CHARACTERISTIC POLYNOMIALS OF SYMMETRIC MATRICES

Edward A. Bender

Let F be a field and p an F-polynomial. We say that p is F-real if and only if every real closure of F contains the splitting field of p over F. Our main purpose is to prove

Theorem 1. Let F be an algebraic number field and p a monic F-polynomial with an odd degree factor over F. Then p is F-real if and only if it is the characteristic polynomial of a symmetric F-matrix.

That p must be F-real follows from work of Krakowski [4, Satz 3.3]. To prove the coverse we generalize results of Sapiro [6] in Lemma 1 and Theorem 3. Sapiro deals with the case in which p is a cubic. Theorem 4 considers the minimum dimension of symmetric matrices with a given root.
2. A basic lemma. In our proof we shall study congruence classes of certain symmetric matrices which are defined below. We shall denote congruence of the matrices A and B over the field F (i.e., $A=T B T^{\prime}$ for some nonsingular F-matrix T) by $A \sim B(F)$.

Definition. Let G be a field with subfield F. If $\lambda \in G$ is nonzero and if $\alpha_{1}, \cdots, \alpha_{n}$ form a basis for G (as a vector space) over F, define the matrices $M=\left\|\alpha_{i}^{(j)}\right\|$ and $D(\lambda)=\operatorname{diag}\left(\lambda^{(1)}, \cdots, \lambda^{(n)}\right)$ where superscripts denote conjugacy over F. We call

$$
A=A(\lambda)=M D(\lambda) M^{\prime}
$$

a matrix from G to F. Clearly

$$
a_{i j}=\operatorname{tr}_{G / F}\left(\lambda \alpha_{i} \alpha_{j}\right)
$$

If $\mathscr{A}=\Sigma \oplus G_{i}$ where the G_{i} are extension fields of F, and if A_{i} is a matrix from G_{i} to F, then any matrix congruent to $\Sigma \bigoplus A_{i}$ over F is called a matrix from \mathscr{A} to F. Note that a different choice for the basis $\alpha_{1}, \cdots, \alpha_{n}$ would lead to a matrix congruent to $A(\lambda)$ over F.

Lemma 1. Let F be a field and $p=q_{1} \cdots q_{m}$ a monic F-polynomial decomposed into prime factors over F. Assume that the splitting field of p over F is a separable extension of F. If the identity is a matrix from

$$
\left.\sum_{i}^{m} \oplus F[x] /\left(q_{i}\right)\right)
$$

to F, then p is the characteristic polynomial of a symmetric F-matrix.
Proof. Let $D=\Sigma \oplus D\left(\lambda_{i}\right)$ and $M=\Sigma \oplus M_{i}$ where the $i^{\text {th }}$ component refers to $F[x] /\left(q_{i}(x)\right)$. We have $T T^{\prime}=M D M^{\prime}$ for some F matrix T. Let $E=\Sigma \oplus D\left(\theta_{i}\right)$ where θ_{i} is a zero of q_{i}. By separability M is nonsingular. We have $T^{-1} M D=\left(M^{-1} T\right)^{\prime}$. Let

$$
S=T^{-1}\left(M E M^{-1}\right) T
$$

Then

$$
\begin{aligned}
S^{\prime} & =\left(M^{-1} T\right)^{\prime} E\left(T^{-1} M\right)^{\prime} \\
& =\left(T^{-1} M\right) E D\left(T^{-1} M\right)^{\prime} \\
& =\left(T^{-1} M\right) E\left(T^{-1} M D\right)^{\prime} \\
& =\left(T^{-1} M\right) E\left(M^{-1} T\right) \\
& =S .
\end{aligned}
$$

Also $|S-\lambda I|=|E-\lambda I|= \pm p(\lambda)$. Finally, S is an F-matrix since $M_{i}^{-1}=\left\|\beta_{i}^{(j)}\right\|$ where $\vec{\beta}$ is the complementary basis to $\vec{\alpha}$ [2, p. 437].
3. The irreducible case. In this section we shall reduce the proof of Theorem 1 to a study of the prime factors of p over F. This requires the Hasse-Minkowski Theorem. The Hilbert symbol over a local field L will be written $(a, b / L)=(a, b)= \pm 1$. If A is a symmetric L matrix and $A \sim \Sigma \bigoplus a_{i}(L)$, then

$$
c(A / L)=c(A)=\prod_{i \leqq j}\left(a_{i}, a_{j}\right)
$$

is the Hasse invariant. If A is a nonsingular symmetric matrix over an algebraic number field F, then we have $\operatorname{dim} A$ and $\operatorname{det} A=|A|$ as global invariants, $c\left(A / F_{\mathfrak{p}}\right)$ as Hasse invariants, and $\operatorname{ind}^{+}\left(A / F_{\mathfrak{p}}\right)$ as real archimedean invariants where ind ${ }^{+}\left(A / F_{\mathfrak{p}}\right)$ is the number of positive a_{i} in $A \sim \Sigma \oplus a_{i}\left(F_{\mathfrak{p}}\right)$.

Theorem 2. Let F be an algebraic number field and q an F-real irreducible F polynomial of degree n. Let $K=F[x] /(q(x))$ and let k be a rational integer.
(1) If n is odd, the identity is a matrix from K to F.
(2) If n is even, there is a matrix A from K to F which has the same archimedean invariants as the identity and satisfies $c(A)(|A|,-1)^{k}=+1$ at all local completions of F.

The next two sections develop the ideas needed in the proof of this theorem. We now prove Theorem 1 from Lemma 1 and Theorem 2.

Let $p=q_{1} \cdots q_{s} r_{1} \cdots r_{t}$ be the prime factorization of p over F where the degree d_{i} of q_{i} is odd and the degree e_{i} of r_{i} is even. By assumption $s \neq 0$. Let A_{i} be the matrix from $F[x] /\left(r_{i}(x)\right)$ to F given by Theorem 2 (2) with

$$
k=k(i)=\left(\sum_{j=1}^{i-1} e_{j}+d_{1}-1\right) / 2
$$

Let B_{0} be the d_{1} dimensional identity matrix-a matrix from $F[x] /\left(q_{1}(x)\right)$ to F by Theorem 2(1)-and let

$$
B_{i}=\left|A_{i}\right| B_{i-1} \oplus A_{i}
$$

By induction, the Hasse-Minkowski Theorem gives $B_{i} \sim I(F)$. Thus the identity is a matrix from

$$
F[x] /\left(q_{1}(x)\right) \oplus \sum_{i=1}^{r} \oplus F[x] /\left(r_{i}(x)\right)
$$

to F. By Theorem $2(1)$, the identity is a matrix from $F[x] /\left(q_{i}(x)\right)$, so an application of Lemma 1 proves Theorem 1.
4. The local case. In this section we reduce the proof of theorems having the form of Theorem 2 to local considerations.

Theorem 3. Let F be an algebraic number field and q an F-real irreducible F-polynomial. Let $\alpha_{1}, \cdots, \alpha_{n}$ be algebraic integers in $G=F[x] /(q(x))$ which are a basis for G over F. Let $M=\left\|\alpha_{i}^{(j)}\right\|$ and let Ω be the set of prime spots on F which divide $2|M|^{2}$. Suppose that for each $\mathfrak{p} \in \Omega$ there is given a matrix $A\left(\lambda_{\mathfrak{p}}\right)$ from $F_{\mathfrak{p}}[x] /(q(x))$ to $F_{\mathfrak{p}}$. Then there is a matrix $A=A(\lambda)$ from G to F and a local prime spot $\mathfrak{q} \notin \Omega$ on F such that
(1) if $\mathfrak{p} \in \Omega$, then

$$
c\left(A / F_{\mathfrak{p}}\right)=c\left(A\left(\lambda_{\mathfrak{p}}\right) / F_{\mathfrak{p}}\right),
$$

and

$$
\left|A\left(\lambda_{\mathfrak{p}}\right)\right| /|A| \in F_{\mathfrak{p}}^{2}
$$

the group of squares in F_{p}
(2) if $\mathfrak{p} \notin \Omega$ is a local prime spot on F distinct from \mathfrak{q}, then $c\left(A / F_{p}\right)=+1$ and $|A|$ is a unit of $F_{\mathfrak{p}}$;
(3) A has the same real archimedean invariants as the identity matrix of the same dimension.

Proof. If we change the basis used in forming $A\left(\lambda_{p}\right)$ and change $\lambda_{\mathfrak{p}}$ by a square factor, then $c\left(A\left(\lambda_{\mathfrak{p}}\right)\right)$ and $\left|A\left(\lambda_{\mathfrak{p}}\right)\right| \cdot F_{\mathfrak{p}}^{2}$ will be unchanged.

Hence we may assume that $\alpha_{1}, \cdots, \alpha_{n}$ is the basis for all \mathfrak{p} and that $\lambda_{\mathfrak{p}}$ is integral at \mathfrak{p}.

There is a sufficiently large positive rational integer m such that

$$
\lambda_{0} \equiv \lambda_{\mathfrak{p}}\left(\bmod \mathfrak{p}^{m}\right) \quad \text { for } \mathfrak{p} \in \Omega,
$$

implies

$$
c\left(A\left(\lambda_{0}\right) / F_{\mathfrak{p}}\right)=c\left(A\left(\lambda_{\mathfrak{p}}\right) / F_{\mathfrak{p}}\right) \quad \text { for } \mathfrak{p} \in \Omega
$$

and

$$
\left|A\left(\lambda_{\mathfrak{p}}\right)\right| /\left|A\left(\lambda_{0}\right)\right| \in F_{\mathfrak{p}}^{2} \quad \text { for } \mathfrak{p} \in \Omega
$$

Choose λ_{0} such that
(i) λ_{0} is an integer of G
(ii) $\lambda_{0} \equiv \lambda_{\mathfrak{p}}\left(\bmod \mathfrak{p}^{m}\right)$ for $\mathfrak{p} \in \Omega$
(iii) if F is formally real, λ_{0} is totally positive. Let $\mathfrak{M}=\Pi_{a} \mathfrak{p}^{m}$. For each local prime spot \mathfrak{F} on G let $k(\mathfrak{P})$ be the largest rational integer such that $\mathfrak{P}^{k\left(\mathfrak{F}^{\prime}\right)}$ divides λ_{0}. Let

$$
\mathfrak{U}=\prod_{\mathfrak{B} \mathfrak{p} \in \Omega} \mathfrak{P}^{k(\mathfrak{F})}
$$

Then $\lambda_{0} / \mathfrak{U}$ is prime to \mathfrak{M}. By the generalized arithmetic progression theorem [1, Satz 13], there is an $\alpha \in G$ and a prime spot \mathfrak{D} on G such that
(i) $\left(\alpha \lambda_{0} / \mathfrak{U}\right)=\mathfrak{S}$,
(ii) $\alpha \equiv 1(\bmod \mathfrak{M})$,
(iii) if F is formally real, α is totally positive.

Let $\lambda=\alpha \lambda_{0}$ and let \mathfrak{q} be the prime spot on F which \mathfrak{O} divides. Since $\lambda \equiv \lambda_{0} \equiv \lambda_{p}\left(\mathfrak{p}^{m}\right)$, part (1) holds. Since λ is totally positive if F is formally real, (3) holds. Since $A(\lambda)$ has integral entries and $|A(\lambda)|=N(\mathfrak{O U})|M|^{2}$, a unit of $F_{\mathfrak{p}}$ for $\mathfrak{p} \notin \Omega \bigcup\{\mathfrak{q}\}$, part (2) holds by [5, 92: 1].
5. Local lemmas. In this section we prove a series of lemmas. They will be used together with Theorem 3 to prove Theorem 2. Throughout this section we shall let L be a local field with prime spot \mathfrak{p} and characteristic zero; further, $K=K_{1}, K_{2}, \cdots, K_{m}$ will be finite algebraic extensions of L.

Lemma 2. If \mathfrak{p} is prime to 2 , there is a matrix A from $\Sigma \bigoplus K_{i}$ to L with integer entries and unit determinant.

Proof. It suffices to exhibit such a matrix from K to L. Let $\alpha_{1}, \cdots, \alpha_{n}$ be a free basis for the integers of K_{i} over the integers of L. Let $M=\left\|\alpha_{i}^{(j)}\right\|$. The matrix $M^{\prime-1}$ has the form $\left\|\beta_{i}^{(j)}\right\|$ where
$\beta_{1}, \cdots, \beta_{n}$ is the complementary basis [2, p. 437] to $\alpha_{1}, \cdots, \alpha_{n}$. Let Π be a prime of K. The ideal $\left(\beta_{1}, \cdots, \beta_{n}\right)$ equals ($\left.\Pi^{k}\right)$ for some rational integer k. Since $\left(\alpha_{1}, \cdots, \alpha_{n}\right)=(1)$, there is a matrix A, whose elements are integers of L and whose determinant is an L unit, satisfying $M D\left(\Pi^{k}\right)=A M^{\prime-1}$.

For the remainder of this section we shall assume that \mathfrak{p} divides 2.

Lemma 3. If $[K: L]$ is odd, the identity is a matrix from K to L.

Proof. Let T be the inertia subextension of L. Suppose that the identity is a matrix from T to L, namely $M_{1} D_{1} M_{1}^{\prime}$, and that the identity is a matrix from K to T, namely $M_{2} D_{2} M_{2}^{\prime}$. Then the identity is a matrix from K to L, namely

$$
\left(M_{1} \otimes M_{2}\right)\left(D_{1} \otimes D_{2}\right)\left(M_{1} \otimes M_{2}\right)^{\prime}
$$

We first show that the identity is a matrix from T to L. Let $M_{1}=$ $\left\|\alpha_{i}^{(j)}\right\|$ where $\alpha_{1}, \cdots, \alpha_{f}$ is a basis for T over L. Set $A=M_{1} M_{1}^{\prime}$. Since T is a cyclic extension of L, we have $A \sim I(T)$. Since [$T: L$] is odd, it follows that $A \sim I(L)$.

We now show that the identity is a matrix from K to T. Let Π be a prime of K such that $\Pi^{e}=\pi$, a prime of T, where $e=[K: T]$ is odd. Let $\alpha_{i}=\Pi^{i-1}$ and $M_{2}=\left\|\alpha_{i}^{(j)}\right\|$ and $a=\left(e^{2}-1\right) / 8$. There are two cases.
(i) If $(-1,-1 / T)^{a}=+1$, let $\lambda=1 / e$,
(ii) If $(-1,-1 / T)^{a}=-1$, let
$\lambda=\left(1+\Pi^{-1}+4 \Pi^{-2}\right) / e$.
Set $A=|B| \cdot B$ where $B=M_{2} D(\lambda) M_{2}^{\prime}$. In case (i) it is easily verified that $c(A)=+1$.

We consider case (ii). Since $(-1,-1)^{a}=-1$, it follows that $e \equiv \pm 3(\bmod 8) . \quad$ Also, as

$$
-\left(\frac{1-\sqrt{-3}}{2}\right)^{2}-\left(\frac{1+\sqrt{-3}}{2}\right)^{2}=1
$$

we have $f(T(\sqrt{5}) / T)=2$ (see $[5,63: 3]$). Thus $(\pi, 5)=-1$ and $(\varepsilon, 5)=+1$ for any unit ε of T. When $e=3$ it is easily shown that $c(A)=+1$. Assume $e>3$. The matrix B has the form shown in Figure I. We shall use the formula [3, p. 31]:

$$
c\left(C_{m}\right)=\left(-1,\left|C_{m}\right|\right) \prod_{i=1}^{m-1}\left(\left|C_{i}\right|,-\left|C_{i+1}\right|\right)
$$

if $\Pi_{i=1}^{m}\left|C_{i}\right| \neq 0$, where $C_{i}=\left\|c_{s t}\right\|(1 \leqq s, t \leqq i)$.

Figure I.
We must transform B. Let X be the $e \times e$ matrix such that premultiplication by X adds π^{-1} times the $(e-k+2)^{\text {nd }}$ row to the $k^{\text {th }}$ row for $k=4,6,8, \cdots, 4[e / 8]+2$ and leaves the remaining rows unchanged. Let $C=X B X^{\prime}$. By studying $\left(X_{i}\right)^{-1} C_{i}\left(X_{i}\right)^{\prime-1}$, we find that
(i) $\left|C_{2 i+1}\right| \in(-1)^{i} T^{2}$ for $2 i+1<e$,
(ii) $\left|C_{e-1}\right| \in(-1)^{(e-1) / 2} 5 T^{2}$,
(iii) $\left|C_{e}\right|=\pi^{e-2} \varepsilon$ for some unit ε of T,
(iv) $\Pi_{1}^{e}\left|C_{i}\right| \neq 0$.

It therefore follows that
(i) $\quad\left(\left|C_{2 i-1}\right|,-\left|C_{2 i}\right|\right)\left(\left|C_{2 i}\right|,-\left|C_{2 i+1}\right|\right)=(-1)^{i-1}$ for $2 i+1<e$,
(ii) $\quad\left(\left|C_{e-2}\right|,-\left|C_{e-1}\right|\right)=(-1)^{(e-3) / 2}$,
(iii) $\quad\left(\left|C_{e-1}\right|,-\left|C_{e}\right|\right)=(-1)^{(e+1) / 2}\left(-1,\left|C_{e}\right|\right)^{(e-1) / 2}$.

Thus

$$
\begin{aligned}
c(A) & =C(B)(-1,|B|)^{(e+1) / 2} \\
& =c\left(C_{e}\right)\left(-1,\left|C_{e}\right|\right)^{(e+1) / 2} \\
& =+1 \quad \text { since } \quad e \equiv \pm 3(\bmod 8) .
\end{aligned}
$$

Lemma 4. If $L^{2} \supseteqq N(K / L)$, the norm group of K over L, then the identity is a matrix from K to L.

Proof. We make some preliminary observations. Let T_{i} be a subfield of K (to be specified later) such that $N\left(K / T_{i}\right) \subseteq T_{i}^{2}$. Let T_{i}^{*} be the multiplicative group of T_{i}. Let H be the maximum abelian subextension of T_{i} in K of type ($2,2, \cdots, 2$). By the reciprocity and limitation theorems of class field theory [7, pp. 177, 180], the Galois group of H over T_{i} is isomorphic to

$$
\left(T_{i}^{*} / N\left(K / T_{i}\right)\right) /\left(T_{i}^{*} / N\left(K / T_{i}\right)\right)^{2} .
$$

Since $N\left(K / T_{i}\right) \subseteq T_{i}^{* 2}$, this is isomorphic to $T_{i}^{*} / T_{i}^{* 2}$. Hence $\left[T_{i}^{*}: T_{i}^{* 2}\right]=$
[$H: T_{i}$] which divides $\left[K: T_{i}\right] . \quad$ By $[5,63: 9], 8$ divides $\left[T_{i}^{*}: T_{i}^{* 2}\right] . \quad$ Thus (i) $\left[K: T_{i}\right] \equiv 0(\bmod 8)$.

Since $N\left(H / T_{i}\right) \subseteq T_{i}^{2}$, we have that $f\left(H / T_{i}\right)>1$. Since $\left[H: T_{i}\right]$ is a power of 2 and $K \supseteq H$, we have
(ii) $f\left(K / T_{i}\right) \equiv 0(\bmod 2)$.

Suppose $K=T_{i}(\theta)$. Let $\alpha_{i}=\theta^{i-1}$ and $M=\left\|\alpha_{i}^{(j)}\right\|$. If $\lambda \in K$ we have

$$
\left|M D(\lambda) M^{\prime}\right|=N_{K / T_{i}}\left(\lambda \prod_{i \neq 1}\left(\theta^{(1)}-\theta^{(i)}\right)\right) \in T_{i}^{2}
$$

by the formula for a van der Monde determinant and $N\left(K / T_{i}\right) \cong T_{i}^{2}$. Hence
(iii) if C is a matrix from K to T_{i}, then $|C| \in T_{i}^{2}$.

We now apply the above observations. Let T be the inertia subextension of L. Construct the tower

$$
L=T_{0} \subset T_{1} \subset \cdots \subset T_{k} \subseteq T,
$$

where $\left[T_{j}: T_{j-1}\right]=2$ for $1 \leqq j \leqq k$ and $\left[T: T_{k}\right]$ is odd. Since $f\left(K / T_{k}\right)$ is odd, we have $N\left(K / T_{k}\right) \not \equiv T_{k}^{2}$ by (ii). Hence we may choose i such that $N\left(K / T_{i}\right) \subseteq T_{i}^{2}$ and $N\left(K / T_{i+1}\right) \nsubseteq T_{i+1}^{2}$. (Actually $i=k-1$, but this is irrelevant.) Suppose the identity is a matrix from K to T_{i}. Let B be a matrix from T_{i} to L. Then $A=I \otimes B$ is a matrix from K to L. By (i) we have $\operatorname{dim} I \equiv 0(\bmod 4)$. Hence $|A| \in L^{2}$ and $c(A / L)=+1$ by the formula.
(*) $c(X \otimes Y)=c(X)^{y} c(Y)^{x}(-1,|X|)^{y(y-1) / 2}(-1,|Y|)^{x(x-1) / 2}(|X|,|Y|)^{x y+1}$ where X, Y are symmetric matrices, $x=\operatorname{dim} X$ and $y=\operatorname{dim} Y$. It suffices to show that the identity is a matrix from K to T_{i}.

Let C be a matrix from K to T_{i+1} with $|C| \notin T_{i+1}^{2}$. (This can be done since $N\left(K / T_{i+1}\right) \nsubseteq T_{i+1}^{2}$.) We have $C \sim I \oplus-1 \oplus s \oplus t$ where $s, t \in T_{i+1}$ by [5, 63: 17]. Let $e \in T_{i}$ be such that $T_{i+1}=T_{i}(\sqrt{e})$. Let $M=\left\|\frac{1}{\sqrt{e}}-\sqrt{e}\right\|$ and $E(q)=M D(q) M^{\prime}$ for $q \in T_{i+1}$. We have that

$$
S(r)=(I \oplus-1) \otimes E(r) \oplus E(r s) \oplus E(r t)
$$

is a matrix from K to T_{i} for nonzero $r \in T_{i+1}$. By (iii) we have $|S(r)| \in T_{i}^{2}$. \quad Since

$$
\operatorname{dim}(I \oplus-1)=\operatorname{dim} S(r) / 2-2 \equiv 2(\bmod 4) \text { by (i) }
$$

we have

$$
|(I \oplus-1) \otimes E(r)| \in T_{i}^{2}
$$

Hence $|E(r s)| \in|E(r t)| \cdot T_{i}^{2}$. Thus

$$
\begin{aligned}
c(S(r)) & =c((I \oplus-1) \otimes E(r)) c(E(r s)) c(E(r t))(|E(r s)|,-1) \\
& =(-1,-1) c(E(r s)) c(E(r t))(|E(r s)|,-1) \text { by }\left(^{*}\right) .
\end{aligned}
$$

Any $q \in T_{i+1}$ has the form $a+b \sqrt{e}$ with $a, b \in T_{i}$. Write $q_{1}=a$. If $q_{1} \neq 0$, then

$$
c(E(q))=\left(2 q_{1},-|E(q)|\right)(-1,|E(q)|)
$$

If $(r s)_{1}(r t)_{1} \neq 0$, we have

$$
c(S(r))=\left(-(r s)_{1}(r t)_{1},-|E(r s)|\right)
$$

We may choose $r=s^{-1}(l+\sqrt{e})^{2} \sqrt{e}$ with $l=0,1$, or 4 such that $(r s)_{1}(r t)_{1} \neq 0$. Since $-|E(r s)| \in T_{i}^{2}$, we have $c(S(r))=+1$.

Lemma 5. If $\sum_{1}^{m}\left[K_{i}: L\right]$ is odd, the identity is a matrix from $\sum_{1}^{m} \oplus K_{i}$ to L.

Proof. By Lemmas 3 and 4 we are done unless $\left[K_{i}: L\right]=d$ is even and $N\left(K_{i} / L\right) \nsubseteq L^{2}$ for some i. Suppose that this is the case. Since $N\left(K_{i} / L\right) \nsubseteq L^{2}$, there is a matrix B from K_{i} to L such that $(-1)^{d / 2}|B| \notin L^{2}$. Let C be a matrix from $\Sigma_{j \neq i} \oplus K_{j}$ to L. Let

$$
A=|B| \cdot|C| \cdot C \oplus a B
$$

where $a \in L$ is chosen so that

$$
c(A)=c(|B| \cdot|C| \cdot C)(|B|,-1) c(B)\left(a,(-1)^{d / 2}|B|\right)=+1
$$

Lemma 6. If $\Sigma_{1}^{m}\left[K_{i}: L\right]$ is even, $N\left(K_{1} / L\right) \nsubseteq L^{2}$, and k is a rational integer, then there is a matrix A from $\sum_{1}^{m} \oplus K_{i}$ to L such that $c(A)(|A|,-1)^{k}=+1$.

Proof. Let B be a matrix from $\Sigma_{1}^{m} \oplus K_{i}$ to L such that $(-1)^{n}|B| \notin L^{2}$ where $n=\sum_{1}^{m}\left[K_{i}: L\right] / 2$. Let $A=a B$ where $a \in L$ is chosen so that $c(A)(|A|,-1)^{k}=c(B)(|B|,-1)^{k}\left(a,(-1)^{n}|B|\right)=+1$.
6. Proof of Theorem 2. If n if odd, apply Lemmas 2 and 5 . Let B be the matrix given by Theorem 3. Define $A=|B| \cdot B$. If n is even, apply Lemmas $2,3,4$ and 6 . Let A be the matrix given by Theorem 3. In both cases, behavior at the exceptional spot is handled by the Hilbert reciprocity formula [5, p. 190].
7. Matrices with given roots. We prove

Theorem 4. Let F be an algebraic number field. Let θ be the root of an irreducible F-polynomial q of degree n. Then θ is the
characteristic root of some symmetric F-matrix if and only if q is F-real. When such a matrix exists, it may be chosen to have dimension n or $n+1$, whichever is odd. This dimension is the least possible
(1) if n is odd or
(2) if $n \equiv 2(\bmod 4)$ and $(-1) \notin N(F(\theta) / F) \cdot F^{2}$.

Proof. Use Theorem 1 with $p(x)=q(x)$ or $x q(x)$. The result is clearly best possible when n is odd. Suppose $n \equiv 2(4)$ and n is least possible. Let $\alpha_{i}=\theta^{i-1}$ and $M=\left\|\alpha_{i}^{(j)}\right\|$. By the converse of Lemma 1 when p does not have repeated roots (see [6, Lemma 1.1] for a proof), there is an F-matrix T and a $\lambda \in F(\theta)$ such that $M D(\lambda) M^{\prime}=T T^{\prime}$. Noting that $\left|M M^{\prime}\right|=-N\left(p^{\prime}(\theta)\right)$, we get

$$
-1 \in N(F(\theta) / F) \cdot F^{2}
$$

By class field theory, for all $n \equiv 2(4)$ there exist F and θ such that $n+1$ is the least possible dimension.

I would like to thank Drs. O. Taussky and E. C. Dade for their assistance.

References

1. H. Hasse, Bericht Über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper I, Jber. Deutsch. Math.-Verein. 35 (1926), 1-55.
2. -, Zahlentheorie, 2nd ed., Akademie-Verlag, Berlian, 1963.
3. B. W. Jones, The arithmetic theory of quadratic forms, Carus Monograph v. 10, Math. Assn. Amer., 1950.
4. F. Krakowski, Eigenverte und Minimalpolynome symmetrischer Matrizen in kommutativen Körpern, Comment. Math. Helv. 32 (1958), 224-240.
5. O. T. O'Meara, Introduction to quadratic forms, Grund. Math. Wiss. v. 117, Academic Press Inc., New York, 1963.
6. A. P. Sapiro, Characteristic polynomials of symmetric matrices (Russian), Sibirsk. Mat. Z., 3 (1962), 280-291.
7. J.-P. Serre, Corps locaux, Hermann, Paris, 1962.

Harvard University

Received August 15, 1966. This extends a part of my doctoral dissertation written as a National Science Foundation fellow under Dr. O. Taussky at the California Institute of Technology.

