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D-DIMENSION, I. A NEW TRANSFINITE DIMENSION

DaviD W. HENDERSON!

The large inductive dimension (Ind) can be extended, by
transfinite induction, to all the ordinals, The transfinite in-
ductive dimension so obtained has been investigated by many
authors. Unfortunately, it does not possess many of the nice
properties which are possessed by the inductive dimension in
finite-dimensional spaces. For instance, the transfinite induc-
tive dimension fails to be monotone for separable metric spaces;
and it fails to satisfy the sum theorem, even for compact

metric spaces,
This paper introduces a new transfinite dimension called

D-dimension, which is defined for all metric spaces. For finite-
dimensional spaces, D-dimension equals Ind. It is shown that
D-dimension is also a monotone and local property and that it
satisfies several sum and product theorems., These properties
lead to a characterization of D-dimension,

In particular, D-dimension as a topological function from all
metric spaces to the ordinals (= —1), with an extra symbol, 4, added,
satisfies the following axioms: (We use the conventions that, for each
ordinal o, 4 >, d+a=4+d=a+d=a@Pd=4F 4= 4, where
‘D’ denotes the natural sum of ordinals.)

I. (FINITE-DIMENSIONAL SPACES). If either D(X) or Ind (X)
18 finite, then D(X) = Ind (X).

II. (LocAL ProPERTY). D(X) =1l u.b.{D,(X)|pe X}, where
D(X) = minimum {D(N) | N a neighborhood of p in X}.

III. If F 4s a closed subset of the space X, then D(X) =<
D(X — F) + D(F).

IV. (MoNOTONE). If Y is a subspace of X, then D(Y) < D(X).

V. If there is a point x€ X, such that D,(X) = D(X), then
DX x I) = D(X) + 1. (I = the unit interval.)

VI. (Sum THEOREM). If A and B are closed subsets of X,
then D(A U B) = maximum {D(A), D(B)}.

VII. If A is a nonempty closed subset of X and v is a limit
ordinal, such that each open set that intersects A contains, for each
B <, a closed (in X) subset of X — A with D-dimension =P8, then
D(X) = v + minimum {D(A4), w}.

It is shown that Axioms I, I, III, IV, VII characterize D-dimension,
and that Axioms I-VI “essentially force” VII. In addition, the follow-
ing properties are demonstrated:
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VIII. (PropucT THEOREM). D(X x Y) < D(X) D D(Y).
IX. For each ordinal «, there is a space Q@ such that D(Q*) =
a. For countable ordinals, these are the compact metric spaces
constructed by Smirnov, [9], such that Ind (Q%) = a.
X. Cardinal (D(X)) £ weight (X), if D(X) # 4. (The weight
(X) is the least cardinal which is the cardinal of a basis for the open
sets of X.)

With the exception of Axioms I and X, none of these properties
are known to be satisfied by Ind.

A second paper will investigate the relation between D-dimension
and compactifications.

1. Preliminaries. All spaces mentioned in this paper will be
assumed to be metrizable spaces.

DEFINITION (M(«@) AND n(ct)). For each ordinal «, let M«a) be the
largest limit ordinal which is <a, and let n(a) be the finite ordinal
such that o = M«@) + n(a). We define M(4) = 4 and n(4) = 0.

DEFINITION. (D(X)). Define D(@) = —1. For a nonempty space,
X, D(X) is defined to be the smallest ordinal number B, if any exist,
such that X = [J{4.]0 < a < v}, where

(a) each A, is a closed finite-dimensional (Ind) subset of X;

(b) for each 6, J{4.|d < a < v} is closed in X;

() MB) =7 and n(B) = Ind (4,), if A, = @ then define n(B8) = 0;
and

(d) for each w e X, there is a largest 6, such that x € 4,. If no
such B exists then we set D(X) equal to the symbol 4. If (a), (b),
and (c) are satisfied then we will say that X = U{4.|0 = a < v} is
a B-D-representation of X. Also, we shall agree to let M + (—1) = i,
whenever )\ is a limit ordinal, so that we can say that the above
representation is a (v + Ind (4,))-D-representation.

THEOREM 1. If either Ind (X) or D(X) is finite then they are
equal.

Proof. If D(X) = n is finite then X has an n-D-representation,
X=U{4.|0 =a <7}, with n =v + Ind(4,). Therefore, v must be
equal to zero, and thus D(X) =% = Ind (4,) = Ind(X). If Ind (X) =n
is finite, then X = X is an n-D-representation and therefore D(X) < n.
Thus D(X) is finite and, by the previous argument, D(X) = Ind (X).

THEOREM 2. If YC X, then D(Y) < D(X).
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Proof. If D(X) = 4, then the theorem holds; therefore we assume
that D(X) = 4. If X =U {4.]0=<a <7} is a D(X)-D-representation
of X, then Y =J{4.NY|0=a <} is a (v + Ind (4, N Y))-D-repre-
sentation of Y. Therefore

DX)s(v+Ind(4, NnY)) =(v+Ind(4)) = DX).

2. Sum Theorems. Before proving the two Sum Theorems we
prove

LemMmA 1. If X has a S-D-representation, then there is a S-D-
representation X = |J {4.|0 £ a < v}, such that Ind (4,) < n(a).

Proof. Let X =U{B.|0=Za =<7 be any B-D-representation
of X. We shall define, inductively, a one-to-one increasing function
fi{lal0fa < v {a|0 < a < v} so that, for each a < 7, (a) f(a) =
« + (a finite positive ordinal), and (b) Ind (B,) < n(f(«)). Define f(7) =
v and f(0) = Max {0, Ind (B,)}. Assume, inductively, that f(0) has been
defined for all 6 < @ <. Then define

f(a) = Ma) + Max {0, Ind (B,)} , if n=20;
f(@) = Max {(M«@) + Ind (B,)), (f(a —1) + 1)}, if n+0.

It is easy to check that (a) and (b) are satisfied.

Define A, = B,, if a = f(\); otherwise, define 4, = @. It can be
verified that X = U {4.]0 <« < 7} is a B-D-representation and that
Ind (4,) = —1 < n(a) or Ind (A,) = Ind (B;-1,). The latter is <n(a)
by (b) above.

THEOREM 3. If X 1is the union of a locally finite collection of
closed subsets each with D-dimension =8, then D(X) < B.

Proof. Let & be the locally finite collection of closed subsets,
and, for each Ce %, let C=U{C.|0=a < ¥(C)} be a (v + Ind (C,))-
D-representation of C, such that (v(C) + Ind (C,)) < 8. If ¥(C) is less
than 6 = \B), then define C, = —1, for ¥(C) < « < 6. Then, using
Lemma 1, we may assume, without loss of generality, that v(C) = o
and Ind (C;) < n(8) and Ind(C,) < n(a), for a < d. Define A4, =
U{C.|Ce%}. By the Sum Theorem for metric spaces ([7], p. 17,
Th. II.1) Ind (4,) < n(a), for a < 9, and m = Ind (4,) < n(B). Thus
X =U{4.10= a <o} is a (6 + m)-D-representation of X, since the
locally finite union of closed sets is closed, and since each point of X
belongs to only finitely many C’s. Therefore D(X)<d +m < 8.

COROLLARY TO THEOREM 3. If X 1is the wunion of two closed
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subsets A and B, then D(X) = Max {D(A), D(B)}.

THEOREM 4. If F s a closed subset of the space X, then D(X) <
MD(X — F)) + Max {n(D(X — F)), D(F)} < D(X — F) + D(F).

Proof. Let X —F=U{4A,|0=a <7} and F = J{B.|0=a <d}
be D(X — F')- and D(F')-D-representations, respectively. In the case
that Ind (F) is finite (and thus 6 = 0), X = U{A. UF|0Za <7} is a
(v + Ind (A, U F'))-D-representation of X, because, if Y is a closed sub-
set of F' — X then the closure (in X) of Y is contained in Y U F.
Therefore, in the case that Ind (F') is finite,

D(X) = (v + Ind (4, U F)) < (v + Max {Ind (4,), Ind (F')})
< MD(X — F)) + Max {n(D(X — F)), D(F)} .

We now assume that 6 = w. Since, for each 0 < n < w,
F—-U{B.|0=a<n}

and F— U {B.|n + 1< a <} are disjoint open subsets of F, and
since X is metrizable, there are open (in X) sets 0, and U,., such
that 0,NU,.. = 2,0, NF=F—-U{B.|0za=<n}, and U,,, N F =
F—-U{B,Im +1=Za<v. In addition, it can be seen that we may
assume 0, 0,_,, 0, C N(F, 1/n) = (the open (1/n)-neighborhood of F
with respect to a fixed metric in X), U, D> U,_,, and U, > X — (closure
N(F, 1/n)), for 1 <n < w. (Let U,= @.) For a < v, define

C. =[A. — N(F, 1/n(a)] U [U{4; | Ma) = B < a}
N (closure N(F, 1/n(a — 1))) — N(F, 1/n(x))] .

For 0 < n < w, define
CT+7L - Bn U (Af - (On U U’/I)) .

For w < B <0, define C,,; = B;. We shall finish the proof by showing
that X = {C,|0<a <7+ 4} is a

[(v + 6 + Ind (C1,))
= MD(X — F)) + D(F))]-D-representation of X .

For a < v, C, is the finite union of closed, finite-dimensional sub-
sets of X — N(F, 1/n(c)); and, thus, C, is a closed finite-dimensional
subset of X. For vy <a <7+ w, C, is a subset of the union of two
finite-dimensional subsets one of which is closed and thus C, is finite-
dimensional; C, is closed because it is a closed subset of A, U F' which
in turn is closed in X. For v+ w <a < v + 4, C, is clearly closed
and finite-dimensional.
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If B <, then

UlC.l8=sa=7+d}
=U{C.Ie<a<tUU{4 -0, UuU,)|0=nr<w}
UU{B.[0=7 =4}
=U{C.IBEa< B + o} UU{4NMB) + o = a <}
U4, -n{0, U0, |0=n<wo}UF
=U{d. B8 =a<MB) + o} U[U {4 ML) = a < B8}
N (closure N(F, 1/n(B — 1))]
UUAIME) +o=sa<rUA UF
= [U {4. | MB) =< a < B} N (closure N(F, 1/n(8 — 1))]
UU{AlB=sa=71UF,
which is a closed subset of X. (We used here, and will use later, the
fact that X - F)n N0, UU,  m=n<w=V,N(X—F). This
is true because U,N0,., and 0, N U,., are each empty; thus all the

‘cross product’ terms in the expansion of {0, UU,|m < n < p} drop
out and we are left with

N{O,ul0,|m=<=mn=<p}
=N{0,Im=n=pUN{U.Im=n=p}=0,UU,.

Thus

N{0.uU, [ m=n<w}=N{0,UU,|m=p<w}
=U,UN{0,m=p<w};
but, since 0, N(F,1/n), {0, |m < p < w}C F.)
If vy<8<7v+ w, then
UC.IBsa=x7+ 6}

=U4 -0, ul) B =n<o}UU{B.|nB)a<sy+d
= (A —N{O,UT, B =n <o) UU{B.|nB <a <7+ d)}
=4, -U,n)uUBnB) =a=xvy+0t=AUF)—-U,y,

which is clearly closed. If v+ ®w < 8 < v + 4, then
UC.IB=sa=sv+d=U{B.|od =7t =0}, where =7 +0.

Let o be a point of X. We must show that there is a largest &
such that x € C,. If x € F, then there is a largest B such that x e B;,
and thus v + B is the largest ordinal such that ze€C,,;. If e X — F,
then there is a largest B8 such that xe A;. Since F is closed,
x e X — (closure N(F', 1/n)), for all n greater than some N,0 < N<n < w.
If B = v, then, for some vy < a < v+ w, e C,; but « € U, and therefore
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a < v+ n and thus a largest such « exists. If 8 < v, then, for some
MB = a< MB) +w,xeC,; but ze¢C,, for = > Max{B, MB) + N}
and therefore a largest such « exists.

This completes the proof of Theorem 4.

3. Product Theorems.

THEOREM 5. For nonempty spaces X and Y,
DIXx YY) DX)D(Y).

(“@” denotes the “natural sum” of ordinal numbers. See [2], page 80;
and also [10], § 3, where this sum is called the upper sum. We use
the convention that /14 =4Pa=a@P 4= 4. It should be noted
that the natural sum is commutative, and equals the usual sum for
finite ordinals.)

Proof. If either D(X) = 4 or D(Y) = 4, then the theorem holds;
we therefore assume that D(X) # 4 and D(Y) =+ 4.

Let X =U{A)0=Za=<svyX)and Y=U{B.,.|0Za=<%Y)} be
D(X)- and D(Y)-D-representations, respectively. Define

C.,=U{4, xB;,|BPo=al,0 =a=7Y).

If (v,y)e X x Y, then xe A, and ye B,, for some 8 and 4, and thus
(¢, y) € Csp;. Therefore

XxY=U{C|0=a=7X)DY)}.

We shall show in the next paragraph that this is a D-representa-
tion.

C, is closed and finite dimensional because the equation S 6 = «
has only finitely many solutions, 8,6, and because of the product
theorem for finite dimensional spaces, [7], Th.I1.5. Let {8;,0;|0 =< <mn}
be all the ordered pairs whose natural sum is 5. Then

UC.I8=sa=s7X)D(Y)}
is equal to the closed set,
UUA [B=sr=7X) x UB|ds=s7=7(Y)}H 0= =n},

because P is strictly increasing and, if 7 o > B, then there is
7/ < 7 and 0’ < 0 such that 7/ @ o’ = B (See [2], pages 80 and 81.). If
7 and o are largest ordinals such that € A, and o€ 4,, then, since
@ is strictly increasing, 7@ o is the largest ordinal such that

(@, ¥) € C.q0.
Therefore
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DX x Y) = %X) DY) + Ind (Crnerr)
= vX) @ (Y) + Ind (4yx) + Ind (Br)) = D(X) @ D(Y) ,

because Cixerw) = Arx X Brw-
Theorems 6 and 7 are needed in the proof of the Product Theorem,
Theorem 8.

DEFINITION. A D(X)-D-representation, D = J{4.|0Za <7}, is
said to be reduced, if, for every open set V — X, such that V N A4,
is nonempty, it is true that D(closure (V)) = 7.

THEOREM 6. If D(X) +# 4, then X has a reduced D(X)-D-repre-
sentation.

Proof. Let X = J{4.|0 = a <7} be a D(X)-D-representation.
Let C be the set of all x € A, such that, for some open set V C X,
x e V and D(closure (V)) < v. Since X is paracompact, by considering
the V’s and the open set X — A,, we can find a locally finite (in
X — (4, — C)) collection 27~ of closed (in X) sets whose interiors (in
X) cover C but which do not intersect 4, — C and also such that
D(W) < v, for each We 7.

Let W= U{4(W) |0 <a<v(W) <7} be a D(W)-D-representation
with the property assured in Lemma 1. Then define, for each o < v,

B. = (A, interior (U %)) UU {A(W) | We 7~ and «(W) > &}
U, —CYUU{4, (W) | Wew and
a = v(W) + Ind (4;(W))} ;

note that B, = A, — C. We shall show in the next paragraph (in five
steps) that X = U{B.|0 < a <} is a reduced D(X)-D-representa-
tion.

(A) The sets (A,-interior (U %#7)) and (4, — C) are closed in X,
and the union of any subcollection of 97~ is closed in (X — (4, — C));
but the boundary of (C U (X — A,)) is contained in (A4, — C); there-
fore, B, is closed in X. (B) By an argument similar to that in (A),
we can conclude that, for each 8 < v, U{B.|B8 < a < v} is closed in
X. (C) B,— (4, — C) is finite dimensional since it is the locally
finite union of closed sets each of dimension less than the maximum
of {Ind (4.), n(a@)}. Therefore, B, is finite dimensional, since each open
subset of a metric space is a countable union of closed (in the whole
space) sets. (D) For xec X, there is a largest a such that xz¢B,,
because x belongs to only finitely many W’s. (E) Thus X =
U{B.|0 < a < 7} is a D-representation; and, since B, C 4,, it must be
a minimal representation (i.e., Ind (B,) = Ind (4,)); it is reduced since
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C contains all the “bad” points.

THEOREM 7. Let A be a finite-dimensional, nonempty closed sub-
set of the space X, and let v be a limit ordinal. If every open set
that intersects A, contains a closed subset of X of D-dimension =7,
then D(X) = v + Ind (4).

Proof. Since X is metric and therefore paracompact, we can find,
for each 7 = 1,2, 3, ---, a locally finite collection, .#";, of open subsets
of X each of diameter less than 1/¢, such that, for each ¢, U .+
contains A and each member of _/;,, intersects A. Then _4" =
U{rili=1,2,---} is a collection which is locally finite at points of
X — A. Foreach Ne_y”, let B(N) be a closed (in X) set contained
in N and such that D(B(N)) = . For each Ne_y~, let B(N) =
U{4.(N)|0 < a <~} be a D(B(N))-D-representation which has the
property assured by Lemma 1. (We are assuming that D(B(XN)) is
less than v + Ind (A) because otherwise the theorem would be clearly
true.) Define, for 0 = o < 7,

A= AUU{AAN)|Ne_r}.

We shall show in the next paragraph that ¥ = U{4./0<a <9} is
a D(Y)-D-representation with D(Y) = v + Ind (4) and that Y is a
closed subset of X. After this is done, it will follow from Theorem
1 that D(X) = v + Ind (4).

If pecX —~ Y, then p¢ closure (J._#";) for 1/i less than the
distance from p to A. But outsideof Y +;, Y =U{BN)|Nec}jUA
is the union of a locally finite collection of closed sets and, thus,
Y —J.+; is closed and p¢ closure of Y. Therefore Y is closed in
X. Foreach B <v,U{4.]|8 £ a < v}is closed, by a similar argument
since it is equal to the following union of closed sets,

U{UAN) I B=sa<BN)}INe /UA.

If « =~ + m, where A is a limit ordinal and m is finite, then, for
each 17, (@ #= 7)AJi] = U{4.(N)| Ne_j";} is the locally finite union
of closed m-dimensional sets and is, therefore, m-dimensional. (See
[7], p.17.) Thus (let Ind (4) = n)

Aa:AUU{Aa[iHIizlyzrgy"'}

is the union of countably many closed m-dimensional sets and one n-
dimensional set; and, therefore, Ind(4,) = Max{m,n} < . By a
similar argument, Ind (4,) = n. For each x e X, there is a largest o
such that xz e A,, because either x € AC A, or x belongs to only finitely
many B(N)’s. We have thus shown that Y = J{4.|0=a <} is
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a (v + n)-D-representation; to show that D(Y)=v+n, let Y =
U{C.|0 < a <5} be another D-representation of Y. Since D(B(N)) =7,
D(Y) = v, and, therefore, 6 = v. Assume that 6 = v and Ind(C,) < n.
Then let pe A, — C, and let B be the largest ordinal such that p € C,.
There is an N €_4~ such that

peNCcY - U{C,IB+1=Za<},
but then
B(N)=U{C.NB(N)|D = a < 8}

is a D-representation which contradicts the fact that D(B(N)) = v > 8.

THEOREM 8. D(X x X) = D(X) + D(Y), if X is nonempty and
has a D(X)-D-representation, X = |J{A4,|0 < a <7}, such that either
@) D(Y) =0 or 1 and A, is locally compact and nonempty or (b) A,
and Y are nonempty and Y is a finite-dimensional, locally-finite
polytope. (Note: If X tis compact then the conditions on A, are
automatically satisfied.)

Proof. If D(X) = 4, there is nothing to prove; therefore assume
that D(X) = 4. By Theorem 6, we may assume that the above
D(X)-D-representation of X is reduced; and, since in the proof of
Theorem 6 B, is a closed subset A, where A, was from any D(X)-D-
representation, we may assume that the above representation is not
only reduced but that A, is compact. According to [6], p. 206,
Ind (4, x YY) =Ind (4, + Ind (Y). (“dim” = “Ind” for finite dimen-
sional spaces.) Thus it is easily checked that

XxY=U{dxY|0<a<

is a (D(X) + D(Y))-D-representation. Let N be any open set inter-
secting A, x Y, let pe NN (4, %X Y), and let y e Y be the projection of
pin Y. Then N N (X x {y}) is an open subset of X x {y} that intersects
A, x {y}. Since the D(X)-D-representation of X was reduced, there is
a closed (in X x {y}, and therefore in X x Y)set BC NN(X x Y)C N,
such that D(B) = v. Thus by Theorem 7,

DX x Y) =~ + Ind(4,) + Ind (Y) = D(X) + D(Y) .

4. Local property.

THEOREM 9. If D(X) equals 4 or is not a limit ordinal, then
there 1s a point pe X each of whose neighborhoods has D-dimension
equal to D(X). If D(X) is a limit ordinal, then, for each B < D(X),
there is a point p(B) e X each of whose meighborhoods has D-dimen-
sion =0.
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Proof. Let X = U{A.]|0 = a < 7} be a reduced D(X)-D-represen-
tation of X. First, assume that A, is not empty. Since A4, is finite-
dimensional (and metrizable), there is a point p € A, such that each
neighborhood of p in A, has dimension equal Ind (4,). (See [1], pp.
103,108.) We can thus conclude, using the definition of ‘reduced’ and
Theorems 1 and 7, that each neighborhood of » in X has D-dimension
equal to D(X). Now suppose that A, is empty, or D(X) = 4, then
D(X) is either 4 or a limit ordinal. Let Z be any ordinal less than
D(X). If the Theorem failed then each point of X would have a
neighborhood of dimension <A8. Thus, since X is paracompact, we
could find a locally finite closed cover of X consisting of sets of D-
dimension <AB. (We need Theorem 1 here.) But in this case, Theorem
3 tells us that D(X) < B, which leads to a contradiction. Since X is
a set and 4 is larger than all ordinal, there must be some p <€ X each
of whose neighborhoods has D-dimension equal to 4, if D(X) = 4.

5. Cardinal (D(X)).

THEOREM 10. For all spaces X, cardinal (D(X)) < weight (X), if
D(X) = 4.

Proof. The theorem is clearly true for finite-dimensional spaces.
Thus, let X be a space such that w < D(X) = a # 4; and suppose,
inductively, that, for all spaces, Y, such that D(Y) < D(X), it is true
that cardinal (D(Y)) < weight (X). Let A be the last (\(«)-th) member
of a D(X)-D-representation of X, D(X — A) < :\(«a), because X — A
has a \(«a)-D-representation. D(X — A) = M«), because of Theorem 4.
Then, by the definition of a-D-representation, each point of X — A4
has a neighborhood of D-dimension <\(«); and Theorem 9 tells us
that there is, for each 8 < M), a point p(B)e X — A and an open
set N(B) containing p, such that 8 < D(N(B)) < Ma). Because of the
inductive assumption, we may conclude that, for each B < )\ (@),

A(B) = cardinal (D(N(B))) < weight (N(B)) < weight (X)) .
Thus the theorem is proven, if
cardinal (D(X)) = cardinal (\(«)) = limit {2(B) |0 < B < M)} .

If this is not the case, then \(«&) must be an initial ordinal number,
i.e., Ma) is the smallest ordinal whose cardinal is cardinal (\(«)).
Also, limit {2A(B) |0 =< B < Ma)}, if it is not equal to cardinal (\(«)),
must be the immediate predecessor to cardinal (M(«)). But, then,
according to [8], p. 407, M«) is a regular initial number and thus (see
[8], p. 406) {D(N(R)) |0 < B < M«a)} must have cardinal (M«)) distinct
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ordinals. Thus, since we could have picked the N(58)’s to be members
of a given basis for the open sets of X, we conclude that

weight (X) = cardinal (\(«)) = cardinal (D(X)) .

6. Characterization of D-dimension. In this section we will
characterize D-dimension from among all those topological functions
(i.e., functions which are invariants of topological type) from all metrie
spaces to the ordinals (= — 1) with 4 added. We show that any such
function, F, which satisfies Axioms I, II, III, IV, and VII must be
equal to D. Axioms I, II, III, IV are axioms which one would like a
dimension function to satisfy. A justification of Axiom VII is con-
tained in the next section.

I. (FINITE-DIMENSIONAL SPACES). If either E(X) or Ind(X)
are finite, then E(X) = Ind (X).
II. (LocAL PROPERTY). E(X) =1lu.b. {E,(X)|pe X}, where
E(X) = minimum {E(N)|N a neighborhood of p in X}.
III. If F 1is a closed subset of the space X, then E(X) <
E(X — F) + E(F).
IV. (MONOTONE). If Y is a subspace of X, then E(Y) < E(X).
VII. If A is a nonempty closed subset of X and v is a limit
ordinal, such that each open set that intersects A contains, for each
B <, a closed (in X) subset of X — A with E-dimension =p, then
E(X) = v + minimum {E(A4), w}.

That D satisfies Axioms I, II, III, IV follows easily from Theorems
1,9, 4, 2, respectively. That Axiom VII is satisfied by D follows from
Theorem 7 and Lemma 1, below.

The proof that these axioms characterize D is broken up into
several parts in order to indicate where the different axioms are needed
in the proof.

LEMMA 1. If D(X) < 4, then X contains n-dimensional closed
subsets, for each finite n < D(X).

Proof. (by transfinite induction on D(X)). The lemma follows
from the definition of “Ind” if D(X) < w; therefore we can assume
that D(X) = w. Let X =J{4.|0 £ a < 7} be a D(X)-D-representation
of X. DX — A,) £, because X — A, has a v-D-representation; but
then Theorem 4 requires that D(X — 4,) = v. Let 8 be an ordinal
such that n < 8 <7, then by Theorem 9 there is a point pe X — A4,
each of whose neighborhoods has D-dimension >£. For some ¢ < 7,
peA; —U{A.]d < a <7} because of the definition of D-representation.
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Therefore p has a neighborhood, N, whose closure (in X) is contained
in A;— U{A.|0 <a <7} and therefore n <8 < D(closure N) <6 < 7.
The lemma now follows by induction.

THEOREM 11. If the function E satisfies Axioms I, II, and III,
then, for all spaces X, E(X) < D(X).

Proof. (by transfinite induction on D(X)). If D(X) or E(X) is
finite then the theorem follows from Axiom I. Now, assume that the
theorem is true for all spaces of D-dimension less than «, and let X
be a space such that D(X) = «. We may assume that v < a < 4
because otherwise there would be nothing to prove. Let X =
U{4.10 < a <7} be a D(X)-D-representation of X. Each point of
X — A, has a neighborhood whose closure has D-dimension < v (see
the proof of Lemma 1); thus, by the induction hypothesis, every point
of X — A. has a neighborhood whose closure has E-dimension < 7.
Therefore, by Axiom II, E(X — A,) <~v. By Axiom III.

E(X)<E(X — 4) + E(4,) <7+ Ind (4, = D(X) .

THEOREM 12. If the fumnction E satisfies Axioms I, 111, IV, and
VII, and if D(X) # 4, then E(X) = D(X).

Proof. (by transfinite induction on D(X)). Since D(X) # 4, X has
a reduced D(X)-D-representation, X = |J {4.]0 < a < v}, see Theorem
6. By the definition of reduced representation, for every open
set, V, that intersects A,, D(closure V)= ~v; and by Theorem 4,
D(closure (V) — A,) = v, since it has a +v-D-representation. By the
definition of D-representation each pe X — A, is contained in

Uf{d.|0=sa =4},

for some 6 < v. Therefore, combining with Theorem 9, we can con-
clude that, for each 8 < v and for each V as above, there is point
peV — A, such that v> D, (V)= S. By Axiom IV and the induction
hypothesis, the closure of each neighborhood of p has E-dimension
=B. Thus Axiom VII easily applies and we obtain

EX)=v+ E4,) =7+ Ind (4, = DX) .

LEMMA 2. If the function E satisfies Axioms 1 and VII and if
X is an infinite-dimensional space which does mnot contain closed
subsets of each finite dimension, then E(X) = 4.

Proof. (In [3] there is given an example of such a space X.)
Suppose inductively that E(Y) = B, for all 8 < a, and for each infinite-
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dimensional space, Y, which does not contain closed subsets of each
finite dimension. Note that closed infinite-dimensional subsets of such
spaces have the same property. Let X be one of these spaces, then
X must contain a closed infinite-dimensional subset, 4, such that each
open set intersecting A must contain an infinite-dimensional closed (in
X) subset of X — A. (For instance, A could be an nowhere dense,
infinite-dimensional closed subset of {x € X |2 has an infinite-dimensional
neighborhood}.) But then by Axiom VII,

E(X) = M) + minimum {E(4), o} = Ma) + © > « .

THEOREM 13. If the function E satisfies Axioms 1,11, 1II, IV,
and VII, and +f E(X) # 4, then D(X) = E(X).

Proof. Let X be a space such that w < E(X) = a + 4; and suppose,
inductively, that for all spaces, Y, such that E(Y) < E(X), it is true
that E(Y) = D(Y). Let A = {x € X | every neighborhood of X has E-
dimension = Ma)}. Clearly A is closed in X. If A failed to have
closed subsets of each finite dimension, then, by Lemma 2, E(4) = 4;
and thus, by Axiom IV, E(X) = 4. Therefore, if Ind (4) > n(a), then
A contains a closed subset B, such that Ind(B) = n(a) + 1. If V is
an open set that intersects B, then E(V) = \(«) and, by Axiom III,
E(V — B) = Ma). Thus, (using Axiom II applied to V' — B) we conclude
that B and \(«) satisfy the hypothesis of Axiom VII and we get

a=EX)zEX-B +EB)zMa) +n@+1=a+1l.

a contradiction. Thus it must be true that Ind (4) < n(a). By Axiom
III, (X — A) = Ma); and thus, by Axiom II, E(X — A) = M«a). Then,
because of the definition of A, each point of X — A has a neighbor-
hood of E-dimension (and, therefore, D-dimension) < \(«); and, because
E(X — A) = Ma), Axiom II tells us that there is, for each B8 < \Ma),
a point p(B) e X — A and an open set N(B) containing p, such that

B = E(N(B))(= D(N(B)) < Ma) .

Therefore, by Theorem 9, D(X — A) = M«); and, by Theorem 4,
DX)< DX — A) + D(A) = Ma) + Ind (A) = a = E(X). Theorem 13
now follows from Theorem 11.

THEOREM 14, If the function E satisfies Axioms I, II, III, IV,
and VII, then E(X) = D(X), for all spaces X.

The proof is immediate from Theorems 11, 12, and 13.

7. Justification of Axiom VII. Axiom VII is on the surface
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quite unsatisfactory because there seems to be no obvious reason why
one should require a dimension function to satisfy it. This section
will give the reasons why the author is convinced that Axiom VII
must be required of any satisfactory dimension function which, in
addition to satisfying Axioms I-IV, also satisfies.

V. If there is a point pe X, such that E(X) = E(X), then
E(X x I) = E(X) + 1. (I = the unit interval.)

VI. (Sum THEOREM). If A and B are closed subsets of X, then
E(A U B) = maximum {E(4), E(B)}.

DEFINITION (Q%). For 0 < a < w, define Q% to be the finite-dimen-
sional cell, I*. Now assume, inductively, that, for each 8 < «, Q° has
been defined and that d? is a metric function for @° of bound 1. If
a = B + 1, then define Q° = Q° x I and, for ¢, ¢' ¢ Q° and ¢, t’ € I, define

a*((g, 1), (¢, 1)) = (1/2)[d(q, ¢') + [t — '] .

If « is an uncountable limit ordinal, then define Q* to be the union
of a point p and the discrete union of all @°, 0 < 8 < a. Also define
d*(p,q) = 1/[n(B) + 1], if ¢ Q*, 0 < B < a; d*(q, ¢') = d’(q, ¢')/[n(B) + 1],
if both g, ¢’ belong to @°, 0 < 8 < a; and d%(q, ¢') = d*(p, q) + d*(p, q'),
if ¢, ¢’ belong to different Q°, 0 < 8 < a. If a is a countable limit
ordinal, then define @Q* to be the one-point-compactification of the
discrete union of all Q% 0 < B < a; it is easy to check that @« is
metrizable and thus define d* to be any (compatible) metric bounded
by 1. (For countable ordinals, this definition is due to Yu. M. Smirnov,
[9], who showed that, for countable «, Ind (Q*) = «.)

THEOREM 15. If the function E satisfies Axioms I-V, then
E@Q") = a.

Proof (by transfinite induction on «a). If a < w, then Ind (Q*) =
a = E(Q%), Axiom I. Assume that, for each 8 < a, E(Q%) =pB. If
« is a limit ordinal, then Q= = {p} U U{Q’|0 =< B < a}, where Q* — {p}
is a discrete union of the Q% 0< B8 <a. Thus, by Axiom IV,
E@Q® — {p}) = a; and, by Axiom II, E{Q* — {p} =< . Therefore (Axioms
III and IV)

a=E@Q —{p}) = EQ)=EQ —{p) + E{p}) =«a;
and E(QY) =a. If a =B + 1, then (Axiom V)
EQV=E@xD)=E@Q)+EI)=+1=«a.

DEFINITION (D%). For 0 < a < w, define D* = I*. Now assume
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inductively that D’ has been defined for each 8 < a. If Ma) =7 and
n(a) = n, define D* to be a subspace of @* = Q" x I”, such that

D* = ({p} x I"YUU{D? x (CEN"|0 =B <},
where

C(B) = U {l25)d“(p, Q°), (25 + 1)d*(p, @°)] | j, a nonnegative
integer, such that (25 + 1)d*(p, Q%) < 1} c[0,1]=1T.

THEOREM 16. If the function E satisfies Axitoms I-VI, then
E(D%) = a.

Proof (by transfinite induction on «). Since D*c Q¢, E(D*) < «a.
Assume that, for each B8 < a, E(D?) = 8. If ais a limit ordinal, then
D= contains a copy of D? for each B < «; therefore, by Axiom IV,
E(D*) = a. Thus, we may assume that Ma) = v and n(a) = n > 0.
The theorem will follow from Axioms V and VI and the induction
hypothesis, if we can show that D' x I is equal to the union of
2 copies of D*, Notice that there is a map f*?: C(8) — [0, 2] such that
C(B) U fA(C(B)) =[0,1 + t(B)], f° moves each point a distance of pre-
cisely d*(p, @°), and 0 < f(B) < d*(p, @°) < 1. Since f? moves points
less and less as @Q° gets close to p, it can be shown that D* is
homeomorphic to

FDY = ({p} x I"YUU{D? x (CB)" x fFACPB)|0< B <};
and D* U f(D") is homeomorphic to

({p} x I) U UAD? x (CB)*" x [0, 1 + ¢B)] [0 = B <},

which, because of the inequality satisfied by #(8), is homeomorphic to
D=t x I,

REMARK. For countable «, Ind (Q*) = «; but, for uncountable «,
Ind (Q*) does not exist because, for these «,Q* is not weakly infinite-
dimensional. (See [7], p. 177.) Also, it can be shown that Ind (D) = o,
for all countable @. This shows that the Sum Theorem does not hold
for Ind, because

Dot U f(D") = D x [ = Q" x [ = Q"+,

(This is essentially the same as the example given by B. T. Levsenko,
[5], p. 258.)

Let X be a space which is the disjoint union of a closed 1-dimen-
sional set A and the members of a collection of closed sets, &,
such that each open set which intersects 4 must contain, for each
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n < w, a member of & of dimension equal to n. Even if X is com-
pact it seems very unlikely that Axioms I-VI will, in general, determine
the dimension of X. Also, it seems clear that any satisfactory dimen-
sion would have to assign the same dimension to X as it does to D!
(which has the same structure as X), for if it didn’t it would be a
dimension theory that distinguished between the dimensional-properties
of I and an n-dimensional space. Thus, Axiom VII follows from
Axioms I-VI (through Theorem 16) and the requirement that if X is
put together like D~ with = w-dimensional sets replacing n-cells of
D=, then E(X) = E(D".

REMARK. Axioms I-VI do not characterize D for all separable
metric spaces. To see this, define E(X) = D(X) = Ind (X), if X is
finite-dimensional, otherwise define E(X) = Lu.b. [{0} U{D(Y)| Y c X
and Y is compact}'. It can be checked that E satisfies Axioms I-VI
for all separable metric space. (The hypothesis of separability is
needed to verify Axiom V.) Let R be a subspace of D“** which is
obtained by replacing ({p} x I*) by a subset which is 1-dimensional,
separable, and totally disconnected (see, for example, [4], p. 22). Then
DR) = w + 1 but F(R) = w.

The author wishes to thank the referee for suggestions which
have improved the presentation in this paper.
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