CHARACTERISTIC POLYNOMIALS OF SYMMETRIC MATRICES

EDWARD A. BENDER

Let F be a field and p an F-polynomial. We say that p is F-real if and only if every real closure of F contains the splitting field of p over F. Our main purpose is to prove

THEOREM 1. Let F be an algebraic number field and pa monic F-polynomial with an odd degree factor over F. Then p is F-real if and only if it is the characteristic polynomial of a symmetric F-matrix.

That p must be F-real follows from work of Krakowski [4, Satz 3.3]. To prove the coverse we generalize results of Sapiro [6] in Lemma 1 and Theorem 3. Sapiro deals with the case in which p is a cubic. Theorem 4 considers the minimum dimension of symmetric matrices with a given root.

2. A basic lemma. In our proof we shall study congruence classes of certain symmetric matrices which are defined below. We shall denote congruence of the matrices A and B over the field F (i.e., A = TBT' for some nonsingular F-matrix T) by $A \sim B(F)$.

DEFINITION. Let G be a field with subfield F. If $\lambda \in G$ is nonzero and if $\alpha_1, \dots, \alpha_n$ form a basis for G (as a vector space) over F, define the matrices $M = ||\alpha_i^{(j)}||$ and $D(\lambda) = \text{diag}(\lambda^{(1)}, \dots, \lambda^{(n)})$ where superscripts denote conjugacy over F. We call

$$A = A(\lambda) = MD(\lambda)M'$$

a matrix from G to F. Clearly

$$a_{ij} = \operatorname{tr}_{G/F}(\lambda \alpha_i \alpha_j)$$
.

If $\mathscr{A} = \Sigma \bigoplus G_i$ where the G_i are extension fields of F, and if A_i is a matrix from G_i to F, then any matrix congruent to $\Sigma \bigoplus A_i$ over Fis called a matrix from \mathscr{A} to F. Note that a different choice for the basis $\alpha_1, \dots, \alpha_n$ would lead to a matrix congruent to $A(\lambda)$ over F.

LEMMA 1. Let F be a field and $p = q_1 \cdots q_m$ a monic F-polynomial decomposed into prime factors over F. Assume that the splitting field of p over F is a separable extension of F. If the identity is a matrix from

$$\sum_{1}^{m} \bigoplus F[x]/(q_{i}))$$

to F, then p is the characteristic polynomial of a symmetric F-matrix.

Proof. Let $D = \Sigma \bigoplus D(\lambda_i)$ and $M = \Sigma \bigoplus M_i$ where the *i*th component refers to $F[x]/(q_i(x))$. We have TT' = MDM' for some *F*-matrix *T*. Let $E = \Sigma \bigoplus D(\theta_i)$ where θ_i is a zero of q_i . By separability *M* is nonsingular. We have $T^{-1}MD = (M^{-1}T)'$. Let

$$S = T^{-1}(MEM^{-1})T$$
.

Then

$$egin{aligned} S' &= (M^{-1}T)'E(T^{-1}M)' \ &= (T^{-1}M)ED(T^{-1}M)' \ &= (T^{-1}M)E(T^{-1}MD)' \ &= (T^{-1}M)E(M^{-1}T) \ &= S \ . \end{aligned}$$

Also $|S - \lambda I| = |E - \lambda I| = \pm p(\lambda)$. Finally, S is an F-matrix since $M_i^{-1} = ||\beta_i^{(j)}||$ where $\vec{\beta}$ is the complementary basis to $\vec{\alpha}$ [2, p. 437].

3. The irreducible case. In this section we shall reduce the proof of Theorem 1 to a study of the prime factors of p over F. This requires the Hasse-Minkowski Theorem. The Hilbert symbol over a local field L will be written $(a, b/L) = (a, b) = \pm 1$. If A is a symmetric L matrix and $A \sim \Sigma \bigoplus a_i(L)$, then

$$c(A/L) = c(A) = \prod_{i \leq j} (a_i, a_j)$$

is the Hasse invariant. If A is a nonsingular symmetric matrix over an algebraic number field F, then we have dim A and det A = |A|as global invariants, $c(A/F_p)$ as Hasse invariants, and $\operatorname{ind}^+(A/F_p)$ as real archimedean invariants where $\operatorname{ind}^+(A/F_p)$ is the number of positive a_i in $A \sim \Sigma \bigoplus a_i(F_p)$.

THEOREM 2. Let F be an algebraic number field and q an F-real irreducible F polynomial of degree n. Let K = F[x]/(q(x)) and let k be a rational integer.

(1) If n is odd, the identity is a matrix from K to F.

(2) If n is even, there is a matrix A from K to F which has the same archimedean invariants as the identity and satisfies $c(A)(|A|, -1)^{k} = +1$ at all local completions of F.

The next two sections develop the ideas needed in the proof of this theorem. We now prove Theorem 1 from Lemma 1 and Theorem 2.

Let $p = q_1 \cdots q_s r_1 \cdots r_t$ be the prime factorization of p over Fwhere the degree d_i of q_i is odd and the degree e_i of r_i is even. By assumption $s \neq 0$. Let A_i be the matrix from $F[x]/(r_i(x))$ to F given by Theorem 2 (2) with

$$k = k(i) = \left(\sum_{j=1}^{i-1} e_j + d_1 - 1\right) / 2$$
 .

Let B_0 be the d_1 dimensional identity matrix—a matrix from $F[x]/(q_1(x))$ to F by Theorem 2(1)—and let

$$B_i = |\,A_i\,|\,B_{i-1} igoplus A_i$$
 .

By induction, the Hasse-Minkowski Theorem gives $B_i \sim I(F)$. Thus the identity is a matrix from

$$F[x]/(q_i(x)) \oplus \sum_{i=1}^r \oplus F[x]/(r_i(x))$$

to F. By Theorem 2 (1), the identity is a matrix from $F[x]/(q_i(x))$, so an application of Lemma 1 proves Theorem 1.

4. The local case. In this section we reduce the proof of theorems having the form of Theorem 2 to local considerations.

THEOREM 3. Let F be an algebraic number field and q an F-real irreducible F-polynomial. Let $\alpha_1, \dots, \alpha_n$ be algebraic integers in G = F[x]/(q(x)) which are a basis for G over F. Let $M = ||\alpha_i^{(j)}||$ and let Ω be the set of prime spots on F which divide $2 |M|^2$. Suppose that for each $\mathfrak{p} \in \Omega$ there is given a matrix $A(\lambda_{\mathfrak{p}})$ from $F_{\mathfrak{p}}[x]/(q(x))$ to $F_{\mathfrak{p}}$. Then there is a matrix $A = A(\lambda)$ from G to F and a local prime spot $q \notin \Omega$ on F such that

(1) if $\mathfrak{p} \in \Omega$, then

$$c(A/F_{\mathfrak{p}}) = c(A(\lambda_{\mathfrak{p}})/F_{\mathfrak{p}})$$
 ,

and

$$|A(\lambda_{\mathfrak{p}})|/|A|\in F_{\mathfrak{p}}^{2}$$
 ,

the group of squares in $F_{\mathfrak{p}}$

(2) if $\mathfrak{p} \notin \Omega$ is a local prime spot on F distinct from \mathfrak{q} , then $c(A/F_{\mathfrak{p}}) = +1$ and |A| is a unit of $F_{\mathfrak{p}}$;

(3) A has the same real archimedean invariants as the identity matrix of the same dimension.

Proof. If we change the basis used in forming $A(\lambda_p)$ and change λ_p by a square factor, then $c(A(\lambda_p))$ and $|A(\lambda_p)| \cdot F_p^2$ will be unchanged.

Hence we may assume that $\alpha_1, \dots, \alpha_n$ is the basis for all \mathfrak{p} and that $\lambda_{\mathfrak{p}}$ is integral at \mathfrak{p} .

There is a sufficiently large positive rational integer m such that

 $\lambda_{\scriptscriptstyle 0} \equiv \lambda_{\frak p} \ ({
m mod} \ \frak p^m) \qquad {
m for} \ \frak p \in {\it Q}$,

implies

$$c(A(\lambda_{\mathfrak{o}})/F_{\mathfrak{p}}) = c(A(\lambda_{\mathfrak{p}})/F_{\mathfrak{p}}) \qquad ext{for } \mathfrak{p} \in arOmega \;,$$

and

$$|A(\lambda_{\mathfrak{p}})|/|A(\lambda_{\mathfrak{0}})|\in F_{\mathfrak{p}}^{2}$$
 for $\mathfrak{p}\in arOmega$.

Choose λ_0 such that

(i) λ_0 is an integer of G

(ii) $\lambda_0 \equiv \lambda_p \pmod{\mathfrak{p}^m}$ for $\mathfrak{p} \in \Omega$

(iii) if F is formally real, λ_0 is totally positive. Let $\mathfrak{M} = \Pi_{\mathfrak{Q}}\mathfrak{p}^m$. For each local prime spot \mathfrak{P} on G let $k(\mathfrak{P})$ be the largest rational integer such that $\mathfrak{P}^{k(\mathfrak{P})}$ divides λ_0 . Let

$$\mathfrak{U}=\prod_{\mathfrak{P}|\mathfrak{p}^{c,\mathcal{Q}}}\mathfrak{P}^{k(\mathfrak{P})}$$
 .

Then λ_0/\mathfrak{U} is prime to \mathfrak{M} . By the generalized arithmetic progression theorem [1, Satz 13], there is an $\alpha \in G$ and a prime spot \mathfrak{O} on G such that

(i)
$$(\alpha \lambda_0/\mathfrak{U}) = \mathfrak{O}$$
,

(ii) $\alpha \equiv 1 \pmod{\mathfrak{M}}$,

(iii) if F is formally real, α is totally positive.

Let $\lambda = \alpha \lambda_0$ and let q be the prime spot on F which \mathfrak{O} divides. Since $\lambda \equiv \lambda_0 \equiv \lambda_p(\mathfrak{p}^m)$, part (1) holds. Since λ is totally positive if F is formally real, (3) holds. Since $A(\lambda)$ has integral entries and $|A(\lambda)| = N(\mathfrak{Oll}) |M|^2$, a unit of $F_{\mathfrak{p}}$ for $\mathfrak{p} \notin \Omega \bigcup {\mathfrak{q}}$, part (2) holds by [5, 92: 1].

5. Local lemmas. In this section we prove a series of lemmas. They will be used together with Theorem 3 to prove Theorem 2. Throughout this section we shall let L be a local field with prime spot \mathfrak{p} and characteristic zero; further, $K = K_1, K_2, \dots, K_m$ will be finite algebraic extensions of L.

LEMMA 2. If \mathfrak{p} is prime to 2, there is a matrix A from $\Sigma \bigoplus K_i$ to L with integer entries and unit determinant.

Proof. It suffices to exhibit such a matrix from K to L. Let $\alpha_1, \dots, \alpha_n$ be a free basis for the integers of K_i over the integers of L. Let $M = || \alpha_i^{(j)} ||$. The matrix M'^{-1} has the form $|| \beta_i^{(j)} ||$ where

436

 β_1, \dots, β_n is the complementary basis [2, p. 437] to $\alpha_1, \dots, \alpha_n$. Let Π be a prime of K. The ideal $(\beta_1, \dots, \beta_n)$ equals (Π^k) for some rational integer k. Since $(\alpha_1, \dots, \alpha_n) = (1)$, there is a matrix A, whose elements are integers of L and whose determinant is an L unit, satisfying $MD(\Pi^k) = AM'^{-1}$.

For the remainder of this section we shall assume that \mathfrak{p} divides 2.

LEMMA 3. If [K: L] is odd, the identity is a matrix from K to L.

Proof. Let T be the inertia subextension of L. Suppose that the identity is a matrix from T to L, namely $M_1D_1M'_1$, and that the identity is a matrix from K to T, namely $M_2D_2M'_2$. Then the identity is a matrix from K to L, namely

$$(M_1\otimes M_2)(D_1\otimes D_2)(M_1\otimes M_2)'$$
 .

We first show that the identity is a matrix from T to L. Let $M_1 = || \alpha_i^{(j)} ||$ where $\alpha_1, \dots, \alpha_f$ is a basis for T over L. Set $A = M_1 M'_1$. Since T is a cyclic extension of L, we have $A \sim I(T)$. Since [T: L] is odd, it follows that $A \sim I(L)$.

We now show that the identity is a matrix from K to T. Let Π be a prime of K such that $\Pi^e = \pi$, a prime of T, where e = [K: T] is odd. Let $\alpha_i = \Pi^{i-1}$ and $M_2 = || \alpha_i^{(j)} ||$ and $a = (e^2 - 1)/8$. There are two cases.

- (i) If $(-1, -1/T)^a = +1$, let $\lambda = 1/e$,
- (ii) If $(-1, -1/T)^a = -1$, let

 $\lambda = (1 + \Pi^{-1} + 4\Pi^{-2})/e.$

Set $A = |B| \cdot B$ where $B = M_2 D(\lambda) M'_2$. In case (i) it is easily verified that c(A) = +1.

We consider case (ii). Since $(-1, -1)^a = -1$, it follows that $e \equiv \pm 3 \pmod{8}$. Also, as

$$- \Bigl(rac{1-\sqrt{-3}}{2} \Bigr)^2 - \Bigl(rac{1+\sqrt{-3}}{2} \Bigr)^2 = 1$$
 ,

we have $f(T(\sqrt{5})/T) = 2$ (see [5, 63:3]). Thus $(\pi, 5) = -1$ and $(\varepsilon, 5) = +1$ for any unit ε of T. When e = 3 it is easily shown that c(A) = +1. Assume e > 3. The matrix B has the form shown in Figure I. We shall use the formula [3, p. 31]:

$$c(C_m) = (-1, |C_m|) \prod_{i=1}^{m-1} (|C_i|, - |C_{i+1}|),$$

if $\prod_{i=1}^{m} |C_i| \neq 0$, where $C_i = ||c_{st}|| \ (1 \leq s, t \leq i)$.

We must transform B. Let X be the $e \times e$ matrix such that premultiplication by X adds π^{-1} times the $(e - k + 2)^{nd}$ row to the k^{th} row for $k = 4, 6, 8, \dots, 4[e/8] + 2$ and leaves the remaining rows unchanged. Let C = XBX'. By studying $(X_i)^{-1}C_i(X_i)'^{-1}$, we find that

- (i) $|C_{2i+1}| \in (-1)^i T^2$ for 2i+1 < e,
- (ii) $|C_{e-1}| \in (-1)^{(e-1)/2} 5T^2$,
- (iii) $|C_e| = \pi^{e-2} \varepsilon$ for some unit ε of T,
- (iv) $\Pi_1^e |C_i| \neq 0$.

It therefore follows that

- $(\ {\rm i} \) \quad (| \ C_{2i-1} |, \ -| \ C_{2i} \ |) (| \ C_{2i} |, \ -| \ C_{2i+1} \ |) = (-1)^{i-1} \ {\rm for} \ \ 2i \ + \ 1 < e,$
- (ii) $(|C_{e-2}|, -|C_{e-1}|) = (-1)^{(e-3)/2}$,
- (iii) $(|C_{e^{-1}}|, -|C_e|) = (-1)^{(e^{-1})/2} (-1, |C_e|)^{(e^{-1})/2}.$

Thus

$$\begin{aligned} c(A) &= C(B)(-1, |B_{\perp}|)^{(e+1)/2} \\ &= c(C_{e})(-1, |C_{e}|)^{(e+1)/2} \\ &= +1 \quad \text{since} \quad e \equiv \pm 3 \pmod{8} . \end{aligned}$$

LEMMA 4. If $L^2 \supseteq N(K/L)$, the norm group of K over L, then the identity is a matrix from K to L.

Proof. We make some preliminary observations. Let T_i be a subfield of K (to be specified later) such that $N(K/T_i) \subseteq T_i^2$. Let T_i^* be the multiplicative group of T_i . Let H be the maximum abelian subextension of T_i in K of type $(2, 2, \dots, 2)$. By the reciprocity and limitation theorems of class field theory [7, pp. 177, 180], the Galois group of H over T_i is isomorphic to

$$(T_i^*/N(K/T_i))/(T_i^*/N(K/T_i))^2$$
 .

Since $N(K/T_i) \subseteq T_i^{*2}$, this is isomorphic to T_i^*/T_i^{*2} . Hence $[T_i^*: T_i^{*2}] =$

[*H*: T_i] which divides [*K*: T_i]. By [5, 63: 9], 8 divides [T_i^* : T_i^{*2}]. Thus (i) [*K*: T_i] $\equiv 0 \pmod{8}$.

Since $N(H/T_i) \subseteq T_i^2$, we have that $f(H/T_i) > 1$. Since $[H: T_i]$ is a power of 2 and $K \supseteq H$, we have

(ii) $f(K/T_i) \equiv 0 \pmod{2}$.

Suppose $K = T_i(\theta)$. Let $\alpha_i = \theta^{i-1}$ and $M = || \alpha_i^{(j)} ||$. If $\lambda \in K$ we have

$$| \ MD(\lambda)M' | = N_{{\scriptscriptstyle K}/{\scriptscriptstyle T}_i} \Bigl(\lambda \prod_{i
eq i} (heta^{\scriptscriptstyle (1)} - heta^{\scriptscriptstyle (i)}) \Bigr) \in T^2_i \;,$$

by the formula for a van der Monde determinant and $N(K/T_i) \subseteq T_i^2$. Hence

(iii) if C is a matrix from K to T_i , then $|C| \in T_i^2$.

We now apply the above observations. Let T be the inertia subextension of L. Construct the tower

$$L = T_{\scriptscriptstyle 0} \subset T_{\scriptscriptstyle 1} \subset \cdots \subset T_{\scriptscriptstyle k} \subseteq T$$
 ,

where $[T_j: T_{j-1}] = 2$ for $1 \leq j \leq k$ and $[T: T_k]$ is odd. Since $f(K/T_k)$ is odd, we have $N(K/T_k) \not\subseteq T_k^2$ by (ii). Hence we may choose i such that $N(K/T_i) \subseteq T_i^2$ and $N(K/T_{i+1}) \not\subseteq T_{i+1}^2$. (Actually i = k - 1, but this is irrelevant.) Suppose the identity is a matrix from K to T_i . Let B be a matrix from T_i to L. Then $A = I \otimes B$ is a matrix from K to L. By (i) we have dim $I \equiv 0 \pmod{4}$. Hence $|A| \in L^2$ and c(A/L) = +1 by the formula.

$$(*) \quad c(X \otimes Y) = c(X)^{y} c(Y)^{x} (-1, |X|)^{y(y-1)/2} (-1, |Y|)^{x(x-1)/2} (|X|, |Y|)^{xy+1}$$

where X, Y are symmetric matrices, $x = \dim X$ and $y = \dim Y$. It suffices to show that the identity is a matrix from K to T_i .

Let C be a matrix from K to T_{i+1} with $|C| \notin T_{i+1}^2$. (This can be done since $N(K/T_{i+1}) \not\subseteq T_{i+1}^2$.) We have $C \sim I \oplus -1 \oplus s \oplus t$ where $s, t \in T_{i+1}$ by [5, 63: 17]. Let $e \in T_i$ be such that $T_{i+1} = T_i(\sqrt{e})$. Let $M = \left\| \frac{1}{\sqrt{e}} - \frac{1}{\sqrt{e}} \right\|$ and E(q) = MD(q)M' for $q \in T_{i+1}$. We have that

$$S(r) = (I \oplus -1) \otimes E(r) \oplus E(rs) \oplus E(rt)$$

is a matrix from K to T_i for nonzero $r \in T_{i+1}$. By (iii) we have $|S(r)| \in T_i^2$. Since

$$\dim (I \oplus -1) = \dim S(r)/2 - 2 \equiv 2 \pmod{4}$$
 by (i),

we have

$$|(I \oplus -1) igotimes E(r)| \in T_i^2$$
 ,

Hence $|E(rs)| \in |E(rt)| \cdot T_i^2$. Thus

$$c(S(r)) = c((I \oplus -1) \otimes E(r))c(E(rs))c(E(rt))(|E(rs)|, -1))$$

= (-1, -1)c(E(rs))c(E(rt))(|E(rs)|, -1) by (*).

Any $q \in T_{i+1}$ has the form $a + b\sqrt{e}$ with $a, b \in T_i$. Write $q_1 = a$. If $q_1 \neq 0$, then

$$c(E(q)) = (2q_1, - | E(q) |)(-1, | E(q) |)$$
.

If $(rs)_1(rt)_1 \neq 0$, we have

$$c(S(r)) = (-(rs)_1(rt)_1, - |E(rs)|)$$
.

We may choose $r = s^{-1}(l + \sqrt{e})^2 \sqrt{e}$ with l = 0, 1, or 4 such that $(rs)_1(rt)_1 \neq 0$. Since $-|E(rs)| \in T_i^2$, we have c(S(r)) = +1.

LEMMA 5. If $\sum_{i=1}^{m} [K_i: L]$ is odd, the identity is a matrix from $\sum_{i=1}^{m} \bigoplus K_i$ to L.

Proof. By Lemmas 3 and 4 we are done unless $[K_i: L] = d$ is even and $N(K_i/L) \not\subseteq L^2$ for some *i*. Suppose that this is the case. Since $N(K_i/L) \not\subseteq L^2$, there is a matrix *B* from K_i to *L* such that $(-1)^{d/2}|B| \notin L^2$. Let *C* be a matrix from $\sum_{j \neq i} \bigoplus K_j$ to *L*. Let

 $A = |B| \cdot |C| \cdot C \oplus aB$

where $a \in L$ is chosen so that

$$c(A) = c(|B| \cdot |C| \cdot C)(|B|, -1)c(B)(a, (-1)^{d/2}|B|) = +1$$
.

LEMMA 6. If $\Sigma_1^m[K_i; L]$ is even, $N(K_1/L) \not\subseteq L^2$, and k is a rational integer, then there is a matrix A from $\Sigma_1^m \bigoplus K_i$ to L such that $c(A)(|A|, -1)^k = +1$.

Proof. Let B be a matrix from $\Sigma_1^m \bigoplus K_i$ to L such that $(-1)^n |B| \notin L^2$ where $n = \Sigma_1^m [K_i; L]/2$. Let A = aB where $a \in L$ is chosen so that $c(A)(|A|, -1)^k = c(B)(|B|, -1)^k(a, (-1)^n |B|) = +1$.

6. Proof of Theorem 2. If *n* if odd, apply Lemmas 2 and 5. Let *B* be the matrix given by Theorem 3. Define $A = |B| \cdot B$. If *n* is even, apply Lemmas 2, 3, 4 and 6. Let *A* be the matrix given by Theorem 3. In both cases, behavior at the exceptional spot is handled by the Hilbert reciprocity formula [5, p. 190].

7. Matrices with given roots. We prove

THEOREM 4. Let F be an algebraic number field. Let θ be the root of an irreducible F-polynomial q of degree n. Then θ is the

characteristic root of some symmetric F-matrix if and only if q is F-real. When such a matrix exists, it may be chosen to have dimension n or n + 1, whichever is odd. This dimension is the least possible

- (1) if n is odd or
- (2) if $n \equiv 2 \pmod{4}$ and $(-1) \notin N(F(\theta)/F) \cdot F^2$.

Proof. Use Theorem 1 with p(x) = q(x) or xq(x). The result is clearly best possible when n is odd. Suppose $n \equiv 2(4)$ and n is least possible. Let $\alpha_i = \theta^{i-1}$ and $M = || \alpha_i^{(j)} ||$. By the converse of Lemma 1 when p does not have repeated roots (see [6, Lemma 1.1] for a proof), there is an *F*-matrix T and a $\lambda \in F(\theta)$ such that $MD(\lambda)M' = TT'$. Noting that $|MM'| = -N(p'(\theta))$, we get

$$-1 \in N(F(heta)/F) m{\cdot} F^2$$
 .

By class field theory, for all $n \equiv 2(4)$ there exist F and θ such that n + 1 is the least possible dimension.

I would like to thank Drs. O. Taussky and E. C. Dade for their assistance.

References

1. H. Hasse, Bericht Über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper I, Jber. Deutsch. Math.-Verein. **35** (1926), 1-55.

2. ____, Zahlentheorie, 2nd ed., Akademie-Verlag, Berlian, 1963.

3. B. W. Jones, The arithmetic theory of quadratic forms, Carus Monograph v. 10, Math. Assn. Amer., 1950.

4. F. Krakowski, Eigenverte und Minimalpolynome symmetrischer Matrizen in kommutativen Körpern, Comment. Math. Helv. **32** (1958), 224-240.

5. O. T. O'Meara, Introduction to quadratic forms, Grund. Math. Wiss. v. 117, Academic Press Inc., New York, 1963.

6. A. P. Sapiro, Characteristic polynomials of symmetric matrices (Russian), Sibirsk. Mat. Z., 3 (1962), 280-291.

7. J.-P. Serre, Corps locaux, Hermann, Paris, 1962.

HARVARD UNIVERSITY

Received August 15, 1966. This extends a part of my doctoral dissertation written as a National Science Foundation fellow under Dr. O. Taussky at the California Institute of Technology.