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GAUSSIAN PROCESSES WITH STATIONARY
INCREMENTS POSSESSING DISCONTINUOUS

SAMPLE PATHS

MICHAEL B. MARCUS

In this paper a sufficient condition is given on the covari-
ance of a stationary Gaussian process for it to have sample
paths that are unbounded in all intervals. This result is an
extension of a result of Belyaev.

It is also shown that an obvious analogue of this result
applies to Gaussian processes with stationary increments.

Let X(t) be a real valued Gaussian process with stationary in-

crements such that E{X(t)} — 0 and

( 1) E{(X{t + h)- X{t)Y} = σ\h) ,

σ(h) —• 0 as h —• 0. Suppose that σ\h) is concave in [0, δ] for some
§ > 0 and that

(2) σ*(h) ̂  , Ί

 C , , C > 0 ,
! log I h

for & e [0, a], for some a > 0. Then it follows that at any point tQ,
with probability one, the sample paths of X(t) are discontinuous. This
result was obtained by Belyaev [1] for stationary Gaussian processes;
its extension to Gaussian processes with stationary increments is trivial.

Suppose X(t) is a real valued stationary Gaussian process, normal-
ized so that E{(X(t))2} = 1. Denote its covariance by φ(h); thus
σ2(h) = 2(1 — <p(h)). Let Φ be the class of all covariance functions φ(h)
such that φ(0) = 1, φ(h) is convex in some interval [0, δ], δ > 0 (δ need
not be the same for all <peΦ), and 2(1 — <p(h)) satisfies Eq. (2) for
A e [0, α], for some a > 0. Then Belyaev's result asserts that the
stationary Gaussian processes defined by the covariance functions in
Φ have discontinuous sample paths. The main result of this paper is
Theorem 2, which is equivalent to the following statement: Let Γ
be the set of all normalized covariance functions. Let Φ be as defined
above. Then if j(h) e Γ, <p(h) e Φ, with probability one the stationary
Gaussian process with covariance y(h) φ(h) has sample paths that are
discontinuous in every interval. In other words, the class of stationary
Gaussian processes with discontinuous sample paths is extended from
Φ to ΓΦ. A similar result is obtained for Gaussian processes with
stationary increments.

Once it is shown that the sample paths of a stationary Gaussian
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process are discontinuous with probability greater than zero, Belyaev's
result [1]—that either the sample paths of a stationary Gaussian pro-
cess are continuous with probability one or else with probability one
they are unbounded in every interval—further describes the behavior
of the paths.

An unsolved question is the exact nature of the set of covariance
functions ΓΦ. The set contains Φ since Γ contains the constant 1.
Also, ΓΦ is larger than Φ, since we can take for 7 e Γ a nowhere
differentiate function (obtained from the theory of lacunary series).
Therefore, a Ίφ can be found that is nowhere differentiate and hence
not convex in some interval [0, α], a > 0. This covariance function
will not be contained in Φ. The problem of identifying the product
of a characteristic function of a probability measure with all other
characteristic functions has been posed in harmonic analysis, but not
much seems to be known about it.

2* The first lemma is probabilistic: in the rest of the paper we
are concerned with evaluating determinants of covariance matrices.

LEMMA 1. Let Xu •• ,Xίl be linearly independent real valued
Gaussian random variables with mean zero and finite variances.
Let Di be the determinant of the ith principal minor of their
covariance matrix R. Define p{ = D^JDi i = 1, , n. DQ = 1. Then

} n /~O~ Γaipi^β 2

^ Π V — e~ζl2dζ .
i=ί ΊZ Jo

Proof. We have

pjmax I X{ | ^ a\

where A — R~ι, and | A \ denotes the determinant of A.
Since the random variables are square integrable functions on an

^-dimensional Gaussian measure space, they can be considered as
elements in a Hubert Space. Their covariance corresponds to the inner
product. Using the Gram-Schmidt orthogonalization procedure, we
can extract an orthonormal sequence ξ{ — ]Γ^ PijXj, where PTP = A.
The functions f4 have the following form:

ξ% = {pdιl2Xi + fi(ξi-» • • • , « , i - 1, , n

(See [4], p. 37). The change of variables ζt = X, Pi3 Xj diagonalizes the
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quadratic form in Eq. (3) and the integral is equal to

( 4 ) Π-~-ί expί-fί/2}^.

The interval of integration B{ is given by the inequality

Because the density function of the Gaussian distribution is symmetric
and decreases monotonically as \ζi\ increases, the integrals in Eq. (4)
are increased if we take | ξ{ | ^ (PiYl2a. This observation proves the
lemma.

Using Ostrowski's results [3] on matrices with dominant principal
diagonals, an upper bound for D^JDi can be obtained when the
determinants O{ are those of a covariance matrix formed by the in-
crements of a stationary Gaussian process which itself has a covariance
that is convex in [0, δ] for some δ > 0. For the sake of completeness
of this paper, Ostrowski's result will be restated.

Let A = {aμi] be a real valued matrix with positive diagonal
elements such that the sum of the absolute values of all the off
diagonal elements in a given row is less than the diagonal element in
that row. Such a matrix A is called a matrix with dominant principal
diagonal. For these matrices we define aμv = \ aμu |, μ, v = 1, , n and

(5 ) sμ = Σ aμv - aμμ = σμaμμ , 1 ^ μ, v ^ n .

Note t h a t σμ < 1. The following lower bound is obtained for \A\:

( 6 ) I A I ̂  Π (aμμ - a,,) .
μ=i

Equation (6) shows that a matrix with dominant principle diagonal is
strictly positive definite.

Let Di be the determinant of {aμi}μ, v — 1, , i. In a manner
similar to Eq. (5), we define

sμ = Σ θLμy ~ aμμ = σ)Laμμ , 1 ^ μ ^ i ,

and

t\ = max σi , (fc = 1, , i - 1) .

Then it follows that

( 7 ) (α« + £&)ZVi ^ A ^ («« - ίjβί)A-i

Note that sj = Σί~l α ^ is the sum of the absolute values of the elements
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in the ith row of A that lie to the left of the diagonal element.
We shall now exhibit a collection of Gaussian random variables

which have as their covariance matrix a matrix with dominant prin-
cipal diagonal. Let y(h) be the covariance of a stationary Gaussian
process and suppose that j(h) is convex for h e [0, δ] for some δ > 0,
and that y(δ - ε) > y(δ) > 0 (0 < ε ^ δ). Let 0 < t, < t < tn ^ δ be a
partition of [0, δ]. The covariance matrix of (X(t5) — X(^ _i)),i = 1, , n
is a matrix with dominant principal diagonal. This is easy to verify
since all of the off diagonal terms of the ^-dimensional covariance
matrix of X(t5) — X(tά_^), j = 1, , n are negative due to the convexity
of y(h). Thus the absolute values of the off diagonal elements in a
given row can be added. In the case under consideration, st ^ au/2 =
σ\ti — ί<_i)/2. Since t\ ^ 1 we have

( 8 )
A - σ\U - t^)

Also note that the functions D^JDi for the covariance matrices of
the random variables X{ts) — X{tά_^),j = 1, « , i and the functions
Di-JDi for the covariance matrices of the random variables X(td) — X{t0)f

j = 1, , i are equal. This follows from row and column operations
on the matrices. Referring to Lemma 1 and using Eq. (8), the follow-
ing lemma is obtained.

LEMMA 2. Let X(t) be a real valued stationary Gaussian process
with covariance y{h) which is convex for h e [0, δ] for some δ > 0. Let
to < ίi < < ί», (in - «o) ^ S. Then

Prob {max | ζt \ ̂  a] ^ Πl/2/i ί "^ e~χ2'2dx ,
ll^i^w J i=l JO

where ξt can be either X(t{) — XiU^) or X(ti) — X(tQ) and au =
σ(ti - ί i - i ) , i = 1 , • • - , % .

Using Lemma 2, the following theorem is easily obtained.

THEOREM 1. Let X(t) be a real valued stationary Gaussian
process with covariance function y(h) that is convex for h e [0, δ] for
some δ > 0. Let σ(h) = 2(1 - y(h)). Then if

(9) σ ( h ) ^ t l

 C , , , C > 0 ,
I log I h

h e [0, α], for some a > 0, iί follows that almost all sample functions
of X(t) are unbounded in every interval.

The result in Theorem 1 was first obtained by Belyaev, who
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employed a lemma due to Ventcel which is similar to Lemma 2. An
alternate way of proving Theorem 1 is to use the Chung-Erdos version
of the Borel-Cantelli lemma [2]. Theorem 1 is contained in Theorem
2. It has been displayed separately because its proof is simple and
because it is used to conclude the proof of Theorem 2.

In preparation for Theorem 2, we shall prove some lemmas on
determinants associated with Toeplitz matrices. A matrix {cj)k} j,k = 0,
1, , n is a Toeplitz matrix if it is positive definite and if cjtk — cβ_k.
We shall normalize these numbers by taking c0 — 1. The elements of
a Toeplitz matrix can be represented as the Fourier-Stieltjes trans-
forms of a distribution function a(x) on the unit circle,

(10) ck = -A- [ e-
ik*da(x) .

Conversely, distribution functions on the unit circle give rise to positive
definite sequences {ck} such that finite subsets of these sequences
determine Toeplitz matrices. If the distribution function has at least
n + 1 points of increase, the determinants of the matrices {c/_Λ}, j ,
k = 0,1, , i, 0 < i <̂  n are strictly positive. A distribution function
will be said to be of order k if it has at least k points of increase.

Let {ck}k = 0, ± 1, •••, be a positive definite sequence and a(x)
the corresponding distribution function. We shall denote the determi-
nant of the matrix given by c0ic__lycl9 •• ,c_% by Dn+1(a). Also, the
function Dn(a)/Dn+1(a) will be referred to as DJDn+1(a).

The following lemma is a minor modification of Theorem (a) on
page 38 in Ref. 4.

LEMMA 3. Let a(x) be a distribution function on [ — τz,π] of
order n + 1 and g(z) be any polynomial of the nth degree in eix,
aoz

n + aγz
n~ι + + any z = eix, subject to the condition that |αo| = 1.

Then

(11)

where the minimum is taken over all the polynomials g(z).

Since a(x) defines a probability measure on the unit circle, so
does its translate a(x — ξ). Define this new distribution function by
aξ(x). The proof of the following lemma follows immediately from
Lemma 3.

LEMMA 4. Let a(x) be a distribution function of order n + 1 on
[ — 7Γ, 7r], Then
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Let Θ be the set of all probability measures on the unit circle.
We shall now consider the set of probability measures {a*θ, θeθ},
where * denotes convolution.

LEMMA 5. Let a(x) be a distribution of order n + 1 on [ — π, TΓ],

and let θ be any distribution function on [ — π, π]. Then

un un

Proof. Let θξ, ( — π ^ ζ <̂  π) be the extreme points of θ, i.e., the
measures that assign probability one at the point ξ. Clearly the
extreme points of {a*θ, θ eθ} are contained in the extreme points of
{a*θξ}. Consider the convolution of a with an element in the convex
hull of {0J, i.e., α*Σ?=i We,; Σ?=i h = 1. Then

(12) ^s±i(α) = ±
D 13=1

The equality in Eq. (12) follows by Lemma 4, the inequality follows
from Eq. (11).

Since Dn+1/Dn is a uniformly continuous function of the appro-
priate 2n + 1 Fourier-Stieltjes coefficients, Eq. (12) can be extended
to the weak closure of the convex hull of {a*θξ}. This is {a*θ, θ eθ}
itself. Thus, the lemma is proved.

Let X(t) be a normalized stationary Gaussian process with co-
variance φ. Consider the stationary sequence {φ(jh)},j = 0, ± 1, •••,
and let a(x) be the probability distribution on the unit circle associated
with {<p(jh)}. For this same process X(t), consider the stationary
sequence of Gaussian random variables {X(t + jh) —X(t + (j — l)h)} j = 0,
± 1 , •••. Denote the elements of the covariance matrix of these
random variables by dn, i.e.,

dn = E{(X(t + jh) - X(t + (j - l)h){X(t + kh) - X(t + (k -

= 2φ((j - k)h) - φ((j ~ k - l)h) - φ((j -k

where n—j — k. Thus, we have the following equation for dn,

(13) dn = — ί e~inx I eix - 112 da(x) .
2TC J->r
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Also, dn is a positive definite sequence; it is defined by the distri-

S x

I eiy — 1 \2da(y). We shall normalize the se-
quence dn by dividing it by dQ; thus an alternate representation for
Eq. (13) is

djdo = — Γ e-inxd(a2(x)/dQ) .

LEMMA 6. Let a(x) be a distribution function of order n + 2
and let a2(x) be the distribution function corresponding to the second
difference of the coefficients of a(x) (i.e., cn and dn as given above).
Then

Proof.

(14) VjLϊ±(a2(x)/d0) = min -A- Γ | g(z) |21 e^ - 112 d(a(x)/dΰ) .

Note that the lfd0 factor can be cancelled from each side. The poly-
nomial g(z) — aQzn + axz

n~l + + an is subject to the restriction that
I α01 = 1. Equation (14) can also be written as

(15) ^(a2(x)) = min A - Γ | f(z) |2 da(x) ,

where the polynomial f(z) = aoz
n+1 + axz

n + + an+1 is subject to
the restrictions that | aQ \ = 1 and that an+ι = an + an^ + + aQ.
The lemma follows directly from Eq. (15), since the right-hand side
of Eq. (15) is greater than Dn+2/Dn+1(a(x)). We can now prove
Theorem 2.

THEOREM 2. Let X(t) be a normalized stationary Gaussian pro-
cess with covariance φ(h) that is convex for h e [0, δ], for some δ > 0.
Suppose that E{(X(t + h) - X{t)f) = 2(1 - φ(h)) = σ\h) satisfies the
following inequality:

(16) o\h) ^ | Ί

 C' ,, , C> 0 ,
I log

for h e [0, α], for some a > 0. Then with probability one the sample
paths of X(t) are unbounded in every interval. Moreover, let Γ be
the set of all normalized covariance functions. If y(h) e Γ, then the
stationary Gaussian process with covariance Ύ(h)*φ(h) has sample
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paths that are unbounded in every interval.

Proof. Without loss of generality we can assume δ <; a and
that φ(δ — ε) > φ(δ) > 0 for sufficiently small ε > 0. Consider the
sequence φ{[(j/2n)δ]} j = 0,1, •••. Because the Gaussian process is
real, {φ(j/2n)δ} = {φ(-j/2n)δ}. Let a(x) be the distribution function
defined by this sequence. By Eq. (6) we see that a(x) is of order
2n + 1. Let μ(x) be the distribution function given by {y(j/2n)δ} j =
0,1, •••. Then (a*μ) and (a*μ)2 are of order 2n.

Let X(t) be the stationary Gaussian process with covariance
j(h)-φ(h). Consider the random variables

= 1, •••, n + 1 .δ)x(
2n / V 2n

They are linearly independent because (a*μ)z is of order 2n. From
Lemmas 6 and 5 we obtain

(17) J^((α*/<)2) < γ^(a*μ) ^γf^(a) £ *
D D D

^((α*/<)2) < γ^(a*μ) ^γf(a) £ λ ,
Dn+1 Dn+2 Dn+2 σ2(δ/2n)

where the last inequality is obtained using Ostrowski's results as
follows: The term Dn+1/Dn2(a) is a function on the Toeplitz matrix
which has as its elements φ{[(j/2n)δ]} j = 0,1, , n + 1. Perform the
following row and column operations on this matrix: Subtract the
jth row from the j + 1st row, j = 1,2, , n, leaving the first row fixed,
then subtract the jth column from the j + 1st column j = 1, 2, , n,
leaving the first column fixed. These operations leave D^^a) and
Dn+2(a) unchanged. The convexity of φ(h) is used to show that all
of diagonal terms of the resulting matrix are negative, and that the
matrix has a dominant principle diagonal. The function Dn±ιjDn+2{ά)
is evaluated using Eq. (7). This accounts for the final inequality in
Eq. (17).

The remainder of the proof follows from Lemma 2 and Theorem 1.
A result similar to Theorem 2 can be obtained for Gaussian pro-

cesses with stationary increments. Theorem 2 extends the class of
discontinuous stationary Gaussian processes from those for which

E{(X(t + h) - X(t))2} = 2(1 - φ(h))

to those for which E{(X(t + h) - X(t))2} = 2(1 - Ί(h)-φ{h)). The class
of Gaussian processes with stationary increments that have discon-
tinuous sample paths can also be extended from those processes for
which E{(X(t + h) - X(t))2} - 2(1 - φ(h)) for h e [0, δ] for some δ > 0
and φ e Φ to those processes for which
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E{(X(t + h)- X(t))2} = 2(1 - *ΐ(h)-φ(h))

for he[0, δ] for some δ > 0, where y(h) is any normalized covariance
function. The proof of this result for Gaussian processes with
stationary increments is contained in the proof of Theorem 2, since in
Theorem 2 we are concerned with the covariance matrix of the incre-
ments of a stationary Gaussian process. This matrix is the same as
the covariance matrix of the increments of a Gaussian process with
stationary increments as long as the function cr2(/ι)(i.e., as in Eq. (1))
is the same in both cases.
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