (9.1).

We note explicitly the cases p = k of Theorems 4 and 5, viz.
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THEOREM 6. // φ(0) = 0, and 0 < k ^ 2, β > 0, then

1/fc

10. A theorem on the means Mp(φ; p). We prove next

THEOREM 7. Let φ(0) = 0, ieί 0 < p < g ^ + oo, α = 1/p - 1/g, A;

(10.1) J ^ A{k, p, q)^//p(φ) .

This is equivalent to a result of Hardy and Littlewood [12, Th.
31; 17, Th. II] 4 . The theorem can be proved in various ways, and
we give here a variant of the proof in [17] which makes the least
demands on the theory of the Hp classes.

Suppose first that p = 2, so that a — 1/2 — 1/q, and let C = ^2{φ).
Then

M(φ; p) g Σ I c n\ pn

n = l

1/2/ oo \l/2 / n \l/2 / 1 \-l/2

) ( Σ ) c ( ^ ) c ( l A )

and therefore for 2 <̂  q <£ + co

(10.2) Λfg(9>; p) ^ Mι-2lQ(φ; p)M2

2

lQ(φ; p) ^ C(log l / ^ ) " α .

Hence

(10.3) Jk ^ C&

Next, since

φ(ρeiθ) = \ ?frφ(GeiG)— ,
Jo σ

4 The equivalence follows by the argument of [17, Lemma 7-]. Hardy and Little-
wood use a factor (1 — p)ka~~ι in place of the logarithmic factor above; the form given
here is more convenient for our applications.

It should be noted that there is a misprint in the statement of the result in [17];
the C on the right of (11.2) on p. 236 should be CK
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Minkowski's inequality gives

Mq(φ; p) S \Mq{ΰ ιφ; σ)—
Jo a

(the case q — + oo being included), and hence, by (10.3) and the case
I — k = 2, d — l o f Lemma 1,

(10.4) Jk ^ A(k, α)C*~2\ (log — x « ^ - ^ - - *

A(k, ) ( g g ( V ; p)
J\ p/ p

By (10.2) applied to the function z-

M*(&φ; p2) £ (logl/p)~*«MWφ; p) ,

and hence, by (10.4) and (3.7),

Jk £ A(k,

= A(k,

= A(k, <Z)C*-2ΣK|2 = A(k, q)Ck ,

and this is (10.1) with p = 2.
Suppose next that p ^ 2. In this case it is enough to prove that

if ψ is regular in J, and 0 < p < # ^ + o o , α = 1/p — 1/q, k — p, then

(10.5) { £ ( l o g l ) * β " M ; ( t ; P)pk-ιdp]llk £> A(k, p ,

for the inequality (10.1) follows from this with ψ(z) — z~xφ(z). Fur-
ther, by Theorem C, it is enough to prove (10.5) when ψ has no zeros
in Δ.

Let ψ be such a function, let χ = ψpl2, s = 2g/p, l = 2k/p, β —
1/2 - 1/s. Then s > 2, ί ^ 2, Z£ = to, and ^ T ; ( f ) = ^ i ( χ ) , so that
for this α/r the inequality (10.5) is equivalent to

Λfί(

But, by the case p = 2 of (10.1) applied to 95(2) = zχ(z),

(10.7)
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If k ̂  I, (10.7) implies (10.6) immediately. If k < I, then on putting
pι = σk in the integral on the left of (10.7), and noting that

Ms(χ; p) ̂  M.(χ; σ)

(since p = σkil > σ), we see that the left side of (10.6) does not exceed
(l/k)β times that of (10.7), whence again (10.6) follows, and this com-
pletes the proof.

For certain p and q we have a stronger result.

THEOREM 8. Let φ(0) = 0, let w = (wn) be a sequence of numbers
such that I wn \ ̂  1 for all n, and let

(10.8) φw(z) - Σ cnwΛz* (z e A) .

If 0 < p < q <; +CXD, p <ς 2 ̂  g, α = 1/p — 1/g, k ̂  p, then

(10.9) {(Ylog l)* β "Wi(^ w ; /o)^.}17* ̂  A(k, p, q)^/SP{ψ) .

If p = 2, this follows from the trivial inequality ~/f 2{φw) ^ Λ? %(φ)
and the inequality (10.1) applied to φw.

If p <2, then by (10.1) with g = 2 w e have

(ri/ -I \k/p-k/2-i rlnΛ1^

(10.10) { (log-) M\{φ;p)Wλ £ A(k, p)^,(φ) .

Further, by (10.2) applied to φwf we have

(10.11) (log l/py'2-^Mq(φw; p) ̂  M2(φw; p) £ M2(φ; p)

for 2 ̂  g ̂  +oo, and (10.10) and (10.11) together give (10.9).
Choosing w in Theorem 8 so that cnwn ~ \cn\ for all n, we deduce

the following result.

THEOREM 8. COROLLARY. Let <p(0) = 0, and let

(10.12) φ*(z) = Σ I cft I s» (« e z/) .

If 0 < p < q ̂  +oo, p ^ 2 ^ g , α

particular, if 0 < p ̂  2, k ̂  p, then
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l/fcr r i / i \ kjp-i Jn \ l/fc

(10.13) jj^log -L) φkΛp)^-\ ^ A(k,

and if 0 < p ^ 2, then

(10.14)

The inequality (10.14) is equivalent to a theorem of Hardy and
Littlewood [8, Th. 15], and (10.13) can be deduced from two results
of the same authors [10, Th. 3; 8, Th. 5]. The proofs of these results
given by Hardy and Littlewood make use of the inequality

(10.15)

where 1 < p ^ 2, and are a good deal less elementary than the proof
above.

It has been shown by Hardy and Littlewood [8] that for 0 < j ) ^ l
the inequality (10.14) implies (10.15), the argument here being rela-
tively simple. We thus obtain effectively a new proof of (10.15) for
0 < p ^ 1.

It is natural here to ask whether

(10.16) ^p(φJ ^ A(p)^p(φ) (p > 0, p Φ 2)

for every sequence w = (wn) such that | wn \ ̂  1. As might be ex-
pected, the answer is negative. If (10.16) were true for p > 2, then,
by Theorem 7, (10.14) would hold for p > 2, and this is known to be
false, a counter-example being

<p(z) = Σ n-ll2-δeinlosnzn (δ > 0)

(Hardy and Littlewood [8, p. 206]). This argument shows also that
the inequality

(10.17) ^9(φ*)

is false for p > 2.

To disprove (10.16) for p < 2, we may take

φ(z) = Σ n~ll2zn , wn = einlosn .

Here φ e Hp for p < 2. On the other hand, φ w has nowhere a radial
limit, so that sfp(φw) = +°o for all p (see [22, i, p. 186] and [21]).

The question whether (10.17) holds for p < 2 seems to be open
(see [15]).
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11* The Hardy-Littlewood theorem on fractional integrals*
The preceding results enable us to give a succinct proof of the Hardy-
Littlewood theorem on fractional integrals ([12, 17]; see also [22, ii,
p. 140]).

THEOREM 9. // φ(0) = 0, and q > p > 0, a = 1/p — 1/q, then

(11.1) ^Waψ) ^ A(p, q)ΛlT9(φ) .

Suppose first that p <; 2, and let k = minjg, 2}. Then, by Theo-
rem 6 and the case k = 2 of Theorem 4, we have

(11.2) ^,(9>) ^ A(g, α){) dθ{^(log ±J \ d«φ(peίθ) \k^-\

Since ϋ a{ϋaφ) = φ, applying successively (11.2) wi th φ replaced by
&aφ, Minkowski 's inequality, and Theorem 7, we obtain

p

as required.
This leaves only the case q > p > 2. To deal with this, we can

use a simple conjugacy argument which enables us to deduce the re-
quired result from the case 1 < p < q < 2 already proved. Since the
argument is a particular case of one given in §13, we omit it here
(see [22, ii, p. 141]).

If 0 < p ^ 1, the result of Theorem 9 continues to hold for
q = + co. To prove this we use the case k = 1, p = +oo of Theo-
rem 5(i) and Theorem 7. We thus obtain

if1/ 1 \I/J>-I floΛ

(11.3) ~-#(&iiPφ) ^ A(p) sup < \ log —) I φ(peιΘ) \-£->
Θ UoV n J n J

p)
p

This can be strengthened slightly, as can also the case p ^ 2 ^ q
of Theorem 9. Let w — (wn) be a sequence of numbers such that
\wn\ ^ 1, and let φw be defined as in (10.8). Since

we have
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by a double application of Theorem 9. In particular, if φ* is the
majorant of φ defined in (10.12), then

(11.4) Λ't&aφ*) £ A(p,

It follows from a theorem of Hardy and Littlewood on majorants [11]
that (11.4) is stronger than (11.1) when q is an even integer, and it
is probably stronger for all q ^ 2.

If 0 < p ^ 1, q = +°o, then the argument above can be combined
with that of (11.3), and (with φw = φ*) gives the inequality

n=l
n~llp K I ^ A(p)^€p(φ) (0 < p ^ 1) .

This, however, is weaker than the case 0 < p ^ 1 of (10.15) (see Hardy
and Littlewood [12, p. 421]).

12. Theorem 6 enables us also to give a simplified proof of the
following theorem of Hardy and Littlewood [12, Th. 46],

THEOREM 10. Let 0 < p ^ +00, 0 < α < τ , let φ(0) = 0, and let

Mp(φ;p)£ (log l/p)-r (0<p<l).

Then

M 9 φ a φ ; p) ^ A(p, a, τ ) ( l o g 1 / ^ ) ^ (0<p<l).

Suppose first that 1 ^ p ^ +co. By (3.6),

whence, by Minkowski's inequality,

(12.1) Mvφaφ; p) ̂  j±-r\l(log ty"1 M,(φ; σ)^-

i o g y i o g
Γ{ά) )λ σ) \ σ) σ

the last integral in (12.1) being evaluated by the substitution

1/y = log 1/σ , 1/χ = log 1/^ .

Suppose next that 0 < p < 1» By Theorem 6 with k — p, β — a,
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applied to the function z-~±ϋaφ(ρz), we have

Mp

p(&aφ; p) ^ A{p, a)\ ( log— Mζ(φ; pt)
t

~pr dt

σ / V σ / σ
/ 1 \p(a-γ)

= A(p, a, 7) log —
V pJ

(by the same substitution as before), and this completes the proof.
Combining Theorem 10 with Theorem 1, Corollary 2, we obtain

the following result (cf. [12, Th. 46]).

THEOREM 11. Let 0 < p ^ 4- oo, 7 > 0, 7 > a, let φ(0) = 0, and

let

Mp(φ; p) S (log l/p)-r (0<p<l).

Then

Mp(&aφ; p) ^ A(p, a, 7)(log l/ρ)a~r (0 < p < 1) .

13* The convolution series of two power series* We suppose
throughout this section that φ, ψ are regular in //, and that

Σ = Σ dnz
n ,

It is easily verified that χ is regular in Δ, and that

') = ^ - ί τ φ(peiβ-it)'>!r(ρeit)dt .
2τr J—̂

It follows immediately from Theorem A that if

(so that max {p, q\ ^ r ^ + 00), and 9? e ίfp, ^ e iϊ g, then χ e ϋ r .
Hardy and Littlewood [16, 17] have given generalizations of this

result in which the condition that ψ e Hq is replaced by the condition
that

(13.1) Mq(ψ'; p) g K(l -pY"1

for some k. If k = 0, then (13.1) is weaker than the condition that
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ψe Hq (cf. Theorem 1, Corollary 1); however, the conclusion that
χeHr remains valid. If 0 < k < 1, then (13.1) is equivalent to the
condition that τ/reLip(fc, q) (Hardy and Littlewood [11, Th. 3]), and
is stronger than the condition that ψ e Hq. In this case the conclusion
that χ e Hr remains valid when φ e Hs for some s < p.

In this section we generalize these theorems by replacing (13.1)
by a similar condition involving Mq(ΰ βψ; p), where β > 0. Such results
were stated by Hardy and Littlewood [16] for the case where β is a
positive integer m, but no proof for m > 1 has been published. We
find in fact that there are three distinct theorems5.

THEOREM 12. Suppose that

p ^ l , ? ^ 1 , A = _L + J L _ l > 0 , p ^ 2 ^ r , β ^ 0 ,
r p q

that φe Hp, and that

Mq(&ψ, p) g K(log l/p)->3 .

Then

^fr(X) ^ KA(p, g, β)^p(φ) .

In the remaining two theorems we regard p, g, λ, β as given, and
define r, s in terms of them.

THEOREM 13. Suppose that

p ^ l , q^l, 1 = 1 + 1 - 1 ^ 0 ,
r p q

0 ^ λ < β , i _ = JL + / 3 - λ
s p

(so that 0 < s < p), that φ e H% and that

If r < + oo (so that 1/p + 1/tf > 1), then

(13.2) ^T r(χ) ^ KA(p, q, β, \)Λ?.{φ) .

Ifr=Jrco (so that 1/p + 1/q = 1) and s ^ 1, then χ is continuous
in Δy and for each θ

5 The case β ̂  1 of Theorem 12 can be reduced to the case β = 1 by means of
Theorem 1, Corollary 2 and Theorem 10. Similarly, Theorems 13 and 14 can be re-
duced to the case of integral β by means of Theorem 10. However, our proofs of
Theorems 12-14 apply equally to integral and nonintegral β.
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(13.3)

I χ(β") I £ j^fas -J'11 Wipe") I ̂ ~ £ KA(p, q, β, X)^f s{φ) .

THEOREM 14. Suppose that the hypotheses of Theorem 13 hold,
and that in addition s ^ 2 <ί p. Suppose also that w = (wn) is a
sequence of numbers such that \ wn | ^ 1 for all n, and let

χ«(s) = Σ cndnwuz
% (z e Δ) .

n=l

If r < +co (so that 1/p + 1/q > 1), then

^tr(χv) £ KA(p, q, β, λ)^T\(φ) ,

and, in particular, if

Z*(s) = Σ I cndn \zn (z e Δ) ,
l

7/ r — + oo (so ίfeαί 1/p + 1/q — 1) αtiώ s ^ 1,

(13.5) Σ I M . I ̂  KA{p, q, β,

Proofs of the cases β = 1, r < + °° of Theorems 12 and 13 are given
by Hardy and Little wood in [16, 17]. They have also proved in [13,
14] the cases β = 1 of the inequalities (13.3) and (13.5). The proofs
of Theorems 12 and 13 given here are similar in principle to those of
the cases β = 1 in [17], but we have made some simplications.

In the proofs of Theorems 12-14 we may assume that K — 1, and
in Theorem 12 we may assume β > 0. We write B for a constant
depending on some or all of the parameters concerned, and we suppose
that

p ^ l , ? ^ 1 , ! - = . ί + J L _ i ^ o f 0 ^ λ ^ / 3 , / 3 > 0 ,
r p q

and

Mq(^ψ; p) :S (log l/p)-λ .

We observe now that, by ParsevaPs theorem, for any real 7 we
have

27Γ J-ir
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and hence, by Theorem A,

(13.6) Mr(&+rχ; p2) £ Mp(&<p; p)Mq(&ψ, p)

Consider first the proof of Theorem 12. Here p ^ 2 <Ξ; r < +00
and X = β, and we choose 7 in (13.6) to be a fixed positive number
(e.g. 7 = 1). Applying successively Theorem 4 with k = 2 and /3 re-
placed by /S + 7, Minkowski's inequality, the inequality (13.6), Mink-
owski's inequality again, and Theorem 3, we obtain

l/r

p
2/3+2r_i r i n Λ 1/2

2r+i

and this is the required result.
We prove next the case s ^ 2, r < + oo of Theorem 13. Let

k = min {r, 2}. Then, by Theorem 6 and the case k = 2 of Theorem 4,

rr.τ cfi/ i \kβ—i rlnΛrlhΛ1lr

(13.7) ^r r(χ) = B | j^ | j o ( logi .J |^χ(^) |*M.J J .

Applying successively Minkowski's inequality, the inequality (13.6)
with 7 = 0, and Theorem 7, we obtain

since 0 < s < p , s ^ k, β — λ = 1/s — 1/p. This proves the appro-
priate part of Theorem 13. Similarly, by applying (13.7) to χw and
using Theorem 8 in place of Theorem 7, we obtain the case r < + °°
of Theorem 14.
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if 0 ^ R < 1, then
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L, r — + oo of Theorem 13, we note that

(13.8) χ(2fc") =

Let 0 < <? < 1. Then, by the increasing property of M and the in-
equality (13.6) with 7 = 0,

sup
R,Θ

Vδ

1-1 Mpiφ;p)*!L.
p/ p

Further, by Theorem 7,

It follows that the integral on the right of (13.8) is convergent,
uniformly in (i2, θ), and this implies that χ is continuous in d, and
that (13.3) holds. A similar argument, using Theorem 8 in place of
Theorem 7, gives the corresponding case of Theorem 14.

There remains the case s > 2 of Theorem 13, which is deduced
by a conjugacy argument from the case already proved. The argu-
ment here is identical to that used by Hardy and Littlewood in their
proof for the case β = 1, but since the proof is short, we give it for
the sake of completeness.

Let s > 2, so that also r ^ p > s > 2. As in the proof of Theo-
rem 4, it is enough to prove that if V is a trigonometric polynomial
satisfying ^fr,(V) = 1, then for 0 < R < 1

(13.9) - L Γ χ(B*e»)V(θ)dθ

Let V(θ) = Σί--* *.β ", and let ξ(z) = Σ S U ^ Λ Then

(13.10) — Γ χ(B?eiβ)V{θ)dθ = - i -Γ V{θ)dθ\r

2τr J-* 4JΓ J-- J-ic

where
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ζ{Reit) = - L ( Γ V(θ)f(Reiθ+it)dt = Σ κ_ndnR
nenit .

Hence ξ, ψ, ζ are related as φ, ψ9 χ are related in the main theorem.
Since also 1 < r' < s' < 2, q < s' and

-L-JL = A.- JL
r' s' s r

we may apply the case of Theorem 13 already proved to ζ, ψ, ζ, with
r', s' in place of s, r. Using also Theorem G, we thus obtain

(13.11) ^ΛO ^ B^tAS) ^ B^tAV) = B .

Applying Holder's inequality with indices s, s' to the integral on the
right of (13.10), and using (13.11), we obtain (13.9), and this com-
pletes the proof.

14 • An alternative definition of fractional integral and deriva-
tive* An alternative definition of fractional integral which has been
used by a number of authors is as follows. As before, let φ be re-
gular in Δ, and let

φ(z) = Σ
Then for any a ^ 0 we define the fractional integral Όaφ of ψ of
order a by

(14.1)
+ 1 + a) *=oΓ(n + 1 + a)

where za has its principal value, i.e.

za = exp (α(log | z \ + i arg z))9 -π < arg z ̂  π .

This definition is also due to Hadamard [7]. By term-by-term integra-
tion, we have

where eaiθ has its principal value.
The definition of the fractional derivative Dβφ of order β ^ 0

normally associated with the definition (14.1) is that

(14.2)
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where m — [β] + 1 (see Hadamard [7, p. 156]). With this definition
we have the series expansion

(14.3) Dβφ(z) =

where z~β has its principal value, and 1/Γ(n + 1 — β) is interpreted
as 0 when β is an integer v ^ n + 1. When β is a positive integer,
I>5<£> is the /5th derivative of <p in the ordinary sense.

The definition (14.2) is satisfactory for 0 < β < 1, but is less
satisfactory for nonintegral β > 1. In particular, the function Dβφ
defined above is, for some purposes, too large in the neighborhood of
the origin when β > I.6

In the sequel we use another definition which avoids these difficul-
ties. For 0 ^ β < 1, we define Dβφ by the series (14.3), and then for
β ^ 1 we define Dβφ by the relation

(14.4) Dβφ(z) = Dβ-^(-%-
\dz.

With this definition, we have the series expansion

Dβφ(z) = Σ CnZ
n~β

n=ίβ]Γ(n + 1 — β)

for any β Ξ> 0, where z~β has its principal value. Further, if z =
and 7 > β ^ 0, then

(14.5)

»ίfβiΓ(n + 1-/3) Γ(y - β)

where ei7~β)iθ has its principal value. When β is a positive integer,
Dβφ is the /Sth derivative of <£> in the ordinary sense, so that in this
case the definitions (14.2) and (14.4) agree.

The analogue of Theorem 1 for the derivative Dβφ is as follows.

THEOREM 15. If Φ is defined as in Theorem 1, then for β > 0

I Dβφ(peίθ) I ̂  A(β, v)pm~β(l - p)~βΦ{θ) (0 < p < 1) .

The proof is similar to that of Theorem 1, and we omit it.

15* The function associated with the derivative Dβ correspond-

6 For instance, with the definition (14.2), the integral on the right of (14.5) below
is divergent at the origin for all nonintegral γ > 1.
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ing to t h e function ^'ktβ is defined by

Gk>β{θ) =

Here it is necessary to insert some power of p in the integral to
ensure the convergence of the integral at 0 when β — [β] Ξ> 1/k. The
particular choice of the power made here enables us to carry over to
Gk,β the argument of Theorem 5, using Theorem 15 in place of Theo-
rem 1. The function G2fl is precisely the Littlewood-Paley ^-function.

The analogue of Theorem 2 for Gktβ is more difficult than Theo-
rem 2 itself, and we confine ourselves here to the case I — k.

THEOREM 16. // k :> 1 and 7 > β > 0, then for each θ

{ irl-i Ί

Σk.|+ft,r(9)

The proof of Theorem 16 depends on the following lemmas.

LEMMA 2. Let a > b > 0, c > 0, y > 0, and let

I = [\x + y)-axh-\l - xy-'dx .
Jo

Then
(15.2) / ^ A(α, 6, c)2/6-«(l + y)~b .

Let JB denote a constant depending on some or all of α, 6, c. If
2/ > 1/2 and 0 <; a? ̂  1, then y ^ x + y ^3y, whence

'-'il - x)c-ιdx = By~a ,

and this trivially implies (15.2). We may therefore suppose that
0 < y ^ 1/2, and here it is enough to prove that / ^ Byb~a. Write

S y fi/2 fi
+ + =/, + /, + /,.

0 h Ji/2

In Iu y £ x + y ^ 2y and (1 - x)c-1 ^ JS, whence

In /2, x <. x + y <, 2x and (1 - x)c~ι £ B, whence

S l/2

x^-'dx ^ Byb~a .
y

In /3, 1/2 ̂  x + y ^ 3/2 and α;*-1 ^ B, and therefore
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s B[ (l
Jl/2

= B .

Hence I ^ Byh~a + B <^ Byh~a, as required.
When a = b + c, the integral I can be evalued explicity, viz.,

(see, for example, [1, i, p. 10, formula (11)]).

We actually use two inequalities derived from Lemma 2 by simple
changes of the variable, namely that if α > 6 > 0, e > 0, then for
0 < p< 1

(15.3) (P(l - σ)~a(p - σ)h~ισc-ιdσ ^ A(α, 6, c)pb+c^(l - p)h~a ,
Jo

and f or 0 < σ < 1

(15.4) (Vα(ι° - σ)h-\l - ^ - ^ ^ A(a, b,
J

The next lemma is essentially an extension of the case I — k of
Theorem B.

LEMMA 3. Let h be a function measurable on the interval ]0,l[,
let h(p) > 0 for 0 < p < 1,

// k ^ 1, /3 > 0, 8 > 0, 77 < I/A:',

(15.5) Γ(l - p)k^pk^ks

Jo

^ A(A?, β, δ, )?)Γ(1 -

Jo

Choose μ, ω, depending on k, β, δ, η, such that

δ/fcf < μ < β + δ/fc' , η < ω < Ijk' .
Writing B for a constant depending on some or all of k, β, δ, ηy we
obtain from Holder's inequality and (15.3) that for k > 1
(15.6) {Γ(δ)Hδ(p)}k

^ 11 (1 - σ)k"(p - σ)!i-ίσk°'hk(σ)dσ\!λ (1 - σ)-k'"(ρ - σY~ίσ-k" 'dσ\

S Bpkslk'-km(l - Λ)M'fc'-*"C(l - σ)*"(o - σf-ισk"hk(σ)dσ ,
Jo



MEAN VALUES OF POWER SERIES 491

since μ > δ/k', δ > 0 and ω < I/A;'. If k = 1, the final inequality in
(15.6) holds trivially (where 1/k' is interpreted as 0). Writing

a = <5 + &ω — kη , c — kβ + kδjk' — &/* ,

we therefore obtain from (15.6) and (15.4) that for k^> 1

~ σy-1σkύ>hh(σ)dσ

J?Γ(1 - σ)hPσh°hh{σ)dσ\ρ~a(ρ - σ)8^! - ρ)-ιdρ
Jθ Jσ

[\l -
Jo

since α > < 5 > 0 , c > 0 , and this is the required inequality.
The relation of Lemma 3 to the case I = k of Theorem B can be

seen by substituting p ~ xftl + x), σ — y/(l + /̂) in (15.5), and setting
f(x) - (1 + a;)-1-5/^^! + x)), kη = - 1 - fcλ, kξ^k-kβ -kη -1.
We thus obtain

(15.7) ί+~(l + ^ ^ ^ - " - "
Jo

, δ, λ, £ ) ( + ( l +

J

where fc^l, δ > 0 , λ > - l , ί < 1 + λ, and Fδ is defined as in Theo-
rem B. For ξ ^ 0 this is an immediate consequence of Theorem B
with f(x) replaced by (1 + xYf(x), but for 0 < £ < l + λ i t requires
an independent proof. There is presumably an extension of (15.7)
with index I ^ k on the right, but we do not pursue this point.

Lemma 3 does not apply if k — 1, η = 0, and here we have an
almost trivial result, namely

LEMMA 4. Let h, Hδ be as in Lemma 3, and let β > 0, δ > 0.
Then

\\l - pf~mδ{ρ)dp S A{β, δ)\\ί -
Jo Jo

Consider now the proof of Theorem 16. In view of the definition
(14.4), it is enough to prove the inequality (15.1) when 0 < β < y < 1
and when β ^ l and [β] ^ β < i ^ [β] + 1. It is therefore enough
to prove it when [7] = [β] and when 7 — [β] + 1.

If [7] = [β], then, by (14.5),

I D3φ(peίθ) I ̂  [P(p - ay-?-1 \ D?φ(σeiθ) \ dσ .
Γ(Ύ — β) J°
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For k = 1 we have only to apply Lemma 4 with δ = y — β. For k > 1
we apply Lemma 3 with δ = j — β, rj = (7 — [τ])(l — 1/fc); this gives

('(1 - n)*/Wn<*-iH^[fl>-« I Dβφ(peiθ) \kdp
Jo

l - p)*'-1^*-1^-™ I Drφ(peiθ) \kdp ,

and this obviously implies (15.1) for this case.
If 7 = [β] + 1, then (14.5) gives

) I ^

Here we have only to apply Lemma 3 with Ύ] = 0, and again we ob-
tain the required result.

16. Lemma 3 enables us also to prove a theorem similar to
Theorem 16 for the function gk}β defined by (5.5).

THEOREM 17. // k > 1, 7 > β > 0, then for each θ

(16.1) gk,β(θ) ^ Mk, β, Ί)gk,7{0) .

Let δ = 7 — β. I t is clearly enough to prove (16.1) when δ <£ 1.
Since &βφ = ΰ δ(ΰ rφ), we then have (exactly as in the proof of Theorem 1)

\P | dσ .

Applying now Lemma 3 with η = 0, we obtain (16.1).

17* In view of Theorem 16, the argument of §7 can be applied
to Gklβ, and gives a result corresponding to Theorem 3. However, we
can cover a number of such cases by using Theorem 3 directly, and
we conclude with a proof of this. There are similar analogues of
Theorems 4, 9 and 10.

THEOREM 18. Let p > 0, β > 0, μ = max {0, 1/p — 1}, and let

(dn) be a sequence of numbers such that, as n —* 00

(17.1) dn = nβΣ <*W~» + O(nβ~m~ι) ,
!/=0

where m is a fixed integer such that m > μ, and aOy •••,&„, are fixed
numbers. Let also φ be defined as usual, let χ(z) — ΣΓ=i cndnz

n, and
let
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(17.2) ;;;;
Tϊ '

where c is bounded on the interval [<?, 1] for 0 < δ < 1, and the in-
tegral in (17.2) is convergent at 0. Then for k ̂  2

^fp(Γkyβ) g A(k, p, β)^P(φ) .

We may obviously suppose that <p(0) = c0 = 0. Let C = ^p(φ),
let J5 denote a constant depending on some or all of k, p, β, and write

S l/2 f 1

+ I =J,
0 Jl/2

By Theorem D, | cn \ ̂  ,BC%J«, and since | dw | ^ An^, it follows that
I χ(peiθ) I ̂  BC ô for 0 ̂  ^ ^ 1/2, whence also J, ^

Next, by (17.1), we can write

Here

w = l w = l

if /3 + j« — m ̂  0, where 7 = max {0, /? + μ — m}, and

\ζ(peiθ)\ <^BC log (1/(1-p))

if β-\-μ — m = Q. Hence in either case

i£ BCk .Γ fbg A-)
J1/2V pJ

Using Theorem 3, it follows now that

Λ&p(Γk,β) ^BC + B Σ

A simple argument shows also that

^p(^φ)^^9(φ) (y = l , 2 , . " ) ,

and this completes the proof.
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